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Integration of metabolomics 
and transcriptomics reveals 
novel biomarkers in the blood 
for tuberculosis diagnosis 
in children
Noton K. Dutta1,12*, Jeffrey A. Tornheim1,2,12, Kiyoshi F. Fukutani3,4,5,12, Mandar Paradkar6,12, 
Rafael T. Tiburcio4,5, Aarti Kinikar7, Chhaya Valvi7, Vandana Kulkarni6, Neeta Pradhan6, 
Shri Vijay Bala Yogendra Shivakumar8, Anju Kagal7, Akshay Gupte2, Nikhil Gupte2,6, 
Vidya Mave2,6, Amita Gupta1,2,6,11, Bruno B. Andrade4,5,6,9,10,12 & Petros C. Karakousis1,11,12*

Pediatric tuberculosis (TB) remains a major global health problem. Improved pediatric diagnostics 
using readily available biosources are urgently needed. We used liquid chromatography-mass 
spectrometry to analyze plasma metabolite profiles of Indian children with active TB (n = 16) and 
age- and sex-matched, Mycobacterium tuberculosis-exposed but uninfected household contacts 
(n = 32). Metabolomic data were integrated with whole blood transcriptomic data for each 
participant at diagnosis and throughout treatment for drug-susceptible TB. A decision tree algorithm 
identified 3 metabolites that correctly identified TB status at distinct times during treatment. 
N-acetylneuraminate achieved an area under the receiver operating characteristic curve (AUC) of 
0.66 at diagnosis. Quinolinate achieved an AUC of 0.77 after 1 month of treatment, and pyridoxate 
achieved an AUC of 0.87 after successful treatment completion. A set of 4 metabolites (gamma-
glutamylalanine, gamma-glutamylglycine, glutamine, and pyridoxate) identified treatment 
response with an AUC of 0.86. Pathway enrichment analyses of these metabolites and corresponding 
transcriptional data correlated N-acetylneuraminate with immunoregulatory interactions between 
lymphoid and non-lymphoid cells, and correlated pyridoxate with p53-regulated metabolic genes and 
mitochondrial translation. Our findings shed new light on metabolic dysregulation in children with TB 
and pave the way for new diagnostic and treatment response markers in pediatric TB.

The World Health Organization estimates incident tuberculosis (TB) occurs in 1.1 million children annually, 
representing > 200,000 deaths and 11% of global burden1. India ranks first in pediatric TB cases among 22 high-
burden countries2. Since young children with pulmonary TB generally cannot cough effectively, microbiological 
confirmation of Mycobacterium tuberculosis (MTB) infection is established in only 15–50% of cases2,3, and often 
only after invasive sample collection4. Although rapid molecular tests have improved sensitivity over smear 
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microscopy, their sensitivity in children remains < 70% compared with culture5–7. Furthermore, neither tuber-
culin skin tests (TST) nor interferon-gamma release assays (IGRA) can distinguish active disease from latent 
TB infection (LTBI)8,9. As a result, TB treatment is often prescribed empirically based on clinical findings and 
medical history. This inevitably over-diagnoses some children with associated toxicity and costs10.

Despite these diagnostic challenges, TB induces profound changes in whole-body energy and protein metabo-
lism that can be identified in blood11–21. Such testing could also potentially identify extrapulmonary TB without 
invasive sampling of pleural or cerebrospinal fluid22–24 and improve assessments of treatment response25–27. 
Limited data are available, however, on the metabolic changes affecting children with TB12,13, and it is unknown 
whether the same differences described in other populations and body compartments will be relevant for blood-
based diagnosis of pediatric TB or that the same metabolites will characterize treatment response among chil-
dren. To characterize TB-associated metabolic dysregulation and assess potential blood-based biomarkers of 
TB and treatment response in children, we performed a longitudinal case–control study of Indian children with 
confirmed TB and uninfected household contacts.

