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a b s t r a c t

The sediment quality of the Protected Cananéia-Iguape-Peruíbe Area (APA-CIP), listed as one of
the Wetlands of International Importance (Ramsar Site), was assessed through geochemical and
ecotoxicological analyses, in order to determine if organic and inorganic contaminants retained in the
sediments were bioavailable to benthic organisms and could trigger negative effects. Lethal (Tiburonella
viscana) and sublethal (Lytechinus variegatus and Nitokra sp.) ecotoxicological endpoints were assessed,
as well as sediment texture and organic and inorganic contaminants in sediments obtained at six
stations distributed along the APA-CIP. Sites under the influence of the maximum turbidity zone and
close to the main local urban center (Cananéia city) presented the worst environmental conditions,
indicated by sediment toxicities and high contaminants levels. These conditions may be associated
to fine-grained sediments. Metal (Pb, Co, Ni and Zn) concentrations exceeded the regional Sediment
Quality Guidelines (SQGs) at stations PT and PM, while Pb also exceeded the Canadian Interim Marine
Sediment Quality Guidelines (ISQGs). Total Aliphatic Hydrocarbons (AH) were close to threshold
sediment contamination values at PT (maximum turbidity zone). These findings indicate that metals
from former mining activities reach APA-CIP, in addition to contaminants from local sources (urban
centers, docks, fishing wharfs). Contaminants accumulate in low energy regions, where fine particle and
organic matter contents are high. Toxicities appeared to be associated to contaminants, suggesting that
the multiple local anthropogenic sources can produce ecological risks, indicating the need for multiple
efforts to control external and internal contamination sources in this protected estuarine area.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Protected marine and estuarine areas have been established
with different aims, including the protection of fish stocks and re-
duction of anthropogenic impacts (IUCN, 2013). The coastal zone
of the state of São Paulo, Brazil, comprises a mosaic of marine,
terrestrial and mixed protected areas (PAs), where the Cananéia-
Iguape-Peruíbe Protected Area (APA-CIP, ‘‘Área de Proteção Ambi-
ental de Cananéia-Iguape-Peruíbe’’) is inserted. The APA-CIP was
established by Federal decrees 90.347/84, and 91.892/85 in 1984
and 1985, respectively, and is located in the area known as the
Iguape and Cananéia Estuarine Complex (Lagamar). The area was
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recognized as a World Natural Heritage Site by UNESCO and is
part of the UNESCO’s Atlantic Rainforest Biosphere Reserve. Re-
cently, the site was also included in the Ramsar’s List of Wetlands
of International Importance (https://rsis.ramsar.org/ris/2310).

Protected Areas have been frequently ineffective in accom-
plishing their conservation goals due to aquatic pollution (Gub-
bay, 2005; Jameson et al., 2002). However, few studies have
focused on pollution as an important factor threatening biodiver-
sity within protected areas (e.g. external contaminant sources).
Previous studies indicate that metals are important contaminants
in this estuarine complex (Abessa et al., 2014; Barcellos et al.,
2005; Cruz et al., 2014; Guimarães and Sígolo, 2008; Gusso-
Choueri et al., 2015, 2016, 2018; Mahiques et al., 2009, 2013),
due to the disposal of mining residues in the upper areas of the
Ribeira de Iguape River (RIR) basin, the main contributor to the
estuarine complex surrounded by the APA-CIP. Sediments from
the APA-CIP present comparable metal concentrations (especially
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Pb) to those observed in polluted industrial areas, such as the
Santos Estuarine System, also located in the state of São Paulo
(Mahiques et al., 2009). Local intensive mining activities began
in 1943 (Moraes, 1997), and included several Pb mines operating
throughout the RIR basin. The mining and metallurgical process
(ore and slag) residues were directly discharged into the river,
leading to downstream contamination. However, the water dis-
posal of these residues was prohibited, leading to depositing on
the river banks, where storm water runoff, wind transport and
other physical processes led to carry-over into the river. Mining
activities ceased in 1995, but the residues remained deposited
along the river banks (Guimarães and Sígolo, 2008; Kummer et al.,
2011), representing river metal sources. The RIR mouth is located
in the northern portion of the APA-CIP, consequently leading
to mining contamination in this estuarine area (Amorim et al.,
2011). The influence was intensified after the construction of the
‘‘Valo Grande’’ canal, causing approximately 60% of the RIR water
flux to flow toward the estuary (Mahiques et al., 2013), convert-
ing this river into the major CIP estuarine complex nutrient and
contaminant contributor (Barcellos et al., 2005; Mahiques et al.,
2009).

