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Abstract
Coronavirus disease 2019 (COVID-19) caused by severe 
acute respiratory syndrome-related coronavirus 2 (SARS-
CoV-2) has devastating effects on the population worldwide. 
Given this scenario, the extent of the impact of the disease 
on more vulnerable individuals, such as pregnant women, is 
of great concern. Although pregnancy may be a risk factor in 
respiratory virus infections, there are no considerable differ-
ences regarding COVID-19 severity observed between preg-
nant and nonpregnant women. In these circumstances, an 
emergent concern is the possibility of neurodevelopmental 
and neuropsychiatric harm for the offspring of infected 
mothers. Currently, there is no stronger evidence indicating 

vertical transmission of SARS-CoV-2; however, the exacer-
bated inflammatory response observed in the disease could 
lead to several impairments in the offspring’s brain. Further-
more, in the face of historical knowledge on possible long-
term consequences for the progeny’s brain after infection by 
viruses, we must consider that this might be another delete-
rious facet of COVID-19. In light of neuroimmune interac-
tions at the maternal-fetal interface, we review here the pos-
sible harmful outcomes to the offspring brains of mothers 
infected by SARS-CoV-2. © 2021 S. Karger AG, Basel

Introduction

The coronavirus family has been described in the mid-
1960s, affecting humans and animals. In 2002, the first 
case of a severe human respiratory infection (severe acute 
respiratory syndrome [SARS]) was reported in Foshan, 
China. New cases emerged from 2003 in Mainland China, 
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spreading to Hong Kong, Vietnam, and Canada, totaling 
8,096 reported cases, including 774 deaths in 27 countries 
[1–4].

A second event (of the disease) in humans occurred in 
2012 [5]. The coronavirus strike started this time in Sau-
di Arabia, expanding into several countries and causing 
what is now known as coronavirus Middle East respira-
tory syndrome (MERS-CoV). Until February 2019, 2,279 
confirmed cases of MERS-CoV were reported, including 
806 deaths [6].

Less than 10 years after the SARS epidemic, the world 
watches in disbelief the third strike of coronavirus caus-
ing a highly contagious viral pandemic pneumonia de-
nominated coronavirus disease 2019 (COVID-19). Simi-
lar to SARS in 2002, the first cases of COVID-19 that oc-
curred from a zoonotic transmission in China in 
December 2019 are linked to the wildlife and seafood 
trade. Spreading rapidly within China and quickly to oth-
er countries, COVID-19 reached 195 countries and in-
fected >100,200,107 people, causing >2,158,761 deaths by 
January 28, 2021 [7, 8].

The novel coronavirus denominated SARS-related 
coronavirus 2 (SARS-CoV-2), now officially known as the 
cause of COVID-19, carries RNA genomic sequences sim-
ilar to other coronaviruses, mainly related to SARS-CoV 
RNA [9]. However, the clinical symptoms related to both 
viruses are quite distinct. In the context of a severe case of 
COVID-19, a picture of multiple organ dysfunctions 
(MODS) has also been observed, and some authors would 
even suggest the change in typification from SARS to 
MODS [10]. Furthermore, mechanisms leading to MODS 
in COVID-19 seem to be related not only to the viral load 
that accumulates in several organs but also to the exacer-
bated inflammatory response (“cytokine storm”) triggered 
by SARS-CoV-2 infection [10]. Although there are many 
issues to be properly addressed, knowledge of the mecha-
nisms of infection, the clinical course of the disease, inflam-
matory markers, prognosis, disease complications, and 
mechanical ventilation strategy is rapidly growing [11, 12].

The broad extent of COVID-19 harm generated a ma-
jor concern about more vulnerable populations. Current-
ly, there is great interest in pregnant women COVID-19 
infection and the possible impairments on the health of 
their babies. Although studies on COVID-19 have rap-
idly advanced, the effects of SARS-CoV-2 on fetal devel-
opment remain unclear. Little is known about vertical 
transmission in COVID-19. Despite evidence indicating 
placental and fetal infection [13], this subject is under 
great discussion in the scientific community and is still 
controversial.

