S

ELS

Since January 2020 Elsevier has created a COVID-19 resource centre with
free information in English and Mandarin on the novel coronavirus COVID-
19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related
research that is available on the COVID-19 resource centre - including this
research content - immediately available in PubMed Central and other
publicly funded repositories, such as the WHO COVID database with rights
for unrestricted research re-use and analyses in any form or by any means
with acknowledgement of the original source. These permissions are
granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.



Journal of Controlled Release xxx (XXXX) XXX—XXX

journal homepage: www.elsevier.com/locate/jconrel

Contents lists available at ScienceDirect

Journal of Controlled Release

®
journal of

@ controlled
release

?._5\
KRgge -

Ivermectin: an award-winning drug with expected antiviral activity against

COVID-19

a, b, *

Fabio Rocha Formiga
Ronaldo Nascimento de Oliveira’, Lindomar Pena®

, Roger Leblanc®, Juliana de Souza Rebougasd, Leonardo Paiva Farias®,

2 Department of Immunology, Aggeu Magalhdes Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil
Y Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), 50100-130 Recife, PE, Brazil
© Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA

9 Institute of Biological Sciences, University of Pernambuco (UPE), 50100-130 Recife, PE, Brazil

€ Laboratory of Inflammation and Biomarkers, Gongalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), 40296-710 Salvador, BA, Brazil
f Bioactive Compounds Synthesis Laboratory, Department of Chemistry, Federal Rural University of Pernambuco (UFRPE), 52171-900 Recife, PE, Brazil
& Department of Virology, Aggeu Magalhdes Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil

ABSTRACT

Ivermectin is an FDA-approved broad-spectrum antiparasitic agent with demonstrated antiviral activity against a number of DNA and RNA viruses, including severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite this promise, the antiviral activity of ivermectin has not been consistently proven in vivo. While
ivermectin's activity against SARS-CoV-2 is currently under investigation in patients, insufficient emphasis has been placed on formulation challenges. Here, we
discuss challenges surrounding the use of ivermectin in the context of coronavirus disease-19 (COVID-19) and how novel formulations employing micro- and

nanotechnologies may address these concerns.

1. Commentary

The 2015 Nobel Prize in Physiology and Medicine was awarded to
William C. Campbell and Satoshi Omura for their discoveries leading to
ivermectin [1]. In addition to its extraordinary efficacy against parasitic
diseases, ivermectin continues to offer new clinical applications due to
its ability to be repurposed to treat new classes of diseases. Beyond its
invaluable therapeutic role in onchocerciasis and strongyloidiasis, an
increasing body of evidence points to the potential of ivermectin as an
antiviral agent.

Ivermectin treatment was shown to increase survival in mice in-
fected with the pseudorabies virus (PRV) [2] and reduced titers of
porcine circovirus 2 (PCV2) in the tissues and sera of infected piglets
[3]. In addition, Xu et al. reported the antiviral efficacy of ivermectin in
dengue virus-infected Aedes albopictus mosquitoes [4]. [vermectin was
also identified as a promising agent against the alphaviruses chi-
kungunya, Semliki Forest and Sindbis virus, as well as yellow fever, a
flavivirus [5]. Moreover, a new study indicated that ivermectin presents
strong antiviral activity against the West Nile virus, also a flavivirus, at
low (uM) concentrations [6]. This drug has further been demonstrated
to exert antiviral activity against Zika virus (ZIKV) in in vitro screening
assays [7], but failed to offer protection in ZIKV-infected mice [8].