After the construction of the Valo Grande canal, navigation
along the estuary became easier. The number of fishing boats in
the region experiences seasonal fluctuations, increasing fromMay
to June and decreasing from August to September (Seckendorff
and Azevedo, 2007). On the other hand, leisure navigation has
expanded in the region, following ecotourism increases, espe-
cially during the austral summer (from December to February).
Increased boat activity leads to increased anthropogenic hydro-
carbon inputs (Egardt et al., 2018; Nasher et al., 2013; Yuan
et al., 2001), and organic polycyclic aromatic and aliphatic hy-
drocarbons (PAHs and AHs, respectively) in water and fish from
this region have been reported (Azevedo et al., 2012; Albergaria-
Barbosa et al., 2016; Nishigima et al., 2001), although at relatively
low concentrations. Hydrocarbons may not be the main contam-
inants at APA-CIP, but should not be disregarded, as they are
known to be highly toxic and can combine with trace metals and
other chemicals, producing complex contaminant mixtures that
can affect the biota, even at low concentrations (Fleeger et al.,
2007; Gauthier et al., 2015).

As mentioned previously, several studies have reported sed-
iment toxicity of or adverse responses in organisms from the
APA-CIP (Gusso-Choueri et al., 2015, 2016). However, these stud-
ies either presented a limited geographical scope (Cruz et al.,
2014) or assessed biological effects by determining biomarkers
in resident fish (Gusso-Choueri et al., 2015, 2016), a valuable
tool for environmental quality assessments, but that may be
limited for identifying ecological risks. As sediments may accu-
mulate contaminants through time, sediment quality assessments
constitute a reliable strategy to assess environmental quality
and risks. Chemical analyses are useful to identify and quantify
contaminants, whereas ecotoxicological approaches may evalu-
ate potential effects on aquatic biota (Costa et al., 2009). Thus,
studies integrating sediment toxicity and contamination relation-
ships may provide more robust information concerning sediment
quality at this Ramsar site.

Considering that the APA-CIP may be under the influence
of both external and internal contamination, which may pose
a threat to this protected area, this study aimed to evaluate
sediment quality at the APA-CIP using geochemical and ecotoxi-
cological approaches, in order to assess biota risks in this PA, due
to historical and recent metal and hydrocarbons anthropogenic
inputs.

2. Material and methods

2.1. Study area

The APA-CIP comprises 565,200 ha and is located between
the southwestern coast of the state of São Paulo (Brazil) and
the northeastern coast of the state of Paraná (23◦45′–25◦15′S,
46◦45′–49◦30′W) (Fig. 1). The region consists in the lower course
of the Ribeira de Iguape River and the Cananéia, Cardoso, Super-
agüi, Comprida and Iguape islands. Anthropogenic occupation is
more intense in the northern portion of the system, especially
near the urban centers at the Iguape and Ilha Comprida cities and
in the lower RIR valley (Barcellos et al., 2005).

The Iguape-Cananéia estuarine system is the major estuarine
complex on the São Paulo coast, which, alongside the RIR forms
the largest coastal plain in the state. As mentioned previously, this
system currently receives a considerable part of the RIR drainage
as, after the construction of the Valo Grande canal (Fig. 1, VG
canal) in the mid-nineteenth century, at least 60% of the RIR flow
was diverted toward the estuary, altering the estuarine hydrolog-
ical regime (Mahiques et al., 2013). The RIR thus became the main
freshwater, sediment and nutrient contributor to this system,
especially in its central and north portions (Freitas et al., 2006).
Additionally, rainstorms play a major role in removing surface
soils and contaminants along the RIR basin (Costa et al., 2009),
carrying and redistributing them across the estuarine complex.

2.2. Sediment sampling

Sediment sampling was performed along 6 stations distributed
along the estuary, from the vicinities of the Valo Grande canal,
where contaminant input influence is expected to be more in-
tense, to Cardoso Island (reference area), as displayed in Fig. 1.
The sampling campaign was carried out in September, 2013 (cor-
responding to the end of austral winter). Sediment samples were
collected using a 0.036 m2 stainless steel Van Veen grab sam-
pler, transferred and conditioned in plastic vessels for metal
and grain size analyses and in pre-cleaned aluminum foil for
hydrocarbons assessments, and, placed on ice until arrival at the
laboratory. Subsequently, aliquots for the toxicity tests were sep-
arated and maintained at 4 ◦C, and aliquots for the geochemistry
and chemistry analyses were stored at −20 ◦C.

2.3. Sediment properties

Sediment grain size distribution was analyzed based on the
protocol proposed by McCave and Syvitski (2007). About 30 g of
previously dried sediment were wet-sieved 63 µm to separate
fine particles (mud and silt). The material retained in the sieve
was then dried and weighed. Initial and final weight differences
indicated the mud fraction. Subsequently, the sandy material
retained 0.063 µm was sieved through other different meshes
(φ scale), in order to separate different sand classes, and the
results were further classified based on the Wentworth scale.
The calcium carbonate (CaCO3) contents of each sample were
determined using the method described by Hirota and Szyper
(1975) which consists of separating 5 g fractions of each sediment
sample and adding 10 mL of hydrochloric acid (5 mol L−1 HCl) for
24 h, in order to eliminate calcium carbonate. Next, samples were
washed with distilled water and dried at 60 ◦C. The difference be-
tween the initial and final weights indicated the amount of CaCO3
in each sample. Organic matter (OM) contents in the sediment
samples were estimated using the ignition method (Luczak et al.,
1997), in which 5 g aliquots of dry sediments were separated
and calcinated at 500 ◦C for 4 h. Organic matter contents were
obtained by calculating the difference between the initial and
final weights.