Material and methods
Study design and sample selection.  The Cohort for TB Research by the Indo-US Medical Partnership 
(CTRIUMPH) is a 5-year prospective observational study of adults and children with TB and the household 
contacts of participants with pulmonary TB28. The current analysis represents a nested case–control study in 
CTRIUMPH for which the methods have been described previously29. CTRIUMPH participants recruited at 
one of the sites, Byramjee Jeejeebhoy Government Medical College (BJGMC) in Pune, India with confirmed TB 
who were under 15 years of age were identified as cases, all of whom were successfully treated without clinical 
or microbiological relapse within 1 year of treatment completion. All participants received standardized therapy 
according to local standard of care in the public sector at the time of treatment (2015–2016). This included a 
thrice weekly fixed-dose drug combination of isoniazid, rifampin, pyrazinamide along with ethambutol. All 
drugs were dosed according to weight. All participants received all four drugs for the first two months of treat-
ment, followed by a weight-based fixed dose combination of isoniazid and rifampin for the remainder of therapy 
(Table S1). Cases were each age- and sex-matched with two children who were household contacts of pulmo-
nary TB patients (controls). Controls were considered eligible for this study if at the time of enrollment they 
had a negative symptom screen for TB, negative chest radiography, and both negative TST (< 5 mm induration) 
and IGRA (measured by QuantiFERON Gold In-Tube according to manufacturer’s instructions). Plasma was 
collected longitudinally from all cases at the time of treatment initiation, after 1 month of treatment, and at 
treatment completion at 6 months. Controls had plasma collected at enrollment and again at 4–6 months and 
12 months, with repeat assessments at each time point for both active TB and LTBI, defined as positive by either 
TST or IGRA. Controls with new LTBI had the month of test conversion registered for analysis (Table S2).

Quantitative metabolomic analysis.  Samples were processed at Metabolon, Inc. (Durham, North 
Carolina) using the automated MicroLab STAR system from Hamilton Company and quality-control analyses 
were performed as described previously30,31. Briefly, several recovery internal standards were added prior to 
the first step in the extraction process for QC purposes. Samples were placed briefly on a TurboVap (Zymark) 
to remove the organic solvent. The sample extracts were stored overnight under nitrogen before preparation 
for analysis by ultrahigh performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS). All 
methods utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and a Thermo Scien-
tific Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray ionization 
(HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution. The sample extract was dried 
and reconstituted in solvents compatible with each of the four methods particularly, to (1) optimize for more 
hydrophilic compounds, (2) analyze acidic positive ion conditions, (3) operate at an overall higher organic con-
tent, and (4) optimize basic negative ions. Each reconstitution solvent employed fixed concentration standards to 
ensure injection and chromatographic consistency. MS analysis alternated between MS and data-dependent MSn 
scans using dynamic exclusion. The scan range varied slightly between methods but covered 70–1000 m/z. Raw 
data were extracted, peak-identified, and QC-processed using Metabolon’s hardware and software as described 
previously32. Compounds were identified by comparison to Metabolon library entries of purified standards or 
recurrent unknown entities.

Transcriptomic data.  Previous research in this cohort performed RNA-seq on longitudinal whole blood 
samples collected in PAXgene tubes29. Transcriptional signatures were identified for pediatric TB diagnosis and 
response to successful TB treatment with data publicly available from NCBI (accession code PRJNA588242). For 
this study, transcriptomic and metabolomic analyses used samples from the same participants and time points.

Statistical analysis.  Data were analyzed in R (https​://cran.r-proje​ct.org). Differences in mean 
log2-transformed abundance between study groups were assessed by two-sample t-tests. ANOVA contrasts 
identified metabolites that differed significantly between groups and sample collection times. Data with p-val-
ues < 0.05 were considered significantly different. Exploratory analysis included visual inspection of volcano and 
principal component plots and construction of Venn diagrams of differentially abundant metabolites (DAMs, 
p < 0.05) across comparison groups. Log2-transformed metabolite abundance was Z-score-normalized between 
study groups and heatmaps were created with hierarchical clustering by Euclidean distance using ggplot233. 
Random forest analysis was employed to estimate how well each metabolite correctly classified each sample 
and decision tree classification was performed to detect the minimum number of features required to separate 
groups with maximum accuracy using the rpart package34. Classification model performance was measured by 
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receiver operator characteristic (ROC) curve analysis. Overall accuracy was estimated by area under the ROC 
curve (AUC).

