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Con�rmed cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have surpassed 110 million, along with 2.5
million deaths by 2019 coronavirus disease (COVID-19) (1). New waves of the pandemics in di�erent Northern and Southern
Hemisphere countries provide evidence that herd immunity might not have been fully achieved and that new variants could
escape the response to natural infection (2,3).

Although there is evidence of the generation of B and T memory cells to SARS-CoV-2 proteins after infection (4,5), it has also
been documented that neutralizing seroconversion is heterogeneous among the population (6). Even for those who
seroconvert, the sustainability of the immune response, as judged by IgG level, might decay after the primary exposure to
coronaviruses (7–9). Cases of reinfection by SARS-CoV-2 can be associated with the absence of neutralizing serologic titers,
diminishment of immunoglobulin titers after primo-infection, or viral polymorphisms to escape the host SARS-CoV-2 immune
response (10–16).

To better understand the dynamics of the immune and virological responses in mild cases of COVID-19 that might predispose
patients to reinfection, we continuously followed up with patients for potential exposure to SARS-CoV-2. For 2 patients,
reinfection was documented. The National Review Board of Brazil approved the study protocol (Comissão Nacional de Ética
em Pesquisa [CONEP] 30650420.4.1001.0008), and informed consent was obtained from all participants or patients’
representatives.

Materials and Methods

Ethics and Study Population

During March–December 2020, the COVID-19 research task force screened a group of 30 participants weekly, independent of
any symptoms, for SARS-CoV-2 detection by RT-PCR in nasopharyngeal swab specimens. If any of these participants exhibited
positive results, or members of their households experienced signs or symptoms of COVID-19, they were invited to
participate in the study and follow-up. At baseline and follow-up, we collected plasma, serum, and nasopharyngeal swab
samples biweekly or at longer intervals if the patient was unavailable (Table). Households were included upon their request to
be tested for SARS-CoV-2. Among the participants, 4 exhibited >1 episode of mild self-limiting COVID-19 with positive RT-PCR.
For comparison, we included age-matched controls from the same group of participants and city in which the patients lived,
Rio de Janeiro, Brazil. Controls were composed of 5 persons negative for SARS-CoV-2 throughout the investigated period.

Measurement of Serum SARS-CoV-2 Antibodies and Plasma Cytokine Levels

For quantitative analysis of SARS-CoV-2 spike protein IgM, IgA, and IgG antibodies, we performed the S-UFRJ test developed at
Universidade Federal do Rio de Janeiro (R.G.F. Alvim et al., unpub. data, https://doi.org/10.1101/2020.07.13.20152884 )
(Appendix).

We collected plasma samples in tubes containing EDTA. We used commercial ELISA kits from R&D Systems (
https://www.rndsystems.com ) to measure cytokines and chemokine (Appendix).

Molecular Diagnosis

To determine serum titers to block SARS-CoV-2 infection, we performed miniaturized plaque-reduction neutralization test
(PRNT) (Appendix). SARS-CoV-2 RNA has been detected in accordance with the US Centers for Disease Control and Prevention
(CDC) recommendation (17). We used the standard curve method for virus quanti�cation, using synthetic RNA for gene N
(Microbiologics, https://www.microbiologics.com ). We compared cycle thresholds (C ) for the target gene to those obtained
with di�erent cell amounts (10 –10 ), for reaction calibration (Appendix).

Genomic Analysis

Abstract
The dynamics underlying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection remain poorly
understood. We identi�ed a small cluster of patients in Brazil who experienced 2 episodes of coronavirus disease (COVID-
19) in March and late May 2020. In the �rst episode, patients manifested an enhanced innate response compared with
healthy persons, but neutralizing humoral immunity was not fully achieved. The second episode was associated with
di�erent SARS-CoV-2 strains, higher viral loads, and clinical symptoms. Our �nding that persons with mild COVID-19 may
have controlled SARS-CoV-2 replication without developing detectable humoral immunity suggests that reinfection is
more frequent than supposed, but this hypothesis is not well documented.
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Genomic Analysis
We extracted total viral RNA from nasopharyngeal swabs using QIAamp Viral RNA (QIAGEN, https://www.qiagen.com ), with
minor modi�cations (18) (Appendix). We performed an amplicon-based enrichment strategy using the ATOPlex SARS-CoV-2
Full-Length Genome Panel version 1.0 (MGI Tech Co., https://en.mgi-tech.com ; donated by the vendor). Single-stranded
circular DNA library pools were converted to DNA nanoballs by rolling circle ampli�cation and submitted to pair-end
sequencing (100 nt) on the MGISEQ-2000 platform (recently named DNBSEQ-G400; MGI Tech Co. Ltd.).