G.S. Araujo, A.C.F. Cruz, P.K. Gusso-Choueri et al. / Regional Studies in Marine Science 35 (2020) 101145 3

Fig. 1. Map and geographic coordinates of the sediment sampling sites within the Protected Cananéia-Iguape-Peruíbe Area.

2.4. Metals analyses

Elements were analyzed by inductively coupled plasma mass
spectrometry (ICP-MS) without the use of a reaction cell on a DRC
II ELAN model (Perkin Elmer-Sciex, Norwalk, CT, USA), through
HNO3 extraction. 103Rh was used as an internal standard at 20
µg L−1 to monitor the nebulization process (standard Meinhard
nebulizer type with twisted cyclonic chamber) and plasma sta-
bility. Al, Cr, Fe, Co, Ni, Cu, Zn, Cd, Hg and Pb were determined.
Agreement between experimental and certified values was ade-
quate (77.22–118.32%), and the precision of duplicate NIST 2711
(Montana Soil) and PACS-2 (Marine Sediment Reference Materials
for Trace Metals) certified reference materials (CRM) were as-
sessed, as recommended by the Environmental Protection Agency
(US EPA, 1999) (Table 1).

2.5. Hydrocarbons analyses

Hydrocarbons were determined as described in detail by Wis-
nieski et al. (2016). Sediment samples were Soxhlet-extracted
with a mixture of specific solvents (dichloromethane (DCM) and
n-hexane, 1:1, v/v). The total organic extracts were then purified
and fractionated by liquid chromatography on 5% deactivated sil-
ica and alumina columns. Aliphatic hydrocarbons (AHs, including
individual n-alkanes, pristane and phytane) (Fraction 1) and PAHs
(Fraction 2) were obtained by elution with 10 mL of n-hexane and
15 mL of a DCM and n-hexane mixture (3:7, v/v), respectively.

The instrumental analysis procedures used to quantify the AHs
and PAHs were performed as described by Martins et al. (2015).
AHs analyses were performed on a gas chromatograph (Model
7890A, Agilent) equipped with a flame ionization detector (FID),
while PAHs were analyzed using a gas chromatograph (Model
7890A, Agilent) coupled to a mass spectrometer (Agilent 5973N
inert MSD with Triple-Axis Detector). A fused silica capillary col-
umn coated with 5% diphenyl/dimethylsiloxane (30 m, 0.25 mm
ID, 0.25 mm film thickness) was used in both systems. The oven
temperature was programmed to ramp from 40 to 60 ◦C at 20 ◦C
min−1, then to 250 ◦C at 5 ◦C min−1, and, finally, to 300 ◦C at
6 ◦C min−1, with a final hold step for 20 min. Data acquisition
during the PAHs analyses was performed in the selected ion

monitoring (SIM) mode. The individual n-alkanes, pristane and
phytane were identified by matching their retention times with
those of standard mixtures (n-C10 to n-C40), at concentrations
ranging from 0.25 to 10.0 ng µL−1. The PAHs were identified by
matching the retention times and ion mass fragments with those
of a standard mixture (Accustandard, Z-014G), at concentrations
ranging from 0.10 to 1.50 ng µL−1.

A procedural blank analyses indicated that no peaks inter-
fered with the target compound analyses. Mean recoveries of the
spiked surrogate standards ranged from 67 to 78% for AHs and
from 40 to 87% for PAHs. The instrumental limits of detection
(LOD) were 0.001 µg g−1 for n-alkanes and 0.50 ng g−1 for
PAHs. These data are based on the lowest PAHs and n-alkanes
concentrations sensitivities (0.02 and 0.04 ng µL−1, respectively),
multiplied by the final extracted volume (500 µL) and divided
by the weight sediment (20 g) prior to the extraction. Precision
expressed as the coefficient of variation between five replicates
was lower than 15% for at least 85% of the analyzed hydro-
carbons. The determined target hydrocarbon concentrations in
the reference material (IAEA-408) were in adequate agreement
(95%–105%) with the certified values.

2.6. Ecotoxicological assays

Quality control parameters were determined in all ecotox-
icological assays (e.g. salinity, pH, dissolved oxygen (DO) and
temperature) (Appendices A–C).

2.6.1. Sediment–Water interface embryonic Lytechinus variegatus
toxicity

The embryonic toxicity test with the sediment–water inter-
face (SWI) followed the method described by ABNT - Associação
Brasileira de Normas Técnicas (2006), adopting the reduced vol-
umes proposed by Cesar et al. (2004). Adult sea urchin Lytechinus
variegatus individuals were obtained by snorkeling at Palmas
Island, Guarujá, SP, and used as broodstock. About 2 g of sediment
were transferred to glass test-tubes (15 mL), followed by 8 mL of
filtered seawater (4 replicates/sample). To prevent direct contact
between the embryos and the sediment, a mesh (45 µm) was
introduced in each test-tube and placed on the sediment surface.
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The same procedure was followed for the control tubes, which
contained clean seawater (control water), or a 45 µm mesh and
water (control mesh). The test system was allowed to stabilize for
24 h before beginning the exposure.

