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Abstract
After the identification of the first SARS-COV-2 infected cases in China, the virus was rapidly disseminated among the distinct continents and 

the COVID-19 pandemics was announced by the WHO in March 2020. Over time, the epidemiological sceneries varied among countries, according 
to the adopted mitigation measures and epidemic phase. Recently, a recrudescence of the epidemics has been observed in distinct countries. SARS-
CoV-2 can be transmitted by direct or indirect contact. The viral RNA has been detected in stool and other clinical specimens from infected patients 
and a putative fecal-oral transmission has been argued. Viruses are shed in human excreta, further disposed into the sewerage system or into the 
environment, in poor sanitation settings. Thus, SARS-CoV-2 RNA has been regularly detected in wastewater and surface water impacted by the direct 
discharge of sewage. Some studies have reported an association between climatic parameters and an increase in COVID-19 incidence. However, 
conclusive evidence based in full seasons is needed so far.

This mini-review briefly discusses the putative role of climate and environmental factors on SARS-CoV-2 exposure, transmission and circulation 
patterns. Moreover, some additional challenges in middle and low-income settings are highlighted. Efforts must be driven to categorically understand 
the relationships between SARS-CoV-2 infection, circulation patterns and climate parameters, as the putative implications of viral persistence and 
viability in distinct environmental matrices. This information is crucial for COVID-19 control and prevention, especially in middle and low-income 
settings, already wedged by social inequality, inadequate sanitation and deficient healthcare admission. 
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Introduction
After the identification of the first severe acute respiratory 

syndrome coronavirus 2 (SARS-COV-2) infected cases in Wuhan, 
China, in December 2019 [1,2], the virus was rapidly disseminated 
among the distinct continents and led the World Health Organization 
to announce the COVID-19 pandemics in March 2020 [3]. Over time,  

 
the epidemiological sceneries varied among countries, according 
to the adopted mitigation measures and epidemic phase [4–7]. 
Recently, a recrudescence of the epidemics has been observed in 
Europe [8] and in the Americas, where the highest new case and 
deaths figures have been reported in the United States, followed by 
Brazil, Mexico, Columbia and Argentina [9].
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SARS-CoV-2 infected droplets and aerosols are released from 
symptomatic or asymptomatic subjects during events such as 
coughing, sneezing and talking. Afterwards, the virus can infect 
new hosts via direct or indirect contact. The close contact favors 
the inhalation or direct exposure of mucous membranes from 
susceptible persons to infected discharged particles. Viral exposure 
can also occur by the contact with contaminated surfaces or fomites 
[10], where the virus is able to remain viable and infectious for hours 
or even days, depending on the concentration of the inoculum and 
the nature of the investigated surfaces [11–13]. Increasing evidence 
suggests a role of viral airborne transmission via aerosols [11,14–
18], particularly in indoor and crowded settings [18,19]. 

SARS-CoV-2 RNA has been detected in stool and other clinical 
specimens from infected patients [20-23], despite the presence of 
gastrointestinal symptoms [24]. Although, information on viable 
and infective viruses in feces is still limited [21,23,25,26], this 
context raised the current debate on a putative role if fecal oral 
transmission [23,27,28]. As viruses are shed in human excreta 
[29,30] – are further disposed into the sewerage system or directly 
into the environment, in poor sanitation settings - viral RNA has 
been detected in waste- and polluted surface water [31-36]. Under 
the climate perspective, some studies have reported an association 
between climatic parameters and an increase in COVID-19 
incidence [37,37-40]. However, conclusive evidence based in full 
seasons is needed so far. In addition, confounding factors – such 
as socioeconomic variables - are also critical, specially in middle 
and low income areas [41]. This mini-review briefly discusses 
the putative role of climate and environmental factors on SARS-
CoV-2 exposure, transmission and circulation patterns. Moreover, 
some additional challenges in middle and low-income settings are 
highlighted. 

SARS-Cov-2 and the Environment 

 SARS-CoV-1 can survive for 4 days in diarrheal stool samples 
[42,43]. Other coronaviruses (CoV) remain infectious in water and 
sewage for days to weeks [44,45] and their inactivation depends on 
temperature, level of organic materials, UV exposure and microbial 
community [46-48]. Thermodynamic studies revealed that SARS-
CoV-2 is able to survive for approximately 10 hours in environments 
under a temperature of 350C [49] and, in laboratory conditions, 
the virus is highly stable at 4°C [50]. At room temperature (22℃), 
viruses remain viable for 3 days in wet or dry environments, 
despite a wide range of pH values [51]. As other CoV, SARS-CoV-2 
is susceptible to antiseptics containing ethanol, and disinfectants 
with chlorine or bleach [50,52,53]. A recent study had shown that 
treated wastewater effluents present a 100 times reduction in 
SARS-CoV-2 load compared to the corresponding raw wastewater 
samples [54].