We have previously defined the molecular degree of perturbation (MDP) as a metric that compares mRNA 
transcript expression or metabolite abundance to the mean of expression or abundance in the reference group35,36. 
The accumulated standard deviation of all metabolites > 2 absolute standard deviations from the reference were 
calculated using the MDP package37. MDPs were correlated with age by Spearman correlation test and MDP 
was compared by sex using Mann–Whitney tests. Enrichment analysis was performed to correlate metabolomic 
and transcriptomic data using a hypergeometric test for the main categories of metabolic compounds using the 
Clusterprofile38 and Reactome Pathway Analysis packages39. Hierarchical cluster analysis was performed using a 
log2-transformed expression matrix to visualize patterns by study group, with a second heatmap made to cluster 
metabolite expression levels against the increase of MDP measurement within each group36.

Integrated pathway analysis correlated metabolite abundance with transcript abundance expressed by protein-
coding gene for each participant at each time point. Associations with p < 0.05 and Pearson coefficients > 0.7 
were plotted to assess the extent to which DAMs were correlated with relevant mRNA transcripts. Multi-omics 
factor analysis (MOFA) was employed to determine the degree to which metabolite abundance and mRNA 
expression variables changed together, as assessed by shared variance using the MOFA package40. Variables 
with shared variance were represented as latent factors based on a common variable model. Finally, each factor 
underwent over-representation analysis to determine the extent to which latent factors represented distinct 
canonical Reactome pathways.

Ethics statement.  This CTRIUMPH study was approved by the Institutional Review Boards of Byram-
jee Jeejeebhoy Government Medical College (BJGMC) and the Johns Hopkins University School of Medicine, 
and all experiments were performed in accordance with institutional guidelines and regulations. All partici-
pants < 18 years old had written informed consent provided by their legal guardians. Written assent for participa-
tion was provided by participants who were 8 to < 18 years old.

Results
Study participants.  Among the 141 pediatric CTRIUMPH participants recruited at BJGMC, 16 (11.3%) 
children had TB confirmed by positive culture (6), Xpert MTB/RIF (6), or tissue histopathology consistent with 
TB (7, not mutually exclusive). None were HIV-infected. The median age of these 16 children was 9.5 years 
(interquartile range 7–14 years), 8 (50%) were female, and eight had extrapulmonary disease (six lymph node, 
two meningitis, one dermatologic, Table S1). Of 32 selected controls without LTBI upon enrollment, 13 (40.6%) 
developed incident LTBI and none developed active TB during the 12-month follow-up period. These partici-
pants provided 121 plasma samples for analysis (Table S2).

TB‑associated changes in metabolites.  To study TB-associated metabolic dysregulation, we first com-
pared plasma metabolite abundance among cases to abundance among controls at the time of enrollment. A total 
of 217 metabolites were identified across all samples, the full results of which are available in the supplementary 
materials (Table S3). Fifty seven DAMs were identified between enrollment samples (month 0) from cases and 
controls with p < 0.05 (Fig. 1A,B, Table 1). Of these, 29 DAMs were also differentially abundant between controls 
and cases mid-treatment (month 1) and between controls and cases at treatment completion (month 6), indicat-
ing continued metabolic abnormalities throughout treatment (Fig. 1B and Table 2). Additionally, 9 metabolites 
differentiated cases from controls at baseline (month 0), but were not differentially abundant between controls 
and cases after treatment (month 6). This included higher levels of 1-stearoyl-2-oleoyl-GPC (18:0/18:1), gluta-
mate, and N-acetylneuraminate in cases compared to controls and lower levels of 1-(1-enyl-palmitoyl)-2-ara-
chidonoyl-GPC, 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC, aconitate [cis or trans], hydroxyproline, p-cresol sulfate, 
and prolylhydroxyproline in cases compared to controls. After evaluating heatmaps of differential abundance 
(Fig. 1C), decision tree analysis found that a single metabolite, N-acetylneuraminate, performed the best, with a 
log2-transformed abundance value < 20.76, achieving an AUC of 0.66 (Fig. 1D,E).