Gametes were obtained by osmotic induction (0.5 mol L−1

KCl), and ovules were fertilized by adding an aliquot of sperm
solution containing activated sperm cells. Fertilization success
was checked by the verification of control samples under a mi-
croscope, and >90% fertilization was achieved. For the toxicity
test, approximately 500 eggs were added to each chamber (test
tube) and incubated for 24 h, at constant temperature (25 ± 2 ◦C)
and a 16 h light/8 h dark photoperiod. At the end of the test, the
content of each chamber was transferred to other vessels con-
taining buffered formaldehyde to preserve the larvae. Then, 100
embryos of each replicate were counted, and the percentage of
normal embryos was calculated. Normal embryos (Pluteus stage)
were identified based on typical larval development, considering
branch symmetry, shape and skeleton size (Perina et al., 2011).

2.6.2. Chronic whole-sediment Nitokra sp. toxicity
The whole sediment chronic toxicity assay using laboratory

cultured benthic copepod Nitokra sp., was based on the protocol
developed by Lotufo and Abessa (2002). Four replicates were used
for each sample, and 15 mL of high-density polyethylene flasks
were used as test-chambers, filled with 2 mL of sediment and 8
mL of filtered seawater (salinity 17). Ten healthy ovigerous fe-
males were introduced into each chamber. The whole test system
was incubated at 25 ± 2 ◦C for 7 days, under a 16:8 light/dark
photoperiod. At the end of the test, the contents of each replicate
were fixed with formaldehyde (10%) and Rose-Bengal dye (1%).
Finally, the numbers of adult females and their offspring (nauplii
and copepodites) were counted using a stereomicroscope. Repro-
duction rates were calculated by dividing the number of offspring
by the number of females of each replicate.

2.6.3. Acute whole-sediment Tiburonella viscana toxicity
The acute sediment toxicity assay using T. viscana (Thomas and

Barnard, 1983) was performed following the protocol described
by Melo and Abessa (2002) and ABNT - Associação Brasileira
de Normas Técnicas (2006). The amphipods used in this assay
were collected at Engenho d’água Beach, Ilhabela – São Paulo
(23◦48′–45◦22′ W). Three replicates of each sediment sample
were prepared in 1 L-polyethylene test chambers: a 2-cm layer
of sediment and 750 mL of dilution seawater were gently added
to each chamber. After 24 h, ten healthy adults and non ovigerous
amphipods were introduced into each test chamber. The exper-
iment lasted 10 days, and was kept under constant lighting and
aeration, and 25 ± 2 ◦C. At the end of the test, the contents of
each test chamber were sieved and the surviving organisms were
counted. Missing organisms were considered dead.

2.7. Statistical analyses

The results of the ecotoxicological tests were first checked
for homoscedasticity and normality by Bartlett’s and Shapiro–
Wilks tests, respectively. Then, all samples were compared to
the reference sediment using One-Way Analysis of Variances
(ANOVA), using the R software package. When significant differ-
ences in the toxicity endpoints were detected, a post-hoc test
(Dunnett’s t’-test) was performed to assess statistical differences
between the references and the test-samples. If present, sedi-
ments were considered toxic (p < 0.05), while the absence of
statistical differences indicated non-toxic sediments.

Geochemical and ecotoxicological data were transformed
through logarithmic and Arcsin equations. Arcsin transforma-
tion is used to homogenize the residual variance of the data

((Arcsin(
√
x/100)) · 180/π ). Moreover, log transformation was

applied to reduce the magnitude of the different variables, by
the function y = log10(x + 1). Then, data were integrated using
principal component analysis (PCA), through variable correlations
variables into a set of values (principal components), in order
to reduce the number of variables. A cluster analysis was also
performed, in order to confirm the PCA results for grouped
stations.

3. Results

3.1. Sediment properties and metals

Sediment samples from VG, PE, PM, AR and IC were predom-
inantly sandy (>75%) while the sediment from PT was predomi-
nantly muddy (>95%). Sediments presented low CaCO3 contents
(max. 6.35%), whereas OM amounts ranged from 0.28 to 14.4%
(Table 1).

Metal concentrations in sediment samples are presented in Ta-
ble 1. Higher concentrations of elements were observed in sedi-
ments from PT and PM. These results may be related to the sedi-
ment texture, as PT was predominantly muddy and PM presented
fines >20%; these sediments presented also the higher amounts
of OM. Sediments from AR and IC exhibited intermediate values,
in comparison to the other stations. The recoveries (in percent-
age) obtained in the metal analysis indicate adequate recoveries
(>70%) for most of analyzed metals, keeping in mind that the
CRMs were analyzed through weak acid extraction (HNO3) and
that they are certified only for total metal extraction. Al and Cr
(<70% recovery) are known as refractory elements, which may
be strongly connected to silicates, interfering with digestion (see
Bordon et al., 2011 for further details).

