

# Systemic Inflammation in Pregnant Women with Latent Tuberculosis Infection

Shilpa Naik<sup>1</sup>, Mallika Alexander<sup>2, 1</sup>, Pavan Kumar<sup>3</sup>, Vandana Kulkarni<sup>2, 1</sup>, Prasad Deshpande<sup>2, 1</sup>, Su Yadana<sup>4</sup>, Cheng-Shiun Leu<sup>4</sup>, Mariana Araújo-Pereira<sup>5</sup>, Bruno B. Andrade<sup>5</sup>, Ramesh Bhosale<sup>1</sup>, Subash Babu<sup>3</sup>, Amita Gupta<sup>6</sup>, Jyoti S. Mathad<sup>7</sup>, Rupak Shivakoti<sup>8\*</sup>

<sup>1</sup>B. J. Medical College & Sassoon Hospital, India, <sup>2</sup>B. J. Medical College & Sassoon Hospital, India, <sup>3</sup>International Centers for Excellence in Research (ICER), India, <sup>4</sup>Columbia University, United States, <sup>5</sup>Gonçalo Moniz Institute (IGM), Brazil, <sup>6</sup>Johns Hopkins Medicine, United States, <sup>7</sup>Weill Cornell Medicine, Cornell University, United States, <sup>8</sup>Department of Epidemiology, Columbia University, United States

Submitted to Journal: Frontiers in Immunology

Specialty Section: Microbial Immunology

ISSN: 1664-3224

Article type: Original Research Article

Received on: 26 Jul 2020

Accepted on: 09 Dec 2020

Provisional PDF published on: 09 Dec 2020

Frontiers website link: www.frontiersin.org

#### Citation:

Naik S, Alexander M, Kumar P, Kulkarni V, Deshpande P, Yadana S, Leu C, Araújo-pereira M, Andrade BB, Bhosale R, Babu S, Gupta A, Mathad JS and Shivakoti R(2020) Systemic Inflammation in Pregnant Women with Latent Tuberculosis Infection. *Front. Immunol.* 11:3619. doi:10.3389/fimmu.2020.587617

#### Copyright statement:

© 2020 Naik, Alexander, Kumar, Kulkarni, Deshpande, Yadana, Leu, Araújo-pereira, Andrade, Bhosale, Babu, Gupta, Mathad and Shivakoti. This is an open-access article distributed under the terms of the <u>Creative Commons Attribution License (CC BY</u>). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

This Provisional PDF corresponds to the article as it appeared upon acceptance, after peer-review. Fully formatted PDF and full text (HTML) versions will be made available soon.

Frontiers in Immunology | www.frontiersin.org





| 1  | Systemic Inflammation in Pregnant Women with                                                                                                                               |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Latent Tuberculosis Infection                                                                                                                                              |
| 3  | Authors: Shilpa Naik <sup>1,2</sup> , Mallika Alexander <sup>1</sup> , Pavan Kumar <sup>3</sup> , Vandana Kulkarni <sup>1</sup> , Prasad                                   |
| 4  | Deshpande <sup>1</sup> , Su Yadana <sup>4</sup> , Cheng-Shiun Leu <sup>4</sup> , Mariana Araújo-Pereira <sup>5,6,7</sup> , Bruno B Andrade <sup>5, 6, 7, 8,</sup>          |
| 5  | <sup>9,10</sup> , Ramesh Bhosale <sup>1,2</sup> , Subash Babu <sup>3</sup> , Amita Gupta <sup>1,11</sup> , Jyoti S Mathad <sup>12</sup> , and Rupak Shivakoti <sup>4</sup> |
| 6  |                                                                                                                                                                            |
| 7  | Institutions:                                                                                                                                                              |
| 8  | <sup>1</sup> Byramjee-Jeejeebhoy Government Medical college-Johns Hopkins University Clinical Research                                                                     |
| 9  | Site, Pune, India                                                                                                                                                          |
| 10 | <sup>2</sup> Byramjee Jeejeebhoy Government Medical College, Pune, India                                                                                                   |
| 11 | <sup>3</sup> National Institutes of Health, National Institute for Research in Tuberculosis, International Center                                                          |
| 12 | for Excellence in Research, Chennai, India                                                                                                                                 |
| 13 | <sup>4</sup> Department of Epidemiology, Columbia University Mailman School of Public Health, New York,                                                                    |
| 14 | USA                                                                                                                                                                        |
| 15 | <sup>5</sup> Instituto Goncalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil                                                                                              |
| 16 | <sup>6</sup> Multinational Organization Network Sponsoring Translational and Epidemiological Research,                                                                     |
| 17 | Fundação José Silveira, Salvador, Brazil                                                                                                                                   |
| 18 | <sup>7</sup> Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil                                                                                        |
| 19 | <sup>8</sup> Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Brazil                                                                                       |
| 20 | <sup>9</sup> Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil                                                                                      |
| 21 | <sup>10</sup> Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil                                                                                         |

| 22 | <sup>11</sup> Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA. |
|----|----------------------------------------------------------------------------------------------------|
| 23 | <sup>12</sup> Department of Medicine, Weill Cornell Medical College, New York, USA                 |
| 24 | Keywords: Latent TB infection, TB disease, inflammation, pregnancy, cytokines                      |
| 25 |                                                                                                    |
| 26 |                                                                                                    |
| 27 |                                                                                                    |
| 28 |                                                                                                    |
| 29 |                                                                                                    |
| 30 |                                                                                                    |
| 31 |                                                                                                    |
| 32 |                                                                                                    |
| 33 |                                                                                                    |
| 34 |                                                                                                    |
| 35 |                                                                                                    |
| 36 |                                                                                                    |
| 37 |                                                                                                    |
| 38 |                                                                                                    |
| 39 |                                                                                                    |
| 40 |                                                                                                    |
| 41 |                                                                                                    |
| 42 |                                                                                                    |
| 43 |                                                                                                    |
| 44 |                                                                                                    |
| 45 |                                                                                                    |
| 46 |                                                                                                    |

#### 47 Abstract

Background: Recent studies in adults have characterized differences in systemic inflammation
between adults with and without latent tuberculosis infection (LTBI+ vs. LTBI-). Potential
differences in systemic inflammation by LTBI status has not been assess in pregnant women.
Methods: We conducted a cohort study of 155 LTBI+ and 65 LTBI- pregnant women, stratified by

HIV status, attending an antenatal clinic in Pune, India. LTBI status was assessed by interferon gamma release assay. Plasma was used to measure systemic inflammation markers using immunoassays: IFNβ, CRP, AGP, I-FABP, IFNγ, IL-1β, soluble CD14 (sCD14), sCD163, TNF, IL-6, IL-17a and IL-13. Linear regression models were fit to test the association of LTBI status with each inflammation marker. We also conducted an exploratory analysis using logistic regression to test the association of inflammatory markers with TB progression.