Pregnant women are especially susceptible to patho-
gens. The maternal-fetal interface barrier offers protec-
tion to the fetus, and when it fails, pathogens breach the 
innate maternal immune system and placental tropho-
blastic host defenses to infect the fetus by mechanisms not 
completely elucidated. Based on knowledge of other vi-
ruses, such as herpesviruses (varicella), Rubivirus (rubel-
la), flaviviruses (hepatitis C, dengue, Zika virus [ZIKV]), 
hepadnavirus (hepatitis B), lentivirus (HIV), and parvovi-
ruses, it is known that they are capable of circumventing 
placental defenses to cause detrimental and sometimes le-
thal effects on the fetus [14]. These effects include target 
organ damage (microcephaly, intracerebral calcifications, 
hepatosplenomegaly, chorioretinitis, microphthalmia, 
and deafness), fetal compromise (miscarriage, growth re-
striction, hemolytic anemia, and hydrops), and death [14]. 
All these information about other viruses rises in us a flag 
on the extent of SARS-CoV-2 damage to fetal develop-
ment. In the case of the SARS epidemic in 2002/2003, for 
instance, several reports showed that clinical outcomes 
were worse in pregnant women than in nonpregnant 
women; there was an increase in abortion rates and pre-
mature births associated with SARS-CoV infection [15].

Recent studies have described that infected pregnant 
women have inflammatory, thrombotic, and vascular 
changes, suggesting that the inflammatory nature of 
SARS-CoV-2 infection during pregnancy can cause ad-
verse obstetric and neonatal events [13]. Independently 
of a possible vertical transmission, the exacerbated mater-
nal immune response could trigger serious consequences 
for fetal development, mainly on neurodevelopment. 
This pandemic scenario is too recent for proper long-
term evaluation of its consequences in this special popu-
lation. However, in the face of historical evidence of vi-
ruses causing acute and long-term consequences to 
mother and progeny, we must consider the outstanding 
possibility that this might also be another deleterious fac-
et of COVID-19. In this context, we discussed possible 
harmful neurodevelopmental and neuropsychiatric out-
comes in the offspring of mothers infected by SARS-
CoV-2 in light of neuroimmune interactions at the ma-
ternal-fetal interface.

Neuroimmunological Aspects of SARS-CoV-2 
Infection

In patients with COVID-19, the general clinical mani-
festations observed are respiratory failure, lymphopenia, 
monocyte and macrophage infiltration in lung lesions, 
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hypercoagulability, thrombosis, and multiple organ fail-
ure (in severe cases). Moreover, all symptoms are accom-
panied by an inflammatory cascade, making evident a vi-
ral infection-related inflammation and its characteristic 
“cytokine storm,” which, in severe cases, plays a crucial 
role in the clinical manifestations [16, 17]. The uncon-
trolled inflammation that seems to affect the lungs could 
also affect other systems, including the nervous system 
[10, 18]. Accordingly, clinical studies revealed that the 
brainstem respiratory center is the main target of SARS-
CoV-2 in the central nervous system (CNS), leading to 
dysfunction and consequent acute respiratory distress in 
individuals with COVID-19 [19]. The “cytokine storm” 
observed mainly in individuals with severe COVID-19 is 
marked by the uncontrolled production and release of in-
flammatory cytokines and chemokines (e.g., interleukins 
[IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18, IL-33], 
tumor necrosis factor alpha, interferons [IFN-α, IFN-γ], 
granulocyte and macrophage colony-stimulating factor 
[CSF], macrophage inflammatory protein 1 alpha, plate-
let-derived growth factor, monocyte chemoattractant 
protein 1]) by activated macrophages, neutrophils, mono-
cytes, lymphocytes, natural killer (NK) cells, and dendrit-
ic cells (DCs) [11, 20–26].

Systemically, after SARS-CoV-2 infection, an initial 
innate immune response takes place, leading to activation 
and differentiation of T cells by the adaptive immune sys-
tem. This, in turn, plays an important antiviral role in an 
effort to balance the response of the immune system 
against the pathogen and the exacerbation of inflamma-
tion [27]. Accordingly, CD4+ T cells lead to the produc-
tion of specific antibodies against the virus by B lympho-
cytes, while CD8+ T cells are cytotoxic and can kill virus-
infected cells. In addition, pro-inflammatory cytokine 
and chemokine production is important for the recruit-
ment of lymphocytes, monocytes, and neutrophils to the 
site of infection, causing an amplification of the inflam-
matory response [16].