Worldwide, SARS-CoV-2 RNA has been regularly detected in 
wastewater [31] and rivers impacted by the direct sewage discharge 
of sewage [35,55,56]. In this context, it is essential to emphasize that 
the detection of viral nucleic acid does not indicate the presence 
of active and infectious SARS-CoV-2. To date, there is no evidence 
of viral infection through drinking water, food or other matrices 
[48,57] and, so far, the studies addressing the SARS-CoV-2 viability 
in untreated and treated wastewater, surface water and soil were 
not able to recover and demonstrate the presence of infectious 
viruses in these samples [35,56,58,59]. Nonetheless, cumulative 
evidence is critical to effectively understand the putative role of 
these elements as potential sources of viral exposure [27,47,60-65], 
particularly in limited/poor sanitation settings, which comprise 
about a third of the global population [66]. In these backgrounds, 
waterways are used as open sewers and sources of water for 
domestic purposes [61,62] and the proximity of latrines or septic 
tanks and surface or groundwater uses to be common [66]. 

Under a complementary perspective, the increasing frequency 
of strong rainfalls, storms and flooding, as a consequence of climatic 
changes [67], adds additional challenges to this scenario. Excessive 
water volume can overload sewer’s and wastewater treatment 
plants’ capacity, resulting in overflows and sewage discharge, 
threatening the water distribution systems, water sources and 
surface waters [68]. Hence, the presence of viral RNA in wastewater 
demands additional information to elucidate a supposed viral role 
in water pollution [47,62]. Lastly, considering that distinct animal 
hosts are permissive to SARS-CoV-2 infection [69-72] and that 
spillover events are frequent among CoV [73], the introduction 
of viable SARS-CoV-2 into natural aquatic environments could 
putatively affect livestock and wildlife. Hence, there are still 
knowledge caveats to be fulfilled, demanding further research 
[27,31,65]. 

SARS-Cov-2 and the Climate

Mostly, respiratory viruses (RV) present seasonal patterns 
of circulation [74-79]. The seasonality of RV infections can be 
mainly attributed to the environmental and weather effects on 
on viral circulation, as to factors associated with host´s behavior 
and immune response [80]. In temperate regions, an increase 
in influenza, respiratory syncytial virus (RSV) and seasonal CoV 
activities has been associated with cold and dry winters. In contrast, 
in the tropical and subtropical regions, epidemics uses to occur in 
rainy seasons or along the year [74,75,81-89]. Time series analyses 
suggest that the likelihood of airborne transmission is favored 
by the presence of low relative humidity and lower temperature 
conditions [90-92]. These events have been attributed to the effects 
of these variables on viral stability and transmissibility. RV are able 
to survive longer on surfaces or in droplets in a context of cold and 
dry air [75,93] and the mechanism of virus survival in the cool-
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dry or humid-rainy conditions is determined by the presence of 
salts and proteins in the respiratory droplets [94]. Thus, climate 
conditions may play a crucial role in driving epidemics caused by 
these viruses. Under this perspective, a key question consists on  
the putative influence of environmental and climatic variables on 
the seasonality and dynamics of SARS-CoV-2 epidemics. 

Some authors reported a positive association between climate 
parameters and COVID-19 incidence [38-40]. A positive correlation 
between low relative humidity and disease severity was reported 
among Chinese and Europena hospitalized patients [38], in line with 
findings from who revealed an association between mortality and 
precipitation [95]. [39] Explored possible relationships between 
SARS-CoV-2 and Influenza infections with atmospheric variables 
and socio-economic conditions among tropical and subtropical 
climates in Brazil. The authors found that temperature combined 
with humidity were risk factors for COVID-19 and Influenza in 
both climate regimes, and the minimum temperature was also a 
risk factor for subtropical climate [39]. In addition, a cohort study 
conducted in 50 cities worldwide revealed that the distribution 
of COVID-19 outbreaks along restricted latitude, temperature, 
and humidity, resembled the circulation patterns of the seasonal 
respiratory viruses [96]. In contrast, studies carried out in China 
and in The United States [93,97], did not find a clear correlation 
between environmental conditions and SARS-CoV-2 infection, in 
such a way that weather changes would not lead to a significant rise 
or decline in the number of infected cases [98-100]. Thus, it is still 
unclear if viral circulation is effectively associated to environmental 
and climate parameters and if SARS-CoV-2 will eventually become 
seasonal or will continue to circulate along all the year, as other RV.  

Conclusion 

Presumed factors that could drive the spread and severity 
of SARS-CoV-2 infection comprise the viral biology, genetic 
variability, fitness, stability, transmissibility and environmental 
persistence, natural and acquired hosts, virus-host interactions 
and anthropogenic interventions. Social determinants of health, 
including health equity, vaccine acceptance, and age-related illness, 
could play a role in disease occurrence and viral spread. Besides the 
demographic transition, climate changes compose a major Public 
Health challenge, with potential and relevant impact on the current 
epidemiological scenario. It favors the emergence/ reemergence 
of pathogens and the potential occurrence of outbreaks of distinct 
magnitude [101-105]. Therefore, efforts must be driven to 
categorically understand the relationships between SARS-CoV-2 
infection, circulation patterns and climate parameters, as the 
putative implications of viral persistence and viability in distinct 
environmental matrices. This information is crucial for COVID-19 
control and prevention, especially in middle and low-income 

settings, already wedged by social inequality, inadequate sanitation 
and deficient healthcare admission. 
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