The concentrations of Pb in sediments exceeded the Interim
marine sediment quality guidelines (ISQGs) at station PM (ISQGs
= 30.2 mg kg−1; CCME, 2001), and the regional sediment quality
guidelines (SQGs) (Choueri et al., 2009) at stations PM (highly
polluted >22.2 mg kg−1) and PT (moderately polluted >10.3
mg kg−1). The elements Co (moderately polluted, >4.1 mg kg−1)
and Ni (highly polluted, >6.02 mg kg−1) exceeded SQGs values
at station PT. Levels of Co (highly polluted, >10.3 mg kg−1), Ni
(highly polluted, >6.02 mg kg−1), Zn (moderately polluted, >37.9
mg kg−1) and Hg (moderately polluted, >0.08 mg kg−1) exceeded
the respective regional SQGs at station PM.

3.2. Hydrocarbons concentrations

The concentration of organic compounds in sediment samples
are presented in Table 2. Total n-Alkanes, Total Aliphatics (re-
solved and unresolved) and PAHs were analyzed. Stations PT and
PM presented, again, the highest values of contaminants. Pedra
do Tombo indicated the highest value of Total Aliphatic Hydrocar-
bons (AH), reaching 96.3 µg g−1. Volkman et al. (1992) suggested
that unpolluted estuarine sediments should not present a total
of AH higher than 100 µg g−1. For PAHs, Baumard et al. (1998)
classified sediments with less than 100 ng g−1 of total PAHs as
low contamination, which include the sediments from all stations
from APA-CIP. Therefore, low or no toxicity due to AHs and PAHs
would be expected in sediments from stations PT and PM.

3.3. Ecotoxicological assays

3.3.1. Lytechinus variegatus
In the embryonic toxicity test of SWI, physical–chemical pa-

rameters of the overlying water in the test chambers remained
within acceptable ranges (Cesar et al., 2004; ABNT - Associação
Brasileira de Normas Técnicas, 2006) (Appendix A). Salinities
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Table 1
Contents of calcium carbonate, organic matter, sand and mud, (in percentage) and concentrations of metals in sediments from
Protected Cananéia-Iguape-Peruíbe Area (mg kg−1). Bold values are above limits (CCME, 2001; Choueri et al., 2009). Certified
Reference Materials (CRM) NIST 2711 (Montana Soil) and PACS-2 (Marine Sediment Reference Materials for Trace Metals) are indicated
as * (NIST) and ** (PACS-2), respectively.
Sampling sites

VG PT PE PM AR IC Recovery (%)

CaCO3 0.00 6.35 0.00 1.32 2.21 2.53 –
OM 0.28 14.4 0.82 6.06 1.00 2.05 –
Sand 98.9 3.84 96.7 77.2 92.5 89.6 –
Mud 1.12 96.2 3.25 22.8 7.54 10.4 –
Al 411.3 9642.4 622.8 13,630.7 1895.9 1401.8 17.9∗

Cr 1.07 20.4 1.53 32.0 5.41 3.67 38.9∗∗

Fe 907.4 1,5432.7 1722.8 26,661.3 3827.7 2813.9 75.6∗∗

Co 0.43 4.64 0.82 10.0 1.63 0.97 77.2∗

Ni 0.31 7.20 0.47 11.7 1.76 1.37 78.6∗

Cu 0.28 5.47 0.46 16.3 0.80 0.68 104.1∗

Zn 1.65 23.3 2.71 45.2 6.21 3.87 86.7∗

Cd 0.01 0.07 0.01 0.14 0.02 0.01 118.3∗

Hg 0.02 0.06 0.01 0.12 0.02 0.01 114.1∗∗

Pb 0.83 13.1 2.93 40.2 3.08 2.04 81.9∗

VG = Valo Grande. PT = Pedra do Tombo. PE = Pedrinhas. PM = Pai Mato. AR = Arrozal. IC = Ilha do Cardoso.

Table 2
Concentrations of total n-Alkanes, total Aliphatic and Polycyclic Aromatic Hydro-
carbons in sediments from APA-CIP. Concentrations of n-Alkanes and Aliphatic
hydrocarbons are expressed in µg g−1 and those of PAHs are expressed in ng
g−1 . LD is for Limit of Detection.
Variable Sampling sites

VG PT PE PM AR IC

n-Alkanes (µg g−1) 0.2 17.4 0.17 3.40 2.97 0.04

Total Resolved. AHs (µg g−1) 1.8 22.6 1.8 4.7 4.1 12.8

Total AHs (µg g−1) 3.2 96.3 4.4 19.0 12.8 2.18∑
PAHs* (ng g−1) <LD 25.2 <LD 19.3 2.5 <LD∑
PAHs EPA (ng g−1) <LD 20.5 <LD 17.8 2.5 <LD

VG = Valo Grande. PT = Pedra do Tombo. PE = Pedrinhas. PM = Pai Mato. AR
= Arrozal. IC = Ilha do Cardoso.