Recently, Caly et al. reported on the antiviral activity of ivermectin
against SARS-CoV-2, the causative agent of COVID-19 [9]. These au-
thors demonstrated that a single dose of ivermectin was able to reduce
the replication of an Australian isolate of SARS-CoV-2 in Vero/hSLAM
cells by 5000-fold. This finding has generated great interest and ex-
citement among physicians, researchers and public health authorities
around the world. However, these results should be interpreted with
caution. Firstly, it is important to note that the drug was only tested in
vitro using a single line of monkey kidney cells engineered to express
human signaling lymphocytic activation molecule (SLAM), also known
as CDw150, which is a receptor for the measles virus [10]. Also, iver-
mectin has not been tested in any pulmonary cell lines, which are cri-
tical for SARS-CoV-2 in humans [11]. Furthermore, these authors did
not show whether the reduction seen in RNA levels of SARS-CoV-2
following treatment with ivermectin would indeed lead to decreased
infectious virus titers. Importantly, the drug concentration used in the
study (5 uM) to block SARS-CoV-2 was 35-fold higher than the one
approved by the FDA for treatment of parasitic diseases, which raises
concerns about its efficacy in humans using the FDA approved dose in
clinical trials [12].

In light of the potential of ivermectin to prevent replication in a
broad spectrum of viruses, the inhibition of importin a/B1-mediated
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nuclear import of viral proteins is suggested as the probable mechanism
underlying its antiviral activity [6]. Since SARS-CoV-2 is an RNA virus,
a similar mechanism of action may take place [9]. A possible ionophore
role for ivermectin has also been reported [13]. Since ionophore mo-
lecules have been described as potential antiviral drugs [14], iver-
mectin could ultimately induce an ionic imbalance that disrupts the
potential of the viral membrane, thereby threatening its integrity and
functionality.

The pathology of COVID-19 is characterized by the rapid replication
of SARS-CoV-2, triggering an amplified immune response that may lead
to cytokine storm, which frequently induces a severe inflammatory
pulmonary response [15]. Disease progression may result in progressive
respiratory failure arising from alveolar damage, and can lead to death
[16]. Moreover, the monitoring of SARS-CoV-2 viral load in the upper
respiratory tract and bronchoalveolar lavage fluid (BALF) in patients
with severe disease indicates higher loads, as well as greater viral
persistence [16-19].

In addition to the indication for antiviral therapy, anti-in-
flammatory intervention may also be necessary to prevent acute lung
injury in SARS-CoV-2 infection. With regard to its anti-inflammatory
properties, ivermectin have been shown to mitigate skin inflammation
[20]. Importantly, ivermectin significantly diminished the recruitment
of immune cells and cytokine production in BALF assessed in a murine
model of asthma [21]. A study evaluating the ability of ivermectin to
inhibit lipopolysaccharide (LPS)-induced inflammation revealed sig-
nificantly decreased production of TNF-alpha, IL-1ss and IL-6 in vivo
and in vitro [22]. Further studies may establish the role of ivermectin on
inflammatory response caused by SARS-CoV-2, whether besides the
antiviral activity ivermectin could play a supportive adjuvant role fa-
cing the hostile infection microenvironment.