Response to TB treatment.  Analysis of treatment response among cases compared metabolite abundance 
in pre-treatment (month 0), mid-treatment samples (month 1), and post-treatment samples (month 6), with 
heatmaps demonstrating distinct clustering but some misclassification (Fig. 2A,B). Multiparametric ROC curve 
analysis found 15 metabolites with differential abundance over the course of treatment (Fig. 2C). Four metabo-
lites (catechol sulfate, dimethylglycine, glycochenodeoxycholate, and trigonelline (N’-methylnicotinate)) dif-
ferentiated pre-treatment from mid-treatment samples at 1 month with an AUC of 0.88. Ten metabolites (diho-
molinoleate (20:2n6), glycochenodeoxycholate, linoleate (18:2n6), linolenate (18:3n3 or 3n6), nicotinamide, 
oleate/vaccenate (18:1), phenyllactate (PLA), pyridoxate, quinolinate, and trigonelline (N’-methylnicotinate)) 
differentiated mid-treatment (month 1) from post-treatment (month 6) with an AUC of 0.95, and 4 metabolites 
(gamma-glutamylalanine, gamma-glutamylglycine, glutamine, and pyridoxate) differentiated pre-treatment 
from post-treatment samples with an AUC of 0.86 (Fig. 2D).

Conditional decision tree analysis identified three distinct metabolites that best classified patients with TB 
at different times during treatment compared to controls at enrolment: N-acetylneuraminate, quinolinate, and 
pyridoxate (Figure S2). In addition to the characteristics of N-acetylneuraminate described above, quinolinate 
was found to have an AUC of 0.77 (threshold log2-transformed abundance of < 18.07) for identification of TB 
following 1 month of treatment compared to controls at baseline, and pyridoxate was found to have an AUC of 
0.87 (threshold log2-transformed abundance of < 19.21) for identification of TB at the completion of 6 months of 
treatment compared to controls at baseline. Although it maintained good discriminating ability, pyridoxate was 
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not one of the DAMs between cases and controls at baseline (p = 0.076) or between cases later in treatment and 
controls at baseline (pre-treatment vs. end of treatment p = 0.009, mid-treatment vs. end of treatment p = 0.016).

Molecular degree of perturbation (MDP) is independent of participant age or sex.  MDP was 
calculated for each sample to investigate overall differences in metabolite concentrations compared to baseline 
control samples. Plasma metabolites from TB cases at month 1 of treatment (orange) were the most perturbed, 
followed by the TB cases at baseline (green, Fig.  3A,B). MDP was not different by sex for any study group 
(Fig. 3C), but increasing MDP was significantly correlated with increasing age among cases at baseline (r = 0.519, 
p = 0.041, Fig. 3D). While study groups demonstrated significant differences according to MDP, this was poorly 
correlated with metabolic variance among individual participants within study groups, indicating poor repre-
sentation of metabolite abundance in these children by MDP alone (Figure S1).

Integrated analysis of metabolomic and transcriptomic data.  Three metabolites (N-acetylneuram-
inate, quinolinate, and pyridoxate) identified by decision tree analysis were correlated with mRNA transcription 
data to assess the extent to which metabolite abundance increased with increased gene transcription (positive 
correlation, Fig. 4A) or decreased with increased gene transcription (negative correlation). In total, 22 tran-
scripts demonstrated strong correlation with N-acetylneuraminate, (1 positively correlated and 21 negatively 
correlated). The top positive and negatively correlated genes for N-acetylneuraminate were osteoclast-associated 
receptor (OSCAR​) and CLYBL, respectively. Transcripts positively correlated with N-acetylneuraminate at the 
time of TB diagnosis were significantly represented among the pathway involving lymphoid immunoregulatory 
interactions (Fig. 4B). Similarly, 72 transcripts demonstrated strong correlation with quinolinate (12 positive 