Fig. 2. Abnormal development of larvae of L. variegatus exposed to sediments
from the Protected Cananéia-Iguape-Peruíbe Area. Asterisks (*) indicate signifi-
cant differences relative to the control (IC) (p < 0.05). VG = Valo Grande. PT =

Pedra do Tombo. PE = Pedrinhas. PM = Pai Mato. AR = Arrozal. IC = Ilha do
Cardoso.

ranged from 31 to 35 Practical Salinity Unit (PSU); pH levels

were between 5.84 and 6.57 and Dissolved Oxygen (DO) levels

ranged from 2.77 (adjusted with aeration to 4 mg L−1) to 4.16 mg

L−1. The normal embryonic development of organisms exposed

to sediments from stations PT, PE, PM and AR were significantly

altered, and sediments from PT were the most toxic (Fig. 2).

Fig. 3. Reproductive rate of Nitokra sp. exposed to sediments from Protected
Cananéia-Iguape-Peruíbe Area. Asterisks (*) indicate significant differences rela-
tive to the control (IC) (p < 0.05). VG = Valo Grande. PT = Pedra do Tombo.
PE = Pedrinhas. PM = Pai Mato. AR = Arrozal. IC = Ilha do Cardoso.

3.3.2. Nitokra sp.
In the test with copepods, the measured parameters of overly-

ing waters in the test chambers were within acceptable levels in
the most of samplings, except for PT (Appendix B), according to
Lotufo and Abessa (2002). Salinities ranged from 17 to 19 PSU;
pH levels were between 6.89 and 7.66, with exception of the
test chamber with the sediments from PT in which the overlying
water had low pH (4.65; however, reaching acceptable levels
(7.43) by the end of the test); and DO levels ranged from 3.15
to 4.69 mg L−1. Sediment from PT and PM were considered
significantly toxic (Fig. 3).

3.3.3. Tiburonella viscana
During the acute toxicity test, physical and chemical param-

eters of the overlying water within the test chambers remained
within acceptable ranges (Melo and Abessa, 2002; ABNT - Associ-
ação Brasileira de Normas Técnicas, 2006) (Appendix C). Salinities
ranged from 30 to 34 PSU; DO levels ranged from 5.42 to 6.07 mg
L−1. The pH values ranged between 7.31 and 7.67. Sediment from
station PT showed a significant statistical difference, producing
100% mortalities among the exposed amphipods (Fig. 4). Sedi-
ments from VG, PE and PM presented low survival rates (close to
50%); however, no statistical difference toward IC was indicated.
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Fig. 4. Survival of T. viscana exposed to sediments from the Protected Cananéia-
Iguape-Peruíbe Area. Asterisks (*) indicate significant differences relative to the
control (IC) (p < 0.05). VG = Valo Grande. PT = Pedra do Tombo. PE =

Pedrinhas. PM = Pai Mato. AR = Arrozal. IC = Ilha do Cardoso.

3.4. Integrative approach

The first two PCA components explained >98% of variances
(Table 3, Appendix D). The 1st PC explained 75.4% of the total
variance, indicating separation of the most contaminated sites
(stations PT and PM, with negative scores) from the rest of the in-
vestigated sites (VG, AR, IC, PE), which presented positive scores.
All the variables presented high correlations to PC1, indicating an
association between toxicities (abnormal L. variegatus larvae, low
Nitokra sp. fecundity rates and T. viscana mortality), geochemical
factors (mud, OM and CaCO3), organic compounds (n-Alkanes,
UCM, total AHs and PAHs) and all the analyzed metals. The 2nd
PC explained 23.6% of the total variance, e mainly associated to
stations PM (positive values for Pb) and PT (negative values for
UCM, total AHs, n-alkanes and whole sediment toxicity toward
amphipods). Therefore, PM was highly associated to Pb, the main
contaminant from the mining activities along the RIR in PC2,
while PT indicates a higher association with hydrocarbons (UCM,
total AHs and n-alkanes). At this site, n-alkanes indicate terrige-
nous inputs, while total AHs suggest a certain degree of anthropic
influence, as unresolved complex mixture (UCM) amounts were
higher.

A cluster analysis was also performed in order to verify the
PCA results. This analysis grouped stations PT and PM together
and all the other stations in another cluster, with VG more similar
to PE and AR to IC.