59

Results: Study population was a median age of 23 (Interquartile range: 21-27), 28% undernourished
(mid-upper arm circumference (MUAC) <23 cm), 12% were vegetarian, 10% with gestational</li>
diabetes and 32% with HIV. In multivariable models, LTBI+ women had significantly lower levels
of third trimester AGP, IL1β, sCD163, IL-6 and IL-17a. Interestingly, in exploratory analysis,
LTBI+ TB progressors had significantly higher levels of IL1β, IL-6 and IL-13 in multivariable
models compared to LTBI+ non-progressors.

66

67 Conclusions: Our data shows a distinct systemic immune profile in LTBI+ pregnant women
68 compared to LTBI- women. Data from our exploratory analysis suggest that LTBI+ TB progressors
69 do not have this immune profile, suggesting negative association of this profile with TB progression.

## Inflammation in LTBI+ pregnant women

| 70 | If other studies confirm these differences by LTBI status and show a causal relationship with TB |
|----|--------------------------------------------------------------------------------------------------|
| 71 | progression, this immune profile could identify subsets of LTBI+ pregnant women at high risk for |
| 72 | TB progression and who can be targeted for preventative therapy.                                 |
| 73 |                                                                                                  |
| 74 |                                                                                                  |
| 75 |                                                                                                  |
| 76 |                                                                                                  |
| 77 |                                                                                                  |
| 78 |                                                                                                  |
| 79 |                                                                                                  |
| 80 |                                                                                                  |
| 81 |                                                                                                  |
| 82 |                                                                                                  |
| 83 |                                                                                                  |
| 84 |                                                                                                  |
| 85 |                                                                                                  |
| 86 |                                                                                                  |
| 87 |                                                                                                  |
| 88 |                                                                                                  |
| 89 |                                                                                                  |
| 90 |                                                                                                  |

#### 91 Introduction:

92 Active tuberculosis (TB) disease elicits host responses characterized by an immune profile 93 that is clearly distinct from healthy individuals (O'Garra et al., 2013; Cliff et al., 2015). As the 94 causative agent *Mycobacterium tuberculosis (Mtb)* is actively replicating during TB disease, it causes 95 constant antigen stimulation from the bacterium that shapes the immune response. In contrast, with 96 latent TB infection (LTBI), *Mtb* is not actively replicating in the host and antigen stimulation with 97 *Mtb* antigens is required to generate *Mtb*-specific immune responses (O'Garra et al., 2013). While 98 differences in immunity with *Mtb* antigen stimulation has been extensively studied for active disease 99 or LTBI compared to healthy individuals (Tufariello et al., 2003; Mack et al., 2009; O'Garra et al., 100 2013; Cliff et al., 2015; de Martino et al., 2019), there are limited studies characterizing differences 101 by LTBI status in circulating inflammatory markers, in the absence of antigen stimulation (Cowan et 102 al., 2012; Jensen et al., 2013; LaVergne et al., 2020). This information could potentially explain why 103 an increased risk of certain adverse outcomes (e.g. acute myocardial infarction) have been observed 104 among LTBI+ individuals, or help identify immune profiles associated with TB progression 105 (Andrews et al., 2012; Huaman et al., 2018b). 106 One hypothesis on levels of inflammation by LTBI status is that there is no difference in 107 circulating inflammatory markers between LTBI+ and LTBI- individuals. *Mtb* infection is mainly 108 quiescent during LTBI and can remain in this form for a long time without harm to most individuals

109 (Comstock et al., 1974; Vynnycky and Fine, 2000). However, recent data from studies in adults

110 suggest that there might be differences in systemic inflammation by LTBI status (Cowan et al., 2012;

111 Jensen et al., 2013; Huaman et al., 2016; LaVergne et al., 2020). For example, a study of Indian

adults observed that after adjusting for potential confounders, LTBI+ individuals had significantly

113 higher levels of circulating pro-inflammatory mediators IL-6 and MCP-1 but lower levels of C-

114 reactive protein (CRP), another pro-inflammatory marker, compared to LTBI- individuals (LaVergne115 et al., 2020).

| 116 | While studies have started to assess potential differences in systemic inflammation by LTBI           |
|-----|-------------------------------------------------------------------------------------------------------|
| 117 | status in non-pregnant adults (Cowan et al., 2012; Jensen et al., 2013; Huaman et al., 2016; LaVergne |
| 118 | et al., 2020), there is no data on pregnant women. Pregnant women have a distinct immune profile      |
| 119 | compared to adults and there are temporal changes in immunity during pregnancy (Mor and               |
| 120 | Cardenas, 2010). It is not currently known whether there is a difference in systemic inflammation     |
| 121 | between LTBI+ and LTBI- pregnant women, and how this might change by trimester of pregnancy.          |
| 122 | Furthermore, LTBI+ women have a higher risk of <i>Mtb</i> progression during pregnancy and post-      |
| 123 | partum but the reasons are not clear (Mathad and Gupta, 2012; Zenner et al., 2012; Jonsson et al.,    |
| 124 | 2020). The immune profile during pregnancy, including the systemic inflammatory milieu, may           |
| 125 | inform on potential changes to immunity that increase susceptibility to TB disease during pregnancy.  |
| 126 | In order to address this research gap in our understanding of systemic immunity in LTBI+ pregnant     |
| 127 | women, we compared the levels of systemic inflammatory markers, at the second and third trimester,    |
| 128 | by LTBI status in a cohort of pregnant women from Pune, India, and explored the association of        |
| 129 | these immune markers with TB progression during pregnancy and post-partum.                            |
|     |                                                                                                       |

130

## 131 Methods:

## 132 **Study Design and Population**

133 A cohort study of pregnant women was conducted at Byramjee Jeejeebhoy Government

134 Medical College (BJGMC) in Pune, India from 2016-2019. Adult pregnant women, aged 18-40 years

135 and between 13-34 weeks of gestation (confirmed by early pregnancy ultrasound), receiving

136 antenatal care at BJGMC were enrolled for this study. Pregnant women with active TB at entry were

### This is a provisional file, not the final typeset article

| 137 | excluded. We enrolled four cohorts of pregnant women based on their latent tuberculosis infection     |
|-----|-------------------------------------------------------------------------------------------------------|
| 138 | (LTBI) and HIV status: 1) LTBI+HIV+ (N=35), 2) LTBI+HIV- (N=130), 3) LTBI-HIV+ (N=44) and             |
| 139 | 4) LTBI-HIV- (N=25). The sample size for this cohort was based on the primary objective of the        |
| 140 | cohort study which was to compare the concentrations of Th1 cytokines after MTB-specific antigen      |
| 141 | stimulation by stage of pregnancy. LTBI status was determined using Interferon Gamma Release          |
| 142 | Assay (IGRA Quantiferon TB-Gold) according to manufacturer's instructions. Sampling within each       |
| 143 | cohort was based on convenience sampling of those that met eligibility criteria.                      |
| 144 |                                                                                                       |
| 145 | Ethics Statement                                                                                      |
| 146 | All clinical investigations were conducted according to the principles expressed in the               |
| 147 | Declaration of Helsinki. Written informed consent was obtained from all participants. This study was  |
| 148 | approved by institutional review boards and ethics committees at BJGMC, Johns Hopkins University,     |
| 149 | Weill Cornell and Columbia University. We followed guidelines for human experimentation from the      |
| 150 | US Department of Health and Human Services.                                                           |
| 151 |                                                                                                       |
| 152 | Data Collection and Laboratory Procedures                                                             |
| 153 | Sociodemographic information and clinical data were collected from pregnant women at the              |
| 154 | enrollment visit (13-34 weeks of gestation), at the third trimester visit (for those enrolled in the  |
| 155 | second trimester), at delivery and approximately every 3 months post-partum. At each follow-up        |
| 156 | visit, women were administered a World Health Organization (WHO) TB symptom screening                 |
| 157 | questionnaire. Women with a positive WHO symptom screen, unintentional weight loss since last         |
| 158 | visit or with clinical findings on examination were further investigated with sputum GeneXpert, acid- |
| 159 | fast bacilli test, chest X-ray and abdominal ultrasound. Culture in Lowenstein Jensen (LJ) media and  |
|     | 7                                                                                                     |
|     |                                                                                                       |