Figure 1.   Differences in plasma metabolites between children with tuberculosis and healthy controls. (A) A 
volcano plot depicts the log2-fold change in metabolite abundance (x-axis) and the –log10 p-value (y-axis) for 
each metabolite between children with tuberculosis (“Cases”) and healthy controls at baseline. Positive and 
negative fold-change differences are depicted on the right and left sides of the graph, respectively. (B) A Venn 
diagram depicts the number of significantly differentially abundant metabolites for each comparison, including 
differences between controls and children with tuberculosis (cases) pre-treatment (baseline), mid-treatment 
(Month 1), and post-treatment (Month 6). (C) A hierarchical cluster analysis was employed to assess overall 
metabolite abundance between cases and controls. Data were log2-transformed and normalized by row Z-score. 
(D) A conditional decision tree was used to discriminate cases at the time of TB diagnosis from controls at study 
enrollment. The single best metabolite to differentiate cases and controls was N-acetylneuraminate. (E) Receiver 
operator characteristic (ROC) curve analysis demonstrating the sensitivity, specificity, and area under the curve 
(AUC) of N-acetylneuraminate to discriminate participants by TB status.
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and 60 negative correlations) and 22 transcripts with pyridoxate (18 positive and 4 negative correlations). The 
genes positively correlated with quinolinate did not adhere to any specific pathway, but those correlated with 
pyridoxate were significantly represented in the TP53-regulated metabolic pathway and in mitochondrial trans-
lation (elongation, termination, and translation). Transcripts with negative correlation with these metabolites 
did not cluster with any specific pathways.

Multi‐omics factor analysis (MOFA) of metabolomic and transcriptomic data.  Integrated 
metabolomic and transcriptomic analysis by MOFA was applied to 54 paired samples from the same participants 
and collection times (Fig. 5A). MOFA recognized 5 latent factors (LF), of which LF1, LF2, and LF4 correlated 
more strongly with the transcriptome, whereas LF3 correlated with the metabolome (Fig. 5B). Transcriptomics 
and metabolomics loadings revealed that LF1–5 captured several known important genes related to immune 
response pathways, including leukocyte immunoglobulin-like receptors (LILR), olfactory receptor 52K2, 
NADH-ubiquinone oxidoreductase chain 4 (MT-ND4), and heat shock protein 90α (Hsp90α) encoded genes. 
Similarly, several important metabolites were identified, including sphingolipids, 3-methylhistidine (3-MH), 
quinolinate, and palmitoyl sphingomyelin (Fig. 5C). Over-representation analysis of each LF found eukaryotic 
translation elongation, metabolism of proteins, immune system, and gene expression pathways most signifi-
cantly represented within the 5 latent factors.

Discussion
In order to improve the management and outcomes of pediatric TB, better diagnostic tools are desperately 
needed. In 2014, an NIH expert panel developed a blueprint of diagnostic biomarkers for pediatric TB7. Accord-
ing to the panel, such a biomarker could be obtained without invasive testing, like a blood test, and would 
work independent of age, nutrition, and HIV status. In this study, we performed an integrated blood-based 

Table 1.   Differentially expressed metabolites between children with confirmed tuberculosis and age- and sex-
matched uninfected household contacts at the time of study enrolment. a Levels of these metabolites marked 
with footnote were decreased in the plasma of children with tuberculosis compared to age- and sex-matched 
controls without tuberculosis. Metabolites not marked with footnote were increased in the plasma of children 
with tuberculosis compared to those matched controls without tuberculosis. b Footnote indicates metabolites 
that were differentially abundant between cases and controls at baseline, but not between controls and mid-
treatment cases (Month 1) or post-treatment cases (Month 6).