4. Discussion

Our results indicate that high contaminant concentrations
were observed in sediments from stations PT (maximum turbidity
zone in regular conditions; Mahiques et al., 2013; Tessler and
Souza, 1998; Tramonte et al., 2018) and PM (close to the city
of Cananéia). In these sediments, levels of Pb, Co, Ni, and Zn
exceeded SQGs limits (Choueri et al., 2009), and in sediments
from PT indicated the total AHs concentrations were close to
the threshold of contamination (Volkman et al., 1992). The total
volume of freshwater flowing into the APA-CIP involves the
contribution of various small rivers, which contribute with hy-
drocarbons from terrestrial plants and little anthropic activity
(Nishigima et al., 2001). Cananéia has been historically considered
low impacted; however, PAHs metabolites were found in fish

Table 3
PCA eigenvalues integrating sediment properties, chemistry and
toxicity for samples from Protected Cananéia-Iguape-Peruíbe Area.
Bold indicate relevant associations.
PC Eigenvalue %Variance

PC1 15.07 75.36
PC2 4.72 23.59

PC1 PC2

Sea Urchin_abn. −0.815 −0.559
Copepod −0.915 −0.384
Amph._mort. −0.716 −0.662
Mud −0.828 −0.546
OM −0.932 −0.274
CaCO3 −0.907 −0.408
Al −0.960 0.280
Cr −0.938 0.344
Fe −0.918 0.396
Co −0.862 0.506
Ni −0.931 0.361
Cu −0.810 0.586
Zn −0.893 0.450
Cd −0.882 0.469
Hg −0.872 0.482
Pb −0.793 0.607
UCM −0.781 −0.623
n-alkane −0.779 −0.617
Tot-AH −0.777 −0.628
PAHs −0.993 −0.109

PC Scores

Stations PC1 PC2

VG 2.945 −0.083
PT −5.333 −3.270
PE 2.663 −0.169
PM −4.638 3.585
AR 1.928 −0.068
IC 2.434 0.005

VG = Valo Grande. PT = Pedra do Tombo. PE = Pedrinhas. PM =

Pai Mato. AR = Arrozal. IC = Ilha do Cardoso.

bile of individuals collected in the estuarine system (Albergaria-
Barbosa et al., 2016; Gusso-Choueri et al., 2015; Azevedo et al.,
2012; Nishigima et al., 2001). Volkman et al. (1992) stated that
organic-rich estuarine sediments may reach up to 100 µg g−1

of total AHs, however, concentrations above this limit usually
are due to petroleum inputs. The highest AHs concentration was
found in station PT (96.3 µg g−1), however, a high percentage
(77%) of such hydrocarbons was composed of the unresolved
complex mixture (UCM), suggesting that some anthropic in-
fluence is occurring in this estuarine system. Despite being of
anthropic or biogenic source, organic compounds are present in
the estuarine system and may combine with other contaminants
(e.g. metals), resulting in negative effects to the biota. Mixture
of contaminants can be toxic even at low concentration levels
(Monosson, 2005). A recent study showed that Pb is still a prob-
lem for this estuarine region, because it occurs in a bioavailable
form and presents the highest levels in comparison to other ele-
ments (Tramonte et al., 2018). This element was also considered
of main concern for the region, due to its high concentrations and
potential bioavailability (Guimarães and Sígolo, 2008; Mahiques
et al., 2009; Bonnail et al., 2017); besides, fish used as food source
to local inhabitants’ present contamination by Pb (Gusso-Choueri
et al., 2018). In this study, concentrations of Pb exceeded the
ISQGs (CCME, 2001) in samples from PT and PM. In addition to
fine sediments (silt and clay), deposition areas tend to accumulate
organic matter as well (Gordon and Goñi, 2004). In this sense,
contamination (metals and AHs) and toxicity (embryonic, chronic
and acute) tended to associate with the occurrence of mud and
OM.

The worse conditions tended to occur in the muddy sediments
(stations PT and PM), where chemical levels and toxicity were
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strongly associated to muds and OM, corroborating with other
studies which show this type of association (Burton and Landrum,
2003; Cruz et al., 2014). These results also show that deposi-
tional areas of APA-CIP possibly tend to accumulate contaminants
(e.g. metals, PAHs, AHs) from different sources. Interestingly, the
higher concentrations of hydrocarbons occurred in sediments
from PT, while sediments from PM presented the higher con-
centrations of metals. These results suggest that, in addition
to the mining activities, APA-CIP contamination sources include
docks, ferry boats, sewage and urban drainage (Cruz et al., 2014).
As previously mentioned, demersal fish from APA-CIP associ-
ated PAHs in its bile content to genotoxicity and DNA damage
(Gusso-Choueri et al., 2016), indicating the role of hydrocarbons
as concerning contaminants to this area. Thus, although con-
centrations of AHs in sediments from PT were not high, their
presence should not be disregarded, because they seem to be
accumulating together with metals in this site, and thus it may
combine with metals to cause or increase toxicity (D. et al.,
2014). Synergistic effect was found after mixing metals and PAHs,
increasing toxicity and mortality (Fleeger et al., 2007). An additive
effect (enhancing toxicity) was also found for mixtures of metals
and PAHs (Gauthier et al., 2015).

Regarding metals, the past mining activities situated on the
upper RIR represent the main sources to the RIR and to the
APA-CIP (Mahiques et al., 2009; Moraes, 1997), since metals are
mainly carried downstream associated with suspended particles
(Abessa et al., 2014; Guimarães and Sígolo, 2008) and tend to
precipitate close to the Valo Grande canal, within the estuarine
system (Mahiques et al., 2009). Coarser grained sediments tend to
be deposited close to areas presenting higher energy (e.g., mainly
along the upper and mid RIR portions), whereas finer fractions
tend to move longer distances and reach the estuarine canal
(Mahiques et al., 2013). However, Tramonte et al. (2018) observed
a different contaminant distribution along the estuary, suggesting
that contaminated sediment is transported independently of the
tide and is also influenced by RIR floods.