We quality-scored, �ltered, trimmed, and assembled genomic sequences in contigs through a validated work�ow for SARS-
CoV-2 (19). Genomes were aligned with MAFFT (20) or ClustalW (21), and phylogenies were constructed with MEGA version 7.0
(22,23), using the Jukes-Cantor model for maximum-likelihood estimates by applying neighbor-joining and BioNJ algorithms
(24), or by MrBayes version 3.2.7 (http://nbisweden.github.io/MrBayes ) (25,26) with a relaxed clock model with a priori
model testing using the gamma rates and invariant sites nucleotide substitution model, selected by jModelTest version 1.6 
http://darwin.uvigo.es/software/jmodeltest.htm . We visualized and edited the tree with FigTree version 1.4.2 (
http://tree.bio.ed.ac.uk ). We determined SARS-CoV-2 clades using the Nextclade software, beta version 0.14 (
https://clades.nextstrain.org ). To categorize mutations and polymorphisms, we aligned the SARS-CoV-2 reference genome
Wuhan-Hu-1 (GISAID EPI ISL no. 402125; https://www.gisaid.org ) to our sequences. The original sequences used in this work
are publicly available on https://nextstrain.org/ncov : GISAID EPI ISL nos. 636737, 636834–636838. The dataset included in
the analysis contained representative sequences of the emerging clades associated with our sequences, 19A and 20B, as well
as sequences from the genome 20A as a negative control (Appendix Table 1).
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Results
Among the households of the COVID-19 research task force, a 54-year-old man (patient A) requested an RT-PCR test for SARS-
CoV-2 on March 23 because of a recurrent headache on the prior 2 days. He also had previous contact with a symptomatic co-
worker returning from travel who refused to be tested. Patient A had a detectable viral load (C  27.41) of ≈10  copies/mL in
nasopharyngeal swab samples (Table). Although patient B, a 57-year-old woman with a previous history of discoid lupus
erythematosus, was in self-isolation, she was tested because of close contact with patient A. She tested positive for COVID-19
on March 24; her nasopharyngeal swab sample C  was ≈36.31 (≈10  copies/mL) (Table). Two days afterward, she experienced
diarrhea (Table).

Patient B shares a household with patients C and D, a married couple, both 34 years old. Patients C and D were not in social
isolation because of their work duties. Although patient C was asymptomatic, he displayed a C  of 35.71 (10  copies/mL) on
March 25 (Table). Patient D was negative by molecular testing on March 26, but 1 week later, she had a detectable viral load
(C  36.01, 10  copies/mL) and reported diarrhea in the following days (Table). On March 27, all 4 patients experienced an
increase of in�ammatory mediators (interleukin [IL] 6, IL-8, and tumor necrosis factor α) and regulatory (IL-10) and
chemotactic (C-X-C motif chemokine ligand 10) and antiviral (interferon γ) signals, relative to healthy SARS-CoV-2–negative
controls (Figure 1). Although cytokine response was consistent with the resolution of the infection, the anti–SARS-CoV-2
neutralizing humoral response was not detected in late March 2020 (Table; Appendix Figure 2).

For patients B and C, we were able to obtain a full-length SARS-CoV-2 genome (Table). Complete genome sequencing, with
Phred quality score >30, composed of 140,000–20,000,000 reads and 100-fold to 10,000-fold coverage, argues against a false-
positive RT-PCR result (Appendix Table 2, �rst column). For patients A and D, the samples were insu�cient for sequencing. In
March 2020, patients B was infected with emerging SARS-CoV-2 clade 19A and patient C with SARS-CoV-2 clade 20B, (Table;
Figure 2; Appendix Figure 3). The detection of the 2 distinct lineages indicates that patients B and C were infected
independently and did not transmit the virus to each other (Table; Figure 2; Appendix Figure 3). These distinct lineages were
co-circulating in Brazil in March 2020 when multiple introductions of the SARS-CoV-2 occurred (27). Emerging clade 19A is