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC 
(P-16:0/20:4)a,b 3-hydroxydecanoatea Glucose p-cresol sulfatea,b

1-(1-enyl-palmitoyl)-2-linoleoyl-GPC 
(P-16:0/18:2)a,b 3-ureidopropionate Glucuronate Phenyllactate (PLA)

1-oleoylglycerol (18:1) Aconitate [cis or trans]a,b Glutamateb Phosphate

1-palmitoylglycerol (16:0) Alanine Hippuratea Proline

1-palmitoyl-GPC (16:0) Allantoin Hydroxyprolinea,b Prolylhydroxyprolinea,b

1-palmitoyl-GPE (16:0) Alpha-hydroxyisovalerate Kynurenine Pseudouridine

1-stearoyl-2-oleoyl-GPC (18:0/18:1)b Arabitol/xylitol Lactate Pyroglutamine

1-stearoyl-GPC (18:0) Arabonate/xylonate Mannitol/sorbitol Quinolinate

1-stearoyl-GPE (18:0) Azelate (nonanedioate; C9) Mannose Ribonate (ribonolactone)

2,4-dihydroxybutyrate Beta-alanine N-acetylalanine Salicylate

2-oleoylglycerol (18:1) Beta-hydroxyisovalerate N-acetylglycine Succinate

2-palmitoylglycerol (16:0) Dihomolinolenate (20:3n3 or 3n6) N-Acetylneuraminateb Trimethylamine N-oxidea

2S,3R-dihydroxybutyrate Erythronate N-acetylserine

3-(4-hydroxyphenyl)lactate (HPLA) Gamma-glutamylisoleucine Nicotinamide

3,4-dihydroxybutyrate Gamma-glutamylleucine Orotate

Table 2.   Differentially expressed metabolites between children with confirmed tuberculosis and age- and 
sex-matched uninfected household contacts that remained differentially expressed before, during, and after 
successful tuberculosis treatment.

1-oleoylglycerol (18:1) 2-oleoylglycerol (18:1) Alpha-hydroxyisovalerate Glucuronate Phosphate

1-palmitoyl-GPC (16:0) 2-palmitoylglycerol (16:0) Arabitol/xylitol N-acetylalanine Pseudouridine

1-palmitoyl-GPE (16:0) 2S,3R-dihydroxybutyrate Arabonate/xylonate N-acetylserine Pyroglutamine

1-palmitoylglycerol (16:0) 3-(4-hydroxyphenyl)lactate (HPLA) Beta-alanine nicotinamide Quinolinate

1-stearoyl-GPC (18:0) 3-ureidopropionate Beta-hydroxyisovalerate Orotate Salicylate

1-stearoyl-GPE (18:0) 3,4-dihydroxybutyrate Gamma-glutamylisoleucine Phenyllactate (PLA)
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metabolomic and transcriptomic analysis of children with and without TB to identify such a biomarker to 
indicate TB diagnosis and treatment response. We identified 57 DAMs between cases and controls, 29 of which 
remained differentially abundant throughout treatment, and 9 of which were differentially abundant before 
treatment, but did not remain differentially abundant throughout treatment. A single metabolite, N-acetylneu-
raminate, identified TB with an AUC of 0.66, while another metabolite, quinolinate, discriminated mid-treatment 
TB samples from control samples (AUC 0.77), and a third, pyridoxate, best discriminated post-treatment samples 
from control samples (AUC 0.87). The combination of 4 metabolites classified pre-treatment from post-treatment 
samples with an AUC of 0.86. Integrative analysis associated N-acetylneuraminate with mRNA transcription 
in the lymphoid immunoregulatory and neutrophil degranulation pathways. Finally, MOFA confirmed a sig-
nificant additional contribution of immunomodulatory gene transcription along with sphingolipids, histidine 
metabolites, and cofactor and vitamin metabolites.

This study is unique in its metabolomic profiling of children with confirmed TB (rather than clinically diag-
nosed TB), as well as the use of decision tree analysis and integration of metabolomic with transcriptomic data 
to identify the most high-yield tests for both diagnosis and response to antitubercular treatment.