liquid Mycobacteria Growth Indicator Tube (MGIT) were performed for further confirmation inthose with positive findings.

| 162 | Relevant to this analysis, blood was also collected at each visit in heparin tubes and plasma                                      |
|-----|------------------------------------------------------------------------------------------------------------------------------------|
| 163 | samples were stored in -80°C until further use. We conducted single-plex immunoassays on second                                    |
| 164 | and third trimester plasma samples according to the manufacturer's (R&D Systems, Minneapolis,                                      |
| 165 | MN) directions for soluble CD163 (sCD163), soluble CD14 (sCD14), intestinal fatty acid-binding                                     |
| 166 | protein (I-FABP), C-reactive protein (CRP), alpha 1-acid glycoprotein (AGP) and interferon- $\beta$                                |
| 167 | (IFN $\beta$ ). The lower and upper detection limitssensitivity of the assays were as follows: $\frac{1.6-1000.613}{1.6-1000.613}$ |
| 168 | ng/mL for sCD163, 250-16,000125 pg/mL for sCD14, 15.6-1,0006.21 pg/mL for I-FABP, 0.8-500.02                                       |
| 169 | ng/mL for CRP, $3.1-2000.54$ ng/mL for AGP and $50-4,00050$ pg/mL for IFN $\beta$ . Multiplex                                      |
| 170 | immunoassays (Luminex assays from R&D systems) measuring IFN $\gamma$ , Interleukin (IL)-1 $\beta$ , IL-6, IL-                     |
| 171 | 13, IL-17A and TNF were also performed on these samples. The lower and upper detection                                             |
| 172 | limitssensitivity of the assays were as follows: 43.9-10,6900.40 pg/mL for IFNy, 17.5-4,2600.80                                    |
| 173 | pg/mL for IL-1β, <u>4.7-1,1501.7</u> pg/mL for IL-6, <u>391-95,06036.6</u> pg/mL for IL-13, <u>12.9-3,1501.8</u>                   |
| 174 | pg/mL for IL-17A, and 7.9-1,9301.2 pg/mL for TNF. These markers were chosen based on their                                         |
| 175 | importance to TB, HIV and pregnancy outcomes. For Single-plex immunoassays, SpectraMax plate                                       |
| 176 | readers were used with SofMax Pro 6 software. Luminex xMAP technology MAGPIX platform was                                          |
| 177 | used for multiplex immunoassays with xPONENT software.                                                                             |

178

## 179 Statistical Analysis

180 We combined the LTBI+ cohorts (HIV+ and HIV-) and LTBI- cohorts (HIV+ and HIV-) to
181 study the relationship of LTBI status with second or third trimester inflammatory markers among 220

182 women with available inflammatory data. Differences in study population characteristics by LTBI

183 status were determined using Fisher's exact test for categorical variables and Wilcoxon rank-sum test

| 184 | for continuous variables. A p-value less than 0.05 was considered statistically significant and a p-      |
|-----|-----------------------------------------------------------------------------------------------------------|
| 185 | value of less than $0.004 (0.05/12)$ was considered statistically significant after Bonferroni correction |
| 186 | for multiple comparisons. We also compared median levels of each inflammatory marker, during the          |
| 187 | second and third trimester, between LTBI+ and LTBI- pregnant women using the Wilcoxon rank-               |
| 188 | sum test. Inflammatory markers were log <sub>2</sub> -transformed for the data to approximate normality.  |
| 189 | We conducted univariable and multivariable linear regression to determine the change in                   |
| 190 | log <sub>2</sub> concentrations of each inflammatory marker (outcome variable) by change in LTBI status   |
| 191 | (exposure variable), with separate cross-sectional analyses for markers measured in second trimester      |
| 192 | or third trimester. Multivariable models adjusted for age, mid-upper arm circumference (MUAC),            |
| 193 | HIV status, vegetarian diet and gestational diabetes status. We also tested models that further           |
| 194 | adjusted for smoking, education or preeclampsia. MUAC at the time of plasma sample collection (i.e.       |
| 195 | second or third trimester) was used in multivariable models as it is a more reliable indicator of         |
| 196 | nutritional status during pregnancy compared to body mass index. Sub-set analysis was performed           |
| 197 | using Wilcoxon rank-sum test to determine whether similar relationships between LTBI status and           |
| 198 | inflammatory markers were observed for only HIV-negative populations.                                     |
| 199 | We also conducted an exploratory analysis, using univariable and multivariable logistic                   |
| 200 | regression analyses, to determine whether third trimester inflammation levels (exposure variable) was     |
| 201 | associated with TB progression during pregnancy or post-partum (outcome variable). Progressors            |
| 202 | were defined as those who prospectively developed active TB after sample collection in third              |
| 203 | trimester and within study follow-up of one-year post-partum. We used STATA software version              |
| 204 | 15.0 for the data analysis.                                                                               |
| 205 |                                                                                                           |

206 <u>Results</u>:

207

### 208 Study Population Characteristics

| 209 | Our study population of pregnant Indian women (N=220) had a median age of 23 years                   |
|-----|------------------------------------------------------------------------------------------------------|
| 210 | (interquartile range (IQR): 21-27) (Table 1). Only 25% had an education of less than secondary       |
| 211 | education and 34% had an income below India's poverty line (monthly income <10,255 Indian            |
| 212 | rupees). Around 28% of the women had a mid-upper arm circumference (MUAC) less than 23 cm            |
| 213 | (an indicator of undernutrition in pregnancy(Ververs et al., 2013)) and 7% had an MUAC>30.5 cm,      |
| 214 | indicative of overweight (Table 1). Most of the women (88%) did not smoke and 12% were               |
| 215 | vegetarians. Ten percent had gestational diabetes and 11% had preeclampsia. As this cohort was       |
| 216 | stratified by HIV status, 32% of the pregnant women were HIV+ (all on antiretroviral therapy). Study |
| 217 | population characteristics did not differ by LTBI status except for lower proportion of HIV (p-value |
| 218 | <0.001) in LTBI+ women; as mentioned above, this was due to the stratified design of the study.      |
| 219 | LTBI+ women also had a lower proportion of gestational diabetes (p=0.08) and less post-high school   |
| 220 | education (p=0.09) but these differences were not statistically significant (Table 1).               |
| 221 |                                                                                                      |