t
5

t
3

Figure 1. Heatmap showing the pro�le of innate immune response from patients who experienced 2 episodes of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection, Brazil, 2020. We measured the mediators of...
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Figure 2. Phylogenetic analysis of severe acute respiratory syndrome coronavirus 2 genomes from reinfected patients, Brazil, 2020. Representative genomes deposited in
GISAID (AppendixTable 1, Figure 3) were compared with sequences...
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associated with imported cases in Brazil, because of its proximity to the Wuhan-01 sequence (Figure 2; Appendix Figure 3).
Indeed, detection of clade 19A in the sample from Patient B is consistent with household transmission from patient A, and his
contact with the symptomatic traveler. Patient C, a police o�cer, was frequently exposed to various probable sources of
contamination; he was infected with an emerging clade 20B virus, the most prevalent variant in Brazil, during December 2020
(Figure 2, Appendix Figure 3). All patients recovered from a mild COVID-19 episode and were retested in the �rst half of April,
when they presented negative RT-PCR results.

In the last week of May 2020, when COVID-19 cases in Rio de Janeiro were at the peak of the �rst wave of the pandemic (28),
these 4 patients reported more signs and symptoms of SARS-CoV-2 infection than in March (Table). During the second
episode, they experienced fever and cough, along with fatigue, headache, body ache, anosmia, and ageusia. Real-time RT-PCR
revealed higher viral loads in the nasopharyngeal swab samples than at the time of the �rst infection: C  of 21.76 (≈10
copies/mL) for patient A, 21.84 (≈10  copies/mL) for patient B, 26.38 (≈10  copies/mL) for patient C, and 16.87 (≈10
copies/mL) for patient D (Table).

On June 3, a week after the second episode, we detected SARS-CoV-2 immunoglobulins in patients A and B, but they had low
to no neutralizing activity (Table; Appendix Figure 2). These serologic samples from June indicate that the �rst episode of
COVID-19 was not followed by a sustained neutralizing humoral response, as judged by 90% PRNT (PRNT ) titers (Table).
Because signals of a humoral e�ector memory were inconsistent after the �rst episode of COVID-19 (Table), we could
speculate that the enhanced production of interferons and proin�ammatory mediators led to resolution of the primo-
infection (Figure 1). During the second episode of COVID-19, most of the cytokine levels were still higher than in healthy
volunteers (Figure 1).

On July 9, forty days after the episode of reinfection, all patients had detectable immunoglobulin levels and their lowest
PRNT  results (Table; Appendix Figure 2), declining thereafter by August 10 (Table; Appendix Figure 2). In July, patients’ tests
continuously showed upregulated pro-in�ammatory markers (Figure 1), which are consistent with an enhanced response to a
second SARS-CoV-2 exposure. In August, the markers of in�ammation and regulatory responses, tumor necrosis factor α and
IL-10, decreased compared with levels from previous months (Figure 1).

In the second episode, we fully sequenced the SARS-CoV-2 genome from all patients (Table; Figure 2; Appendix Table 2,
Appendix Figure 3). SARS-CoV-2 sequences from the reinfection clustered together, suggesting a household transmission for
patients A–D (Figure 2; Appendix Figure 3). The emerging genotype 20B, which was the main variant circulating in Brazil since
May 2020, was detected in all samples from the second episode (Figure 2; Table; Appendix Figure 3). For patient B, the �rst
episode was associated with the emerging clade 19A and the second with 20B (Figure 2; Appendix Figure 3). Two episodes
provoked by genetically distinct lineages support the possibility of reinfection.

Although both episodes in patient C were associated with clade 20B, they clustered apart on the phylogeny with signi�cant
statistical support: by 86% of bootstrap using maximum likelihood (Figure 2) and by Bayesian inference (Appendix Figure 3).
Genetic markers in the SARS-CoV-2 genome were di�erent in the patient’s 2 episodes of COVID-19 (Appendix Table 2). The
genomes diverge at the genes encoding the nonstructural protein (NSP) 3, 3C-like proteinase, and exonuclease (Appendix
Table 2). In addition to the genetic variations, poor development of anti–SARS-CoV-2 serology between the 2 episodes of
infection points suggests a reinfection scenario.

Top

Discussion
Seasonal human coronaviruses may cause reinfection, as documented for the past 35 years (8,29). Of note, in veterinary
medicine, domestic mammals also have coronavirus reinfection (30). Adaptive, memory-generating immunity to
coronaviruses is heterogeneously sustainable in mammals, and some events of infection are controlled at the level of the
innate immunity (31–33). We fully documented reinfection in 2 genetically unrelated persons in Rio de Janeiro, Brazil,
describing patients who sought care twice in a 2-month interval who received clinical and laboratory diagnosis of COVID-19.
Virus polymorphisms from the primary and second episodes and negative RT-PCR between the events strengthen the
argument toward reinfection. Neutralizing anti–SARS-CoV-2 titers were not detected during the �rst episode, nor at the
baseline of the second episode, suggesting that patients were still vulnerable after the primary episode.