TB affects multiple host metabolic pathways, including metabolism of nitric oxide14, amino acids such 
as tryptophan15,17,18,25,41, glucose17, and lipids, including sphingomyelins, ceramides, eicosanoids, and 
phosphotidylcholines13,16,42. This study found potential diagnostic utility of N-acetyleneuraminate, the main 
sialic acid in human and mammalian cells, as well as a a nutrient and cell surface component of many pathogenic 
bacteria43,44. This molecule has previously been reported in higher abundance among TB patients, but not as a 
single marker for the diagnosis of TB18. Similarly, we found quinolinate to be the best marker to differentiate 
TB mid-treatment from controls. Quinolinate is a byproduct of the kynurenine pathway responsible for trypto-
phan catabolism, and is primarily derived from microglia and macrophages. Tryptophan metabolism has been 
associated with both pulmonary and extrapulmonary TB, as well as with HIV coinfection, which, like pediatric 
TB, is more frequently associated with extrapulmonary disease22,24. In addition, quinolinate levels are increased 
in a range of bacterial and viral infections45,46, as the inflammatory cytokines IFN-γ and TNF-α shuttle trypto-
phan from serotonin towards the kynurenine pathway47. We found quinolinate to differentiate mid-treatment 

Figure 2.   Plasma metabolic dysregulation during the treatment of TB in children. Differentially expressed 
metabolites between pre-treatment (month 0), mid-treatment (month 1), and post-treatment (month 6) samples 
collected from children with tuberculosis. (A) The volcano plots demonstrate the fold difference in metabolite 
abundance between study groups on the x-axis and the -log10 p-value of each difference on the y-axis. Extreme 
values on the x-axis indicate greater differences in abundance and the highest − log10 p-value represents the 
most significantly altered metabolite. The figures represent the differential abundance of metabolites between 
treatment months 0 and 1 (top), 0 and 6 (middle), and 1 and 6 (bottom). (B) Heatmaps of Z-score normalized 
metabolite plasma concentrations for the metabolites that were significantly differentially abundant between 
study groups. (C) Receiver Operator Characteristics (ROC) curve analysis for the combination of significantly 
differentially abundant metabolites differentiating children with TB at each time point during treatment. 
(D) The Venn diagram demonstrates the number of significantly differentially abundant metabolites across 
comparisons based on months of treatment.
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cases from controls with an AUC of 0.77, which is lower than published data finding quinolinate to identify TB 
at the time of diagnosis (AUC = 0.84)16. This may reflect changes in inflammation and metabolism during the 
early phase of treatment, as quinolinate rose mid-treatment before falling at the end of treatment in our data 
(Table S3). Finally, pyridoxate was the metabolite that best differentiated cases following treatment completion 
from controls with an AUC of 0.87. Pyridoxate, a breakdown product of B6, is a potential biomarker for TB due 

Figure 3.   Molecular degree of perturbation among children with tuberculosis during treatment and uninfected 
controls, by participant age and sex. (A) Histograms show the single sample molecular degree of perturbation 
(MDP) score values for controls at baseline (blue), cases before treatment (green), cases after 1 month of 
treatment (orange), and TB cases after 6 months of treatment (dark yellow). (B) Out of these groups, MDP was 
significantly higher among cases before treatment (green) and cases after 1 month of treatment (orange) than 
among controls. MDP was not significantly different between cases after treatment (yellow) and controls (blue). 
(C) MDP was not significantly different by sex in any study group. (D) MDP was positively correlated with 
increasing age of participant among cases before treatment, but not among other study groups.

Figure 4.   Integration of metabolomics and transcriptomics data reveals a complex and multifaceted immune 
response to TB. (A) Correlation network based on gene expression values in TB cases. Highlighted genes were 
found to correlate with N-acetylneuraminate, quinolinate and pyridoxate with p-value < 0.05 and absolute value 
of R > 0.7. (B) List of pathways associated with genes found to be positively and negatively correlated with the 
above-mentioned 3 metabolites.
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to its role in human cellular immunity and the ability of MTB to consume host B620. This suggests that the dif-
ferential abundance between TB patients post-treatment and controls may reflect resolving infection, although 
follow-up studies are needed to confirm this hypothesis.