222 Levels of Inflammatory markers by LTBI status

We compared the median log<sub>2</sub>-transformed levels of third trimester inflammatory markers by LTBI status using Wilcoxon-rank sum tests (**Figure 1**). IL-1β (3.64 vs. 2.25 pg/mL; p=0.0002), TNF (1.76 vs. 1.54 pg/mL; p=0.004), IL-6 (4.08 vs. 1.25 pg/mL; p<0.0001) and IL-17a (2.48 vs. 2.16 pg/mL; p=0.0001) were significantly higher in LTBI- women compared to LTBI+ women (**Figure** 1). IFNγ production upon *Mtb* antigen stimulation is used to define LTBI positivity; of note, IFNγ was lower (3.63 vs. 3.73 pg/mL; p=0.15) in plasma (i.e. unstimulated samples) of LTBI- women compared to LTBI+ women, but this association was not statistically significant (**Figure 1**). Similar

| 230 | results were also observed when using log <sub>2</sub> concentrations of markers measured in plasma samples                |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 231 | from the second trimester (Supplementary Figure 1). LTBI- women had significantly higher levels                            |
| 232 | of second trimester AGP, I-FABP, IL-1 $\beta$ , TNF, IL-6 and IL-17a compared to LTBI+ women                               |
| 233 | (Supplementary Figure 1). LTBI- women also had lower levels of IFN <sub>γ</sub> compared to LTBI+                          |
| 234 | women, although this was not statistically significant (p=0.08) (Supplementary Figure 1).                                  |
| 235 |                                                                                                                            |
| 236 | Association of inflammation by LTBI status                                                                                 |
| 237 | Next, we assessed the relationship of third trimester inflammation with LTBI status using                                  |
| 238 | univariable and multivariable linear regression models. LTBI+ women had significantly lower levels                         |
| 239 | of I-FABP (mean $log_2$ change: -0.41, 95% confidence intervals (CI): -0.78 to -0.04; p=0.03), IL1 $\beta$                 |
| 240 | (mean log <sub>2</sub> change: -1.03, 95% CI: -1.53 to -0.54; p<0.001), IL-6 (mean log <sub>2</sub> change: -1.36, 95% CI: |
| 241 | -1.93 to -0.80; p<0.001) and IL-17a (mean log <sub>2</sub> change: -0.34, 95% CI: -0.50 to -0.17; p<0.001)                 |
| 242 | compared to LTBI- women in univariable models (Figure 2). AGP (mean $log_2$ change: -0.20, 95%                             |
| 243 | CI: -0.42 to 0.02; p<0.08) and sCD163 (mean log <sub>2</sub> change: -0.18, 95% CI: -0.39 to 0.03; p<0.10) was             |
| 244 | also lower in LTBI+ women but this relationship was not statistically significant (Figure 2).                              |
| 245 | After adjusting for age, third trimester MUAC, HIV status, vegetarian diet, and gestational                                |
| 246 | diabetes in multivariable models, levels of IL-1 $\beta$ (mean log <sub>2</sub> change: -1.15, 95% CI: -1.70 to -0.60;     |
| 247 | p<0.001), IL-6 (mean log <sub>2</sub> change: -1.22, 95% CI: -1.87 to -0.58; p<0.001) and IL-17a (mean log <sub>2</sub>    |
| 248 | change: -0.39, 95% CI: -0.57 to -0.21; p<0.001), but not I-FABP (mean log <sub>2</sub> change: -0.25, 95% CI: -            |
| 249 | 0.67 to 0.15; p=0.22), remained significantly lower in LTBI+ women compared to LTBI- women                                 |
| 250 | (Figure 2). In addition, AGP was also significantly lower in LTBI+ women (mean $log_2$ change: -                           |
| 251 | 0.29, 95% CI: -0.54 to -0.04; p=0.02) (Figure 2). After Bonferroni correction to adjust for multiple                       |
| 252 | comparisons, third trimester IL1 $\beta$ , IL-6 and IL-17a were significantly lower in LTBI+ women in                      |
| 253 | multivariable models.                                                                                                      |

| 254 | Further adjusting for smoking, education or preeclampsia in multivariable models did not                   |
|-----|------------------------------------------------------------------------------------------------------------|
| 255 | change the direction or significance of the results. Finally, we also conducted sensitivity analysis to    |
| 256 | show that when we limited the analysis only to HIV- subjects, the levels of these inflammatory             |
| 257 | markers were still lower in LTBI+ pregnant women compared to LTBI- women (Supplementary                    |
| 258 | Figure 2), suggesting that HIV was not driving the observed relationships.                                 |
| 259 | Results using second trimester inflammatory markers instead of third trimester showed                      |
| 260 | similar associations with LTBI status (Figure 3). In univariable models, LTBI+ pregnant women had          |
| 261 | significantly lower levels of AGP, I-FABP, IL1 $\beta$ , TNF, IL-6 and IL-17a compared to LTBI- pregnant   |
| 262 | women (Figure 3). In multivariable models, we observed similar results observed in univariable             |
| 263 | models with significantly lower levels of the AGP, I-FABP, IL-1 $\beta$ , IL-6, and IL-17a, but not TNF in |
| 264 | LTBI+ compared to LTBI- women (Figure 3). In addition, sCD163 levels were significantly lower              |
| 265 | and IFNy was significantly higher in LTBI+ women compared to LTBI- women (Figure 3). After                 |
| 266 | Bonferroni correction to adjust for multiple comparisons, second trimester AGP, IL1β, IL-6 and IL-         |
| 267 | 17a were significantly lower in LTBI+ women in multivariable models.                                       |
| 268 |                                                                                                            |
| 269 | Inflammatory markers during pregnancy and progression of TB                                                |
| 270 | We also conducted an exploratory analysis to test whether the systemic immune profile                      |
| 271 | observed in LTBI+ pregnant women was associated with progression to active TB during pregnancy             |
| 272 | or post-partum. In our study, there were nine women, all LTBI+ at study baseline, who progressed to        |
| 273 | active TB either during the third trimester of pregnancy (n=1) or post-partum (i.e. within one year of     |
| 274 | delivery) (n=8). Given that all of the progressors were LTBI+ women, we present data comparing             |
| 275 | progressors and non-progressors only among LTBI+ women. Interestingly, levels of these markers in          |
| 276 | LTBI+ progressors, while higher than non-progressor LTBI+ pregnant women, were similar to LTBI-            |
| 277 | women (data not shown), suggesting that lower levels of these markers might be protective against          |

## This is a provisional file, not the final typeset article

TB progression in LTBI+ pregnant women. There was a significantly increased odds of progression per  $log_2$  increase in third trimester plasma levels of IL-1 $\beta$  (adjusted odds ratio (aOR): 1.64, 95% CI: 1.05-2.57), IL-6 (aOR: 1.58, 95% CI: 1.05-2.39), and IL-13 (aOR: 2.43, 95% CI: 1.12-5.27) after adjusting for age, MUAC and HIV status (**Figure 4**). There was also an increased odds for IL-17a (aOR: 5.49, 95% CI: 0.84-35.97), but this association was not statistically significant (**Figure 4**). Similar results were observed when we limited the analysis only to post-partum progressors (data not shown).