SARS-CoV-2 reinfection has been associated with new variants that overcome the immune response to natural infection,
short-lasting humoral response, and a limited or absent neutralizing immunity after the primo-infection (10–13). The patients
in Brazil described in this study are similar to cases in the United States and Ecuador (10,13), in which reinfection was
associated with more symptoms Antibody-dependent enhancement or exposure to higher amounts of the virus could be the
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associated with more symptoms. Antibody-dependent enhancement or exposure to higher amounts of the virus could be the

reason for the change from asymptomatic or oligosymptomatic to syndromic. In our study, primary and second infections
were caused by a strain carrying the D614G mutation in the spike protein, which has been associated with higher replication
e�ciency (34). We did not detect other contemporaneous changes in the spike protein, such as 69/70 deletion, K417N, E484K,
N501Y, P681H, or the 17 unique mutations of the P1 variant, which precluded association with more virulent strains (35).
Beyond the spike protein, we detected the V125F change in the NSP14 protein; V125F is a nonconservative mutation that
might increase the volume in the loop between β-sheets number 5 and 6, which could a�ect its methyltransferase activity
(36). The V125F mutation is unlikely to increase virulence in a second episode. On the other hand, changes in NSP6 protein
(37) and open reading frame 6 mRNA (S. Sarif Hassan et al., unpub. data, https://doi.org/10.1101/2020.11.06.372227 ) might
result in viral evasion from innate immunity.

The primary infections of patients B and C were associated with emerging clades 19A and 20B, indicating that the 2
cohabitants were infected independently. Indeed, while 1 patient was in social isolation, the others were working outside in
the community. The cocirculation of these clades of SARS-CoV-2 is consistent with the COVID-19 databases in GISAID and the
multiple introductions of the new coronavirus in Brazil (27). In the following months, emerging clade 20B was identi�ed as the
most prevalent genotype, representing 60% of the deposited genomes on GISAID. The detection of clade 20B on the second
episode of COVID-19, by the end of May, is associated with the peak of the pandemic in Rio de Janeiro, Brazil (28).

Distinct clades of SARS-CoV-2 were found in the primary and secondary respiratory samples from patient B, supporting the
notion of reinfection. For patient C, both the �rst and second detections of SARS-CoV-2 were associated with clade 20B.
Although viral persistence could be imagined in this scenario, SARS-CoV-2 genomic sequences from the �rst and second
episodes do not cluster together in the same branch, as they did for an immunocompromised patient that shed SARS-CoV-2
for 150 days (38). Thus, phylogeny does not support the interpretation of persistence, by di�erent methods. By branching
apart, SARS-CoV-2 genomes associated with patient C strengthen the chances of a relevant degree of variation (39), indicating
the direction of reinfection. In the documented case of SARS-CoV-2 and human coronavirus NL63 reinfection, di�erent
episodes were genetically associated with similar viral clades or strains (40). Whereas the detection of 2 episodes of SARS-
CoV-2 infection from patient C was separated by >60 days, prolonged virus shedding in the nasopharyngeal swab specimens
from mild cases lasted for 22–46 days (41), which is further evidence against persistence.

Results of SARS-CoV-2 reinfection a�rm that immune rechallenge may be necessary to achieve humoral protection and
underscore that sustainability of the immune response may be heterogeneous. We documented that these patients with mild
COVID-19 displayed an innate immune response composed of pro-in�ammatory and regulatory signals. Although cytokine
storm has been associated with severe COVID-19 (42), we interpret that in the case of our patients, the innate immune
response might have led to infection resolution (43). Another possibility, not explored in detail here, is that cellular-mediated
immunity could have contributed to the mild clinical outcome (2,4,44). The natural history of mild COVID-19 described for
these patients might also be representative of many persons exposed to the �rst wave of the pandemic, leading to the
hypothesis that they would also be susceptible to other episodes of SARS-CoV-2 infections, even without the challenge being
imposed by new variants.

We determined, on the basis of 6 years of surveillance and follow-up of human coronavirus reinfections, that initial exposure
was insu�cient to elicit a protective immune response, imposing limited pressure on selection on new seasonal coronavirus
variants (40). Similarly, our data on a small cluster of patients recapitulate this natural history of reinfection, which may also
occur for SARS-CoV-2.
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