This is not the first attempt to combine metabolites into a diagnostic signature for TB. Previous studies 
have achieved AUC values of 0.86–0.99 among adults, including 0.84 among people with HIV16,25,42. Pediatric 
studies are less common, however, with one study achieving AUC values between 0.76–0.81 using a variety of 
techniques, and another achieving an AUC of 0.98, representing better sensitivity of metabolomic signatures in 
this population than smear microscopy, Xpert MTB/RIF, or urine lipoarabinomannan testing12,13. The simplest 
metabolic biomarker we identified for TB, N-acetyleneuraminate, achieved an AUC of 0.66, which, while lower 
than values achieved in studies of adults with TB, is similar to the AUC of urine lipoarabinomannan (LAM) in 
children (AUC 0.67) and better than that of LAM among children without advanced HIV (AUC 0.46)48. Our data 
also found that the combination of 4 metabolites (gamma-glutamylalanine, gamma-glutamylglycine, glutamine, 
and pyridoxate) identified an initial treatment response with an AUC of 0.86, which—if confirmed in other 
studies including patients who fail treatment—represents improvement over smear and culture conversion to 
predict durable cure, which have only 24% and 40% sensitivity, respectively49. Previous studies have identified 
metabolomic signatures of treatment response, including one study identifying a 4 metabolite signature with 
86.2% sensitivity, 85.2% specificity and an AUC of 0.9127, and another study finding changes of 5 metabolites 
during treatment50. These specific metabolites were not significantly different between pre- and post-treatment 
samples in our study, demonstrating the need to replicate diagnostic accuracy studies in special populations, 
such as children, before they are broadly employed.

The integrative analysis in this study did not support the addition of MDP to metabolomic assessment to 
improve diagnostic yield. Nevertheless, it did confirm the correlation of TB-induced metabolic dysregulation with 
lymphoid and non-lymphoid immunoregulation, as well as with mitochondrial translation. MOFA found strong 
correlations with transcriptomic and metabolomic data. In our previous work, we have defined transcriptional 
signatures of pediatric TB and treatment response, achieving AUCs for diagnosis of 0.57–0.90 and AUCs for 
treatment response of 0.50–0.90 in external datasets29. This suggests that there is room to improve diagnostic 
accuracy of metabolic assessments by incorporating multiple modalities, as in the current work.

This study has several limitations. While we have focused on an assessment of children with confirmed TB, 
these results may not be generalizable to adults, who represent the majority of TB patients worldwide. Similarly, 
TB has a well-known interaction with HIV coinfection, which was not assessed in this study population. While 
this study was designed to assess metabolic changes among children with confirmed TB, it is important to con-
sider that the majority of children, particularly infants, treated for TB do not have confirmed disease. The choice 

Figure 5.   Downstream Multi‐Omics Factor Analysis (MOFA) disentangles the variability between 
metabolomics and transcriptomics data. The fitted MOFA model assessed the proportion of variance explained 
by each factor in each data modality. (A) Study overview and data types. Data modalities are shown in 
different rows (d = number of features) and samples (n) in columns. (B) The proportion of total variance (R2) 
explained by individual factors for each assay. (C) Absolute loadings of the top features of Factors 1 to 5 in the 
metabolomics (left panel) and transcriptomics (right panel) data.
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to study children with confirmed TB likely raised the median age of study participants compared to clinically 
diagnosed pediatric TB patients2,3. Each of these may have contributed to distinct metabolic changes identified 
in our study population compared to other study populations.

In this single-site study of children with confirmed TB and exposed, uninfected household contacts of TB 
patients, we identified N-acetylneuraminate, quinolinate, and pyridoxate as candidate biomarkers for TB dis-
ease activity in children. The combination of 4 metabolites (gamma-glutamylalanine, gamma-glutamylglycine, 
glutamine, and pyridoxate) accurately identified treatment response. Integration of metabolomic and trancrip-
tomic data from the same patients confirmed the involvement of several inflammatory pathways and improved 
interpretation of these biomarkers. Future validation studies will be needed to confirm these findings among 
other pediatric populations, including those coinfected with HIV. If successful, these tools may assist in the 
development of novel host-directed therapies for TB, as well as the use of predictors of treatment response to 
help shorten TB treatment. This would be particularly helpful for drug-resistant TB and for extrapulmonary TB, 
for which repeat microbiological assessment is often not possible during treatment.

Data availability
Data supporting the findings of this study are available within the article and its supplementary files, or are 
available from the authors upon request. Transcriptomics data analyzed in this manuscript are available from 
the NCBI sequence read archive (accession code PRJNA588242).
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