The main mechanism described for SARS-CoV-2 en-
try into human host cells (including CNS cells) is a recep-
tor-mediated mechanism. Indeed, several studies suggest 
that the SARS-CoV-2 spike glycoprotein binds to its cell 
receptor angiotensin-converting enzyme 2 (ACE2) in the 
host cell membrane along with transmembrane serine 
protease 2, which is responsible for the priming of viral S 
glycoprotein, facilitating its entrance into the cell and 
promoting moderate replication with a continuous re-
lease of virions from infected cells [28]. The ACE2 and 
transmembrane serine protease 2 receptors are expressed 
in the olfactory mucosa and neurons in humans and glial 

cells in mice. The expression of both receptors is increased 
in the murine model with age, fueling a discussion wheth-
er the elderly may be at greater risk due to the accumula-
tion of SARS-CoV-2 in these cells [29, 30]. In this context, 
CNS invasion mechanisms are not fully elucidated, al-
though some potential routes have already been de-
scribed. For instance, viremia may result in viral trans-
cytosis through the blood-brain barrier (BBB) endothe-
lial cells or epithelial cells in the choroid plexus 
surrounding the cerebral ventricles. In addition, SARS-
CoV-2 could enter via the olfactory nerve and other pe-
ripheral nerves, such as trigeminal fibers and/or the vagus 
nerve, which innervate different parts of the respiratory 
tract, including the larynx, trachea, and lungs [31–33].

Once in the CNS, SARS-CoV-2 could trigger a local 
inflammatory cascade stimulating the release of inflam-
matory mediators by local cells. In addition, it is impor-
tant to note that the exacerbated systemic release of cyto-
kines and chemokines may increase blood-brain barrier 
permeability and promote the activation of neuroinflam-
matory cascades, facilitating leukocyte migration to the 
CNS and SARS-CoV-2 invasion [34, 35]. The dysregu-
lated cytokine release in the CNS also promotes neuronal 
hyperexcitability via activation of glutamate receptors 
and leads to an acute form of seizures, for example [36, 
37]. It has been suggested that the exacerbated immune 
system response in COVID-19 can lead to inflammatory 
lesions and edema in the brain [38].

Moreover, neurological clinical signs such as loss of 
smell and taste [39–43], headache [20, 44, 45], seizures 
[46], strokes [47], and meningitis/encephalitis [48] have 
also been reported in patients with COVID-19. There is 
already a growing body of evidence showing patients pre-
senting both neurological and psychiatric (e.g., anxiety 
and depression) outcomes after infection [26, 49]. Fur-
thermore, the role of neuroinflammation in several psy-
chiatric disturbances is well established in the literature 
and could well be the main cause of such impairments 
observed in COVID-19 [26]. Nevertheless, more studies 
are necessary to strengthen this relationship in CO-
VID-19.

Pregnancy and SARS-CoV-2 Infection

Physiological Immune-Endocrine Changes at the 
Maternal-Fetal Interface
The mother’s body needs to adapt in order to support 

the growth and development of the hemiallogeneic fetus. 
The maternal-fetus interface is formed of a mucous mem-
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brane originated from differentiated endometrial cells, or 
decidua, at the beginning of pregnancy involving the fe-
tus, umbilical cord, and placenta. This interface promotes 
tolerance and local defense against infections and patho-
gens [50–54]. Immune responses at the maternal-fetal in-
terface need to support reception, establishment, and 
growth since the implantation of blastocyst until birth 
[55]. Fetal trophoblastic and maternal decidual immune 
cells interact at the maternal-fetal interface, allowing the 
embryo to develop in the uterus [56].

The postimplantation tissue is rich in immune cells 
such as leukocytes, macrophages, DCs, and T cells [57, 
58]. For this reason, it was initially believed that the blas-
tocyst triggers a maternal immune response destined for 
its rejection. The fetal placental unit expresses proteins of 
paternal origin, and for this reason, it was believed that for 
pregnancy to occur, the maternal immune system should 
be constantly suppressed. However, immune infiltrates 
are required to facilitate proper implantation, to maintain 
tolerance, and to promote a successful pregnancy [55].

The proportion of decidual immune cells vary accord-
ing to the cell type and the trimester of pregnancy. NK 
cells represent approximately 70–80% of leukocytes at the 
maternal-fetal interface, macrophages are 20–25%, DCs 
are 1.7%, and T cells 3–10% [57, 58]. NK cells and mac-
rophages are especially high in the first trimester of preg-
nancy and decrease in the second and third trimesters. 
On the other hand, T cells are few in the first trimester 
and increase in the third trimester. These changes, in pro-
portions, are related to the functions they perform [54].

Decidual NK (dNK) cells are the most abundant leu-
kocytes in the first trimester and play important roles in 
early pregnancy events. dNK cells regulate the invasion of 
fetal trophoblast cells in the decidua [59, 60] and arterial 
remodeling [61–63]. They accumulate around maternal 
uterine spiral arteries (SAs) before trophoblast invasion, 
favoring the remodeling of the SAs needed to support fe-
tal growth [64]. dNK cells produce cytokines such as tu-
mor necrosis factor alpha, IL-10, IL-1β, IL-6, IL-8, TGF-β, 
IFN-γ, macrophage-CSF, and granulocyte-macrophage 
CSF. dNK cells also produce angiogenic growth factors 
such as vascular endothelial growth factor-C, placental 
growth factor, angiopoietin-1, and proteases such as ma-
trix metalloproteases [65–70].