285

### 286 **Discussion:**

287 In our study of LTBI+ and LTBI- pregnant women from India, LTBI+ women had lower 288 levels of various pro-inflammatory cytokines such as IL-1β, IL-6 and IL-17a compared to LTBI-289 women. In contract, the levels of IFNy were higher (significant in second trimester) in LTBI+ 290 women. While increased levels of IFNy might be related to the use of this cytokine to define IGRA-291 based LTBI (Pai et al., 2004), the results with the other cytokines were surprising. These findings 292 suggest that LTBI in pregnancy is characterized by a distinct immune profile with higher levels of 293 IFNy but lower levels of other immune markers with known roles in TB disease. Interestingly, 294 LTBI+ women who progressed to active TB during pregnancy and post-partum did not have this 295 profile in our exploratory analysis, suggesting the distinct immune profile in LTBI+ pregnant women 296 might have a protective role against TB progression. Future larger studies will need to confirm these 297 findings and determine whether these markers play a causal role and could be used to identify LTBI+ 298 pregnant women at increased risk for TB progression and a target for preventative therapy.

LTBI+ pregnant women had significantly increased levels of IFNγ in the second trimester
compared to LTBI- women. While the association was not statistically significant, the IFNγ levels
were also higher for LTBI+ women in the third trimester. In our study, we used the IGRA test, which

| 302 | is dependent on IFNy production (Pai et al., 2004), to define LTBI status; thus it might be expected          |
|-----|---------------------------------------------------------------------------------------------------------------|
| 303 | IFN $\gamma$ is higher in LTBI+ women. On the other hand, it should be noted that we measured IFN $\gamma$ in |
| 304 | plasma samples and it is not obvious that IFNy levels in circulation should also be higher for LTBI+          |
| 305 | individuals. Our results here do indicate that higher levels of IFN $\gamma$ are observed in circulation for  |
| 306 | LTBI+ pregnant women even without <i>Mtb</i> antigen stimulation. Similar results for IFNy have also          |
| 307 | been observed from plasma samples of non-pregnant LTBI+ adults (Huaman et al., 2016; Huaman et                |
| 308 | al., 2018a). While the reasons are not clear, it is possible that despite being a latent infection, there     |
| 309 | could be periodic activity of some component (e.g. mRNA, protein) or low-level replication of Mtb             |
| 310 | that induces IFN $\gamma$ production (Huaman et al., 2016). Furthermore, LTBI is thought to be a spectrum     |
| 311 | of host-pathogen interactions, with ongoing replication and metabolic activity in certain subsets             |
| 312 | while quiescence in other Mtb subsets (Barry et al., 2009; Huaman et al., 2018b).                             |
| 313 | Our data showed lower levels of immune markers, especially IL-1 $\beta$ , IL-6, IL-17a and AGP, in            |
| 314 | both trimesters, in LTBI+ women compared to LTBI- women. Higher levels of IFN $\gamma$ can partly             |
| 315 | explain the lower levels of these other markers, as studies of $Mtb$ have shown that IFN $\gamma$ can have    |
| 316 | counteractive roles with IL-1 $\beta$ , IL-6 and IL-17a in certain instances (Nandi and Behar, 2011; Dutta et |
| 317 | al., 2012; Eigenbrod et al., 2013). Pregnancy-specific changes in immune profile could also in part           |
| 318 | help explain these observations (Mor and Cardenas, 2010). For example, during pregnancy there is              |
| 319 | an increase in neutrophil levels (Sacks et al., 1998; Luppi et al., 2002), which have been linked to          |
| 320 | lower levels of IL-6 and IL-17 in <i>Mtb</i> infection (Zhang et al., 2009; O'Garra et al., 2013).            |
| 321 | Interestingly, in our exploratory analyses, LTBI+ TB progressors had a profile more similar                   |
| 322 | to LTBI- women, with higher levels of IL-1 $\beta$ , IL-6, IL-13 and IL17a and generally lower levels of      |
| 323 | IFN $\gamma$ compared to LTBI+ non-progressors. These inflammatory markers have been recognized for           |
| 324 | their complex role in TB disease where while a deficiency is linked to reduced control of <i>Mtb</i>          |
| 325 | infection, excessive levels can result in tissue damage and immunopathology (Martinez Cordero et              |

## This is a provisional file, not the final typeset article

326 al., 2008; Tadokera et al., 2011; Martinez et al., 2013; O'Garra et al., 2013; Barber et al., 2014; Zhang 327 et al., 2014; Shen and Chen, 2018) as well as progression to active TB disease in non-pregnant adults 328 (Manabe et al., 2019). Given the small number of progressors in this study, these findings will need 329 to be confirmed in other studies with a larger sample size. If these findings are confirmed, this profile 330 could be used to identify subsets of LTBI+ pregnant women (i.e. those without this profile) at an 331 increased risk of TB progression and would further support the idea of LTBI as a spectrum where 332 subgroups of LTBI+ are protected from progression while others are not (Andrews et al., 2012; 333 Huaman et al., 2018b). In addition, future studies would also need to determine whether this 334 relationship of the systemic immune profile with TB progression is causal as it could partly explain 335 the increased risk of *Mtb* progression during pregnancy and post-partum (Mathad and Gupta, 2012; 336 Zenner et al., 2012; Jonsson et al., 2020).

337 Our study has some limitations. We did not have data on inflammation markers from 338 pregnant women during the first trimester or non-pregnant women. This data would be informative to 339 understand whether the relationship of these markers with LTBI status was also similar in early 340 pregnancy compared to later pregnancy, or in pregnant women compared to non-pregnant women. 341 Regardless, our study did have longitudinal data on inflammatory markers in the second and third 342 trimester of pregnancy, and showed consistent results with LTBI status in both trimesters that was 343 robust to adjustments for multiple comparisons. Another limitation of this study is that we only 344 assessed soluble markers of inflammation. The next steps for this study is to better understand the 345 cellular sources of these differences by assessing potential differences in immune cell phenotype and 346 function by LTBI status. The sample size for the analysis of TB progression was limited; while we 347 were able to detect significant differences in multiple markers, this was an exploratory analysis that 348 will need to be confirmed in larger studies. Future large studies should also address whether the

changes in inflammatory markers due to LTBI status impacts the risk of birth and infant healthoutcomes.