Extreme rainfall episodes can contribute significantly to the
supply of terrestrial OM and metals to the APA-CIP (Abessa et al.,
2014; Gusso-Choueri et al., 2015, 2018). Thus, the areas with
highest deposition may change throughout the year, which can
promote a displacement of the areas under higher risk with pos-
sible consequences for the biota (Cruz et al., 2014). In our study,
sediments presented higher levels of contaminants, increased
toxicity and higher OM and mud contents were found at stations
PT and PM (midway distance between the Valo Grande canal and
the city of Cananéia) and not at VG, which was initially expected.
Tessler and Souza (1998) indicated that the predominant flux in
this estuarine system occurs from VG to PT, where a low tide
inversion point concerning flow direction is noted. Thus, this
point may vary toward the southeast, near PM, highlighting both
depositional areas.

The integration of chemical and ecotoxicological data clearly
shows that some portions of the APA-CIP are negatively impacted
by the input of metals and hydrocarbons, which cause risks to the
biota, despite the protection status of the entire region. Sites PT
and PM presented worse conditions, but PT presented the higher
concentrations of hydrocarbons, while PM exhibited the higher
levels of metals. Our results suggest that the APA-CIP is being
affected by more than one source of contamination (e.g. mining,
sewage, recreational docks, fishing boats and terminals), even
though the mining activity seems to be the most important. The
contaminants introduced by these multiple sources tend to be
carried to and sink on depositional areas, creating sites with poor
environmental quality.

Recent studies, such as that carried out by Tramonte et al.
(2018), indicate that Pb remains a concern for this estuarine

Table A.1
Data of salinity, pH, dissolved oxygen (DO) and temperature in the L. variegatus
test. DO was measured at mg/L.

Salinity (PSU) pH DO (mg L−1) Temperature (◦C)

VG 35 5.84 4.16 23 ± 2
PT 35 6.17 3.60 23 ± 2
PE 31 6.31 2.77a 23 ± 2
PM 35 6.33 3.34 23 ± 2
AR 35 6.43 3.51 23 ± 2
IC 35 6.57 3.32 23 ± 2

VG = Valo Grande. PT = Pedra do Tombo. PE = Pedrinhas. PM = Pai Mato. AR
= Arrozal. IC = Ilha do Cardoso.
aValues were adequately adjusted (4 mg L−1).

system and that RIR floods may increase Pb contamination in this
area. Gusso-Choueri et al. (2018) stated that fish from APA-CIP
presented Cd, Pb, and As concentrations higher than the permissi-
ble levels for human consumption, while Albergaria-Barbosa et al.
(2016) suggested that nautical activity may have increased PAH
bioavailability at the Cananéia estuary. Thus, the results reported
herein are valuable in furthering knowledge in this regard.

Based on the results obtained in the present study and the
literature (Cruz et al., 2014; Mahiques et al., 2013; Gusso-Choueri
et al., 2018, 2016, 2015; Tramonte et al., 2018), we can conclude
that the APA-CIP present contamination in depositional areas
and cannot be considered homogeneous (in terms of environ-
mental quality), since some of its portions present moderate
environmental degradation. Jameson et al. (2002) stated that Ma-
rine Protected Areas could be negatively influenced by external
sources, since the fluid nature of their environment would not be
efficient to retain pollutants outside the MPAs. Some examples
indicated that MPAs could be affected by pollution (Araujo et al.,
2013; Pozo et al., 2009; Terlizzi et al., 2004). The levels of contam-
ination in the depositional areas are enough to produce potential
risk to the local biota, especially due to metals. The results also
indicate that the APA-CIP is not being totally effective to protect
this area from external impacts, and that policies are required to
control the contamination sources.
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Table B.1
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Appendix A. Physical–chemical parameters of L. variegatus

See Table A.1.

Appendix B. Physical–chemical parameters of Nitokra sp

See Table B.1.

Appendix C. Physical–chemical parameters of T. viscana

See Table C.1.

Appendix D. Bi-dimensional distribution of PCA results using
geochemical and ecotoxicological data from sediments from
Protected Cananéia-Iguape-Peruíbe Area (PC1 × PC2)

See Fig. D.1.

Appendix E. Cluster analyses using geochemical and ecotoxi-
cological data from sediments from Protected Cananéia-
Iguape-Peruíbe Area

See Fig. E.1.

Fig. D.1. PCA integrating sediment properties, chemistry and toxicity for samples
from Protected Cananéia-Iguape-Peruíbe Area.

Fig. E.1. VG = Valo Grande. PT = Pedra do Tombo. PE = Pedrinhas. PM = Pai
Mato. AR = Arrozal. IC = Ilha do Cardoso.
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