Macrophages are the second most abundant popula-
tion of leukocytes in the early period of pregnancy, per-
forming a variety of essential functions [71]. They are  
related to the remodeling of blood vessels [63, 72, 73], 
trophoblast invasion [74–76], tolerance [76, 77], immu-
nomodulation of maternal lymphocytes, and parturition 

initiation through the production of pro-inflammatory 
cytokines and prostaglandin E2 [76, 78–80]. Macro-
phages have an M1 profile during the peri-implantation 
period, changing to an M1/M2 profile when the tropho-
blasts invade the uterine stroma and fixate on the endo-
metrium, allowing the placental-fetal blood supply to be 
adequate during the first trimester and the beginning of 
the second trimester [81]. Then, the deciduous macro-
phages change to a predominantly M2 polarity that will 
prevent rejection of the fetus and allow it to develop until 
delivery. This tolerance to the fetus occurs especially by 
the production of IL-10 [71, 77, 82, 83], prostaglandin E2 
[71, 84], enzymatic activity of indoleamine 2,3-dioxygen-
ase [71, 77], and TGF-β [71] by macrophages.

Although present in a much lower concentration than 
macrophages in decidua, DCs are also involved in main-
taining tolerance to the fetus. DCs are found in the pla-
cental bed in both their mature and immature forms; 
however, the number of immature cells is much higher 
[85]. They undergo partial inactivation and decrease in 
size in the third trimester [86]. This immature state has 
the main function of maintaining immunological toler-
ance [87]. Immature DCs (DC-SIGN + iDC) can induce 
Treg cells during pregnancy, reinforcing their role in in-
ducing tolerance against fetal antigens [88].

The functions of T cells during pregnancy are still not 
fully understood. In the first trimester, trophoblast cells 
produce the chemokine CKCL16 that interacts with the 
CXCR6 receptor of T cells, attracting circulating T cells 
to decidua, forming a specific microenvironment [89]. 
Thus, deciduous T cells, in addition to regulating the pla-
cental microenvironment, recognize fetal antigens, with-
out attacking them [54]. This recognition occurs through 
the interaction with antigen-presenting cells in the de-
cidua, promoting tolerance to the fetus during pregnancy 
[90]. T cells that are suppressed during pregnancy in-
crease next to labor; they infiltrate the maternal-fetal in-
terface before and during delivery [91]. The decidual T 
cells have activation markers and mediators implicated in 
both term and preterm labor, indicating that these cells 
participate in this process [92].

In short, pregnancy is a pro-inflammatory environ-
ment during the first trimester, enabling implantation 
and placentation, then shifts to an anti-inflammatory 
stage, allowing fetal growth during the second trimester 
and finally shifts back to a pro-inflammatory stage that 
promotes labor and delivery during the third trimester 
[55]. From these perspectives, physiological changes and 
possible alterations at the maternal-fetal interface con-
cerning SARS-CoV-2 infection will be further discussed.
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The Neuroimmune Changes Caused by SARS-CoV-2 
in Pregnant Women
Immune mediators such as cytokines, chemokines, 

and neurotrophins actively participate in the develop-
ment of the CNS by regulating neuronal and glial cell mi-
gration, differentiation, survival, synaptogenesis, synap-
tic maturation, plasticity, and programmed cell death 
[93–98]. Changes or interruptions in these pathways can 
not only affect neurodevelopment but also impair cogni-
tive and intellectual abilities after birth. In addition, it has 
been widely demonstrated that disturbances in these 
pathways can increase the risk of psychiatric disorders 
[98–100].

In early periods of development, microglia are the 
main source of cytokines in the CNS. Microglial cells are 
macrophage-like cells responsible for the innate immune 
response in the CNS [101–103]. They respond to patho-
gens, infections, or cell damage [104]. Of hematopoietic 
origin, they colonize neural structures at embryonic ages 
in the late first trimester in humans [105–108]. Microglia 
enter the parenchyma via the bloodstream and migrate 
throughout the CNS, becoming self-renewing [103, 108–
110]. Thus, the activation of microglia can alter the profile 
of immune mediators produced in the CNS and therefore 
impact neurodevelopment [93, 94, 108].

The particularities of pregnancy make pregnant wom-
en a risk group for infections such as those caused by vi-
ruses [111]. Notably, interference in the inflammatory 
state can have consequences for the mother and the de-
veloping fetus [55]. Hormone levels and