| 351 | In summary, we characterize the systemic immune profile in LTBI+ pregnant women                          |
|-----|----------------------------------------------------------------------------------------------------------|
| 352 | showing higher levels of IFN $\gamma$ but lower levels of other immune markers compared to LTBI-         |
| 353 | pregnant women. These findings describe a circulating cytokine and immune milieu indicating a            |
| 354 | distinct immune profile in LTBI+ women. Exploratory analysis suggests that this profile is negatively    |
| 355 | associated with TB progression. Future studies should confirm these findings in diverse settings in      |
| 356 | order to test the potential causal role along with the utility of this profile to identify women at high |
| 357 | risk for TB progression and who may benefit from preventative therapy.                                   |
| 358 |                                                                                                          |
| 359 |                                                                                                          |
| 360 |                                                                                                          |
| 361 |                                                                                                          |
| 362 |                                                                                                          |
| 363 |                                                                                                          |
| 364 |                                                                                                          |
| 365 |                                                                                                          |
| 366 |                                                                                                          |
| 367 |                                                                                                          |
| 368 |                                                                                                          |
| 369 |                                                                                                          |

| 370 | Acknowledgments: The authors thank the study participants for their time and contributions as well |
|-----|----------------------------------------------------------------------------------------------------|
| 371 | as the study staff who meticulously collected detailed data.                                       |

372

| 373 | Financial Support: This work was supported primarily by the United States National Institutes of  |
|-----|---------------------------------------------------------------------------------------------------|
| 374 | Health, NIH, Bethesda, MD, USA (R00HD089753 to RS and R01HD081929 to AG). JSM received            |
| 375 | support from NIAID (K23AI129854). Additional support for this work was the NIH-funded Johns       |
| 376 | Hopkins Baltimore-Washington-India Clinical Trials Unit for NIAID Networks (U01AI069465 to        |
| 377 | AG). BBA is a senior investigator from the Conselho Nacional de Desenvolvimento Científico e      |
| 378 | Tecnológico (CNPq), Brazil. MAP received a research fellowship from the Coordenação de            |
| 379 | Aperfeiçoamento de Pessoal de Nível Superior (CAPES; finance code 001). The content is solely the |
| 380 | responsibility of the authors and does not necessarily represent the official views of the NIH.   |
| 381 |                                                                                                   |

381

382 Conflict of Interest: None declared

383

384 Author Contributions: SN contributed to study design, implementation and interpretation. MA 385 contributed to study design and interpretation and led the data collection. PK and SB conducted the 386 laboratory assessments and contributed to interpretation of findings. VK and PD contributed to 387 laboratory data collection and writing of this manuscript. SY and CSL contributed to data analysis. 388 MAP and BBA created the statistical scripts used to plot the analyses and graphs, and helped with the 389 interpretation of findings. RB, AG and JM led the parent study and also contributed to the design, 390 implementation and interpretation of this study. RS led the conceptual design, analysis and wrote the 391 primary version of the manuscript. All authors have approved the final manuscript and agreed to 392 publication.

## 393 **<u>References</u>**:

- Andrews, J.R., Noubary, F., Walensky, R.P., Cerda, R., Losina, E., and Horsburgh, C.R. (2012). Risk
   of progression to active tuberculosis following reinfection with Mycobacterium tuberculosis.
   *Clin Infect Dis* 54(6), 784-791. doi: 10.1093/cid/cir951.
- Barber, D.L., Andrade, B.B., McBerry, C., Sereti, I., and Sher, A. (2014). Role of IL-6 in
   Mycobacterium avium--associated immune reconstitution inflammatory syndrome. J
   *Immunol* 192(2), 676-682. doi: 10.4049/jimmunol.1301004.
- Barry, C.E., 3rd, Boshoff, H.I., Dartois, V., Dick, T., Ehrt, S., Flynn, J., et al. (2009). The spectrum
  of latent tuberculosis: rethinking the biology and intervention strategies. *Nat Rev Microbiol*7(12), 845-855. doi: 10.1038/nrmicro2236.
- Cliff, J.M., Kaufmann, S.H., McShane, H., van Helden, P., and O'Garra, A. (2015). The human
  immune response to tuberculosis and its treatment: a view from the blood. *Immunol Rev*264(1), 88-102. doi: 10.1111/imr.12269.
- 406 Comstock, G.W., Livesay, V.T., and Woolpert, S.F. (1974). The prognosis of a positive tuberculin
  407 reaction in childhood and adolescence. *Am J Epidemiol* 99(2), 131-138. doi:
  408 10.1093/oxfordjournals.aje.a121593.
- Cowan, J., Pandey, S., Filion, L.G., Angel, J.B., Kumar, A., and Cameron, D.W. (2012). Comparison of interferon-gamma-, interleukin (IL)-17- and IL-22-expressing CD4 T cells, IL-22-expressing granulocytes and proinflammatory cytokines during latent and active tuberculosis infection. *Clin Exp Immunol* 167(2), 317-329. doi: 10.1111/j.1365-2249.2011.04520.x.
- de Martino, M., Lodi, L., Galli, L., and Chiappini, E. (2019). Immune Response to Mycobacterium
  tuberculosis: A Narrative Review. *Front Pediatr* 7, 350. doi: 10.3389/fped.2019.00350.
- 415 Dutta, R.K., Kathania, M., Raje, M., and Majumdar, S. (2012). IL-6 inhibits IFN-gamma induced
  416 autophagy in Mycobacterium tuberculosis H37Rv infected macrophages. *Int J Biochem Cell*417 *Biol* 44(6), 942-954. doi: 10.1016/j.biocel.2012.02.021.
- Eigenbrod, T., Bode, K.A., and Dalpke, A.H. (2013). Early inhibition of IL-1beta expression by IFNgamma is mediated by impaired binding of NF-kappaB to the IL-1beta promoter but is
  independent of nitric oxide. *J Immunol* 190(12), 6533-6541. doi: 10.4049/jimmunol.1300324.
- Huaman, M.A., Deepe, G.S., Jr., and Fichtenbaum, C.J. (2016). Elevated Circulating Concentrations
  of Interferon-Gamma in Latent Tuberculosis Infection. *Pathog Immun* 1(2), 291-303. doi:
  10.20411/pai.v1i2.149.
- Huaman, M.A., Henson, D., Rondan, P.L., Ticona, E., Miranda, G., Kryscio, R.J., et al. (2018a).
  Latent tuberculosis infection is associated with increased unstimulated levels of interferongamma in Lima, Peru. *PLoS One* 13(9), e0202191. doi: 10.1371/journal.pone.0202191.
- Huaman, M.A., Ticona, E., Miranda, G., Kryscio, R.J., Mugruza, R., Aranda, E., et al. (2018b). The
  Relationship Between Latent Tuberculosis Infection and Acute Myocardial Infarction. *Clin Infect Dis* 66(6), 886-892. doi: 10.1093/cid/cix910.
- Jensen, A.V., Jensen, L., Faurholt-Jepsen, D., Aabye, M.G., Praygod, G., Kidola, J., et al. (2013).
  The prevalence of latent Mycobacterium tuberculosis infection based on an interferon-gamma release assay: a cross-sectional survey among urban adults in Mwanza, Tanzania. *PLoS One* 8(5), e64008. doi: 10.1371/journal.pone.0064008.
- Jonsson, J., Kuhlmann-Berenzon, S., Berggren, I., and Bruchfeld, J. (2020). Increased risk of active
   tuberculosis during pregnancy and postpartum: a register-based cohort study in Sweden. *Eur Respir J* 55(3). doi: 10.1183/13993003.01886-2019.
- LaVergne, S., Umlauf, A., McCutchan, A., Heaton, R., Benson, C., Kumarasamy, N., et al. (2020).
  Impact of Latent Tuberculosis Infection on Neurocognitive Functioning and Inflammation in
  HIV-Infected and Uninfected South Indians. *J Acquir Immune Defic Syndr*. doi:
  10.1097/QAI.0000000002368.