With regard to investigations into potential drug treatments against
COVID-19, ivermectin has received particular attention. Indeed, a
number of clinical studies have been conducted in various countries
such as USA, India and Egypt, as registered on the repository of data
ClinicalTrials.gov. Table 1 shows a compilation of these studies, with
patients receiving monotherapy or combination therapy, using different
approaches of ivermectin dosing. In Spain, the SAINT clinical trial is
currently underway and aims to determine the efficacy of a single dose
of ivermectin, administered to low risk, non-severe COVID-19 patients
[23]. Despite the fact that ivermectin has been shown to be effective in
vitro against Sars-Cov-2, it is possible that the necessary inhibitory
concentration may only be achieved via high dosage regimes in hu-
mans. The enthusiasm surrounding ivermectin use is restrained by a
lack of appropriate formulations capable of providing improved phar-
macokinetics and drug delivery targeting mechanisms. Although pa-
tients could be treated using systemic therapy, high-dose antiviral
therapy could lead to severe adverse effects. Regardless, no commer-
cially available injectable forms of ivermectin are available for human
use. In COVID-19 patients, the rapid evolution of disease requires
prompt treatment, as therapeutic intervention must be introduced
within a narrow window of time. Considering that the respiratory tract
has been shown to be a primary site of infection, the delivery of iver-
mectin by pulmonary route would provide high drug deposition in the
airways and lungs to mitigate the high viral loads seen in these sites. It
is worth noting that inhalation therapy has been reported to be the most
effective treatment for respiratory infections due to increased drug
bioavailability [24,25]. Indeed, pulmonary and nasal administration
bypasses the first-pass metabolism observed in oral administration and
the lungs and nasal cavity are known to be low drug-metabolizing en-
vironments [26]. In severe cases of SARS-CoV-2-induced pneumonia,
antiviral aerosol formulations could be delivered by inhalation to pa-
tients on mechanical ventilation. In addition, patients presenting mild
symptoms of COVID-19 could benefit from being treated with antiviral
aerosol formulations at earlier stages of disease. Importantly, Gilead
Sciences recently announced human trials of an inhaled version of its
antiviral drug remdesivir for non-hospitalized patients [27].
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Despite its promising antiviral and preliminary anti-inflammatory
potential, the development of ivermectin formulations presents chal-
lenges, primarily due to its property of poor water solubility.
Consequently, ivermectin's oral bioavailability remains low [28]. In
addition, its pharmacokinetic profile may be affected by specific for-
mulations, and minor differences in formulation design can modify
plasma kinetics, biodistribution, and, consequentially, efficacy. For in-
stance, ivermectin does not achieve adequate concentration levels in
the human bloodstream necessary for treatment efficacy against ZIKV
[29]. Therefore, novel delivery strategies are needed to optimize iver-
mectin bioavailability. Micro-and nanocarriers offer several advantages
in drug delivery, namely: specific targeting, high metabolic stability,
high membrane permeability, improved bioavailability, controlled re-
lease and long-lasting action [30]. In light of these attributes, some
studies have formulated ivermectin in micro- and nanoparticles, either
using lipid nanocapsules [31], chitosan-alginate nanoparticles [32] or
poly (lactic-co-glycolic acid) (PLGA) micro- and nanoparticles [33,34].
For antiviral purposes, ivermectin has been formulated in liposomes
[35] and PLGA nanoparticles [29]. The latter ivermectin nanoformu-
lation was shown to cross the intestinal epithelial barrier when ad-
ministered via oral route, with considerable concentrations detected in
the blood, enabling its potential application in ZIKV therapy.

Appropriate drug formulations must address inherent limitations,
including poor water-solubility and difficulty in drug delivering to de-
sired target areas, notably the pulmonary environment. As previously
mentioned, micro-and nanocarriers have been investigated in an effort
to optimize ivermectin bioavailability. In the context of pulmonary
delivery, these drug delivery systems can be modified to attend suitable
aerodynamic size ranges for the airways and alveolar deposition.
Smaller particles achieve a greater deposition in the lungs compared to
larger particles. Particles smaller than 5 um follow the airflow beyond
the retro-pharynx and reach the trachea. Particles with an aerodynamic
diameter of about 2 to 5 um are deposited in the upper respiratory tract
at the level of the trachea and tracheal bifurcation. Particles smaller
than 2 ym deposit in the lower airway and alveolar epithelia [36,37].
Nanoparticulate systems, upon release in aerosol, form aggregates in
the micrometer size range. These aggregates are believed to have suf-
ficient mass to be deposited in the bronchiolar region and remain for an
extended period, hence achieving the desired effect [38]. It follows that
ivermectin formulations produced at the desired particle sizes will
allow for particle deposition in either the lower airway or alveolar
epithelia, which will then trigger rapid drug release, accelerating the
onset of therapeutic activity.

We hypothesize that micro- and nanotechnology-based systems for
the pulmonary delivery of ivermectin may offer opportunities for ac-
celerating the clinical re-purposing of this “enigmatic drug” in the
context of SARS-CoV-2 infection, as recent advances in pharmaceutical
technology and nanomaterials can be applied to the treatment of pul-
monary infections [24-26,36-40]. Despite the challenges faced in de-
veloping these drug delivery carriers, and uncertainty with regard to
the efficacy of ivermectin, it indeed presents promising potential. In an
optimistic scenario, new drug dosage forms may not only contribute to
mitigate SARS-CoV-2 infection, but also be effective against other
emerging viral diseases.
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