- Luppi, P., Haluszczak, C., Trucco, M., and Deloia, J.A. (2002). Normal pregnancy is associated with
  peripheral leukocyte activation. *Am J Reprod Immunol* 47(2), 72-81. doi: 10.1034/j.16000897.2002.10041.x.
- Mack, U., Migliori, G.B., Sester, M., Rieder, H.L., Ehlers, S., Goletti, D., et al. (2009). LTBI: latent
  tuberculosis infection or lasting immune responses to M. tuberculosis? A TBNET consensus
  statement. *Eur Respir J* 33(5), 956-973. doi: 10.1183/09031936.00120908.
- Manabe, Y.C., Andrade, B.B., Gupte, N., Leong, S., Kintali, M., Matoga, M., et al. (2019). A
  Parsimonious Host Inflammatory Biomarker Signature Predicts Incident TB and Mortality in
  Advanced HIV. *Clin Infect Dis.* doi: 10.1093/cid/ciz1147.
- 450 Martinez, A.N., Mehra, S., and Kaushal, D. (2013). Role of interleukin 6 in innate immunity to
  451 Mycobacterium tuberculosis infection. *J Infect Dis* 207(8), 1253-1261. doi:
  452 10.1093/infdis/jit037.
- Martinez Cordero, E., Gonzalez, M.M., Aguilar, L.D., Orozco, E.H., and Hernandez Pando, R.
  (2008). Alpha-1-acid glycoprotein, its local production and immunopathological participation in experimental pulmonary tuberculosis. *Tuberculosis (Edinb)* 88(3), 203-211. doi: 10.1016/j.tube.2007.10.004.
- Mathad, J.S., and Gupta, A. (2012). Tuberculosis in pregnant and postpartum women: epidemiology,
  management, and research gaps. *Clin Infect Dis* 55(11), 1532-1549. doi: 10.1093/cid/cis732.
- Mor, G., and Cardenas, I. (2010). The immune system in pregnancy: a unique complexity. *Am J Reprod Immunol* 63(6), 425-433. doi: 10.1111/j.1600-0897.2010.00836.x.
- 461 Nandi, B., and Behar, S.M. (2011). Regulation of neutrophils by interferon-gamma limits lung
  462 inflammation during tuberculosis infection. *J Exp Med* 208(11), 2251-2262. doi:
  463 10.1084/jem.20110919.
- 464 O'Garra, A., Redford, P.S., McNab, F.W., Bloom, C.I., Wilkinson, R.J., and Berry, M.P. (2013). The
  465 immune response in tuberculosis. *Annu Rev Immunol* 31, 475-527. doi: 10.1146/annurev466 immunol-032712-095939.
- Pai, M., Riley, L.W., and Colford, J.M., Jr. (2004). Interferon-gamma assays in the immunodiagnosis
  of tuberculosis: a systematic review. *Lancet Infect Dis* 4(12), 761-776. doi: 10.1016/S14733099(04)01206-X.
- Sacks, G.P., Studena, K., Sargent, K., and Redman, C.W. (1998). Normal pregnancy and
  preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those
  of sepsis. *Am J Obstet Gynecol* 179(1), 80-86. doi: 10.1016/s0002-9378(98)70254-6.
- Shen, H., and Chen, Z.W. (2018). The crucial roles of Th17-related cytokines/signal pathways in M.
  tuberculosis infection. *Cell Mol Immunol* 15(3), 216-225. doi: 10.1038/cmi.2017.128.
- Tadokera, R., Meintjes, G., Skolimowska, K.H., Wilkinson, K.A., Matthews, K., Seldon, R., et al.
  (2011). Hypercytokinaemia accompanies HIV-tuberculosis immune reconstitution
- 477 inflammatory syndrome. *Eur Respir J* 37(5), 1248-1259. doi: 10.1183/09031936.00091010.
  478 Tufariello, J.M., Chan, J., and Flynn, J.L. (2003). Latent tuberculosis: mechanisms of host and
  479 bacillus that contribute to persistent infection. *Lancet Infect Dis* 3(9), 578-590. doi:
  - 10.1016/s1473-3099(03)00741-2.

- Ververs, M.T., Antierens, A., Sackl, A., Staderini, N., and Captier, V. (2013). Which anthropometric
  indicators identify a pregnant woman as acutely malnourished and predict adverse birth
  outcomes in the humanitarian context? *PLoS Curr* 5. doi:
- 484 10.1371/currents.dis.54a8b618c1bc031ea140e3f2934599c8.
- 485 Vynnycky, E., and Fine, P.E. (2000). Lifetime risks, incubation period, and serial interval of
  486 tuberculosis. *Am J Epidemiol* 152(3), 247-263. doi: 10.1093/aje/152.3.247.
- Zenner, D., Kruijshaar, M.E., Andrews, N., and Abubakar, I. (2012). Risk of tuberculosis in
   pregnancy: a national, primary care-based cohort and self-controlled case series study. *Am J Respir Crit Care Med* 185(7), 779-784. doi: 10.1164/rccm.201106-1083OC.

| 490<br>491<br>492<br>493<br>494<br>495 | <ul> <li>Zhang, G., Zhou, B., Li, S., Yue, J., Yang, H., Wen, Y., et al. (2014). Allele-specific induction of IL-<br/>1beta expression by C/EBPbeta and PU.1 contributes to increased tuberculosis susceptibility.<br/><i>PLoS Pathog</i> 10(10), e1004426. doi: 10.1371/journal.ppat.1004426.</li> <li>Zhang, X., Majlessi, L., Deriaud, E., Leclerc, C., and Lo-Man, R. (2009). Coactivation of Syk kinase<br/>and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of<br/>neutrophils. <i>Immunity</i> 31(5), 761-771. doi: 10.1016/j.immuni.2009.09.016.</li> </ul> |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 496                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 497                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 498                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 499                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 500                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 501                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 502                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 503                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 504                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 505                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 506                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 507                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 508                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 509                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 510                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 511                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 512                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 513                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|                              | Overall    | LTBI+      | LTBI-      | P-<br>value |
|------------------------------|------------|------------|------------|-------------|
|                              | (N=220)    | (N=155)    | (N=65)     | vulue       |
| Age median (IQR)             | 23 (21-27) | 23 (21-27) | 24 (21-27) | 0.51        |
| Monthly Income               |            |            |            |             |
| ≤ Rs. 10,255                 | 75 (34)    | 51 (33)    | 24 (38)    | 0.54        |
| > Rs. 10,255                 | 143 (66)   | 103 (67)   | 40 (62)    |             |
| Education                    |            |            |            |             |
| None to primary              | 54 (25)    | 40 (26)    | 14 (22)    |             |
| Middle school to high school | 139 (63)   | 101 (65)   | 38 (58)    | 0.09        |
| Post-high school             | 27 (12)    | 14 (9)     | 13 (20)    |             |
| Mid-upper arm circumference  |            |            |            |             |
| < 23 cm                      | 62 (28)    | 48 (31)    | 14 (21)    |             |
| 23 – 30.5 cm                 | 143 (65)   | 97 (63)    | 46 (71)    | 0.37        |
| >30.5 cm                     | 15 (7)     | 10 (6)     | 5 (8)      |             |
| Smoking status               |            |            |            |             |
| Yes                          | 26 (12)    | 20 (13)    | 6 (9)      | 0.50        |
| No                           | 194 (88)   | 135 (87)   | 59 (91)    |             |
| Preeclampsia                 |            |            |            |             |
| Yes                          | 25 (11)    | 18 (12)    | 7 (11)     | 0.99        |
| No                           | 195 (89)   | 137 (88)   | 58 (89)    |             |
| Gestational Diabetes status  |            |            |            |             |
| Yes                          | 21 (10)    | 11 (7)     | 10 (16)    | 0.08        |
| No                           | 195 (90)   | 141 (93)   | 54 (84)    |             |
| HIV                          |            |            |            |             |
| Yes                          | 70 (32)    | 31 (20)    | 39 (60)    | < 0.001     |
| No                           | 150 (68)   | 124 (80)   | 26 (40)    |             |

**Table 1. Characteristics of the study population (N = 220)** 

515 Legend: Data are presented as number (%) of subjects unless otherwise stated. P-values were

516 calculated using Fisher's exact test for categorical variables and Wilcoxon rank-sum for

517 continuous variables to determine the difference between LTBI+ and LTBI- pregnant women.

#### 525 Figure 1: Levels of third trimester inflammation by LTBI status (N=220)

526 Legend: A) Median and interquartile range (IQR) Log<sub>2</sub> levels of markers, measured in the 3<sup>rd</sup>

527 trimester is shown for LTBI+ (n=155) and LTBI- (n=65) pregnant women. Wilcoxon rank-sum test

528 was used to calculate p-values. \*p < 0.05, \*\*p < 0.01 and \*\*\*p < 0.001. B) Relative fold-change is

shown for each marker by LTBI status. Red bars indicate p-value < 0.05.

530

#### 531 Figure 2: Association of LTBI status with third trimester inflammation (N=220)

532 **Legend**: Using linear regression, the mean change in Log<sub>2</sub> concentrations of each inflammation

533 marker and 95% confidence intervals (95% CI) among LTBI+ individuals compared to LTBI-

individuals is shown in the forest plot. Inflammation markers were measured in samples collected at

the third trimester of pregnancy. Multivariate models adjusted for age, mid-upper arm circumference,

536 HIV status, diet and gestational diabetes status. Only immune markers with a p-value <0.2 in the

537 univariate model are shown.

538

#### 539 Figure 3: Association of LTBI status with second trimester inflammation (N=187)

540 Legend: Using linear regression, the mean change in Log<sub>2</sub> concentrations of each inflammation

541 marker and 95% confidence intervals (95% CI) among LTBI+ individuals compared to LTBI-

542 individuals is shown in the forest plot. Inflammation markers were measured in samples collected at

- 543 the second trimester of pregnancy. Multivariate models adjusted for age, mid-upper arm
- 544 circumference, HIV status, diet and gestational diabetes status. Only immune markers with a p-value

545 <0.2 in the univariate model are shown.

546

This is a provisional file, not the final typeset article

547 Figure 4: Association of third trimester inflammation markers with TB progression (N=155; 9
548 progressors)

Legend: Using logistic regression, the odds ratio and 95% confidence intervals (95% CI) of TB progression per log<sub>2</sub> increase in each inflammation marker among LTBI+ pregnant women is shown in the forest plot. Progressors were defined as those who developed TB either during the third trimester of pregnancy (n=1) or up to one year post-partum (n=8). Inflammation markers were measured in samples collected at the third trimester of pregnancy. Multivariable models adjusted for age, mid-upper arm circumference and HIV status. Only immune markers with a p-value <0.2 in the univariate model are shown.



## Supplementary Material

## **1** Supplementary Figure Title and Legends

Supplementary Figure 1: Levels of second trimester inflammation by LTBI status (N=187)

Legend: A) Median and interquartile range (IQR) Log<sub>2</sub> levels of markers, measured in the 2<sup>nd</sup> trimester is shown for LTBI+ (n=124) and LTBI- (n=58) pregnant women. Wilcoxon rank-sum test was used to calculate p-values. \*p < 0.05, \*\*p < 0.01 and \*\*\*p < 0.001. B) Relative fold-change is shown for each marker by LTBI status. Red bars indicate p-value < 0.05.

# Supplementary Figure 2: Levels of Inflammation by LTBI status in HIV- women in 3<sup>rd</sup> trimester (N=139)

**Legend**: A) Median and interquartile range (IQR) Log<sub>2</sub> levels of markers, measured in the 3<sup>rd</sup> trimester is shown for HIV- pregnant women with (n=124) and without (n=58) LTBI. Wilcoxon rank-sum test was used to calculate p-values. \*p < 0.05, \*\*p < 0.01 and \*\*\*p < 0.001. B) Relative fold-change is shown for each marker by LTBI status. Red bars indicate p-value < 0.05.



| biomarker | model                      | Mean ch        | ange (95% CI) |       |                                                  | p-value          |
|-----------|----------------------------|----------------|---------------|-------|--------------------------------------------------|------------------|
| AGP       | univariate<br>multivariate |                | ↓<br>↓        |       | -0.20 (-0.42 to 0.02)<br>-0.29 (-0.54 to -0.04)  | 0.08<br>0.02     |
| I-FABP    | univariate<br>multivariate |                |               |       | -0.41 (-0.78 to -0.04)<br>-0.25 (-0.67 to 0.15)  | 0.03<br>0.22     |
| IL-1β     | univariate<br>multivariate |                |               |       | -1.03 (-1.53 to -0.54)<br>-1.15 (-1.70 to -0.60) | <0.001<br><0.001 |
| sCD163    | univariate<br>multivariate | • •            |               |       | -0.18 (-0.39 to 0.03)<br>-0.28 (-0.51 to -0.05)  | 0.10<br>0.02     |
| TNF       | univariate<br>multivariate |                |               |       | -0.19 (-0.49 to 0.10)<br>-0.24 (-0.57 to 0.10)   | 0.20<br>0.17     |
| IL-6      | univariate<br>multivariate |                |               |       | -1.36 (-1.93 to -0.80)<br>-1.22 (-1.87 to -0.58) | <0.001<br><0.001 |
| IL-17a    | univariate<br>multivariate | ⊢ <b>∢</b> −   | 4             |       | -0.34 (-0.50 to -0.17)<br>-0.39 (-0.57 to -0.21) | <0.001<br><0.001 |
|           | -                          | 2 -1.5 -1 -0.5 | i ı<br>0 0.5  | 1 1.5 | 2                                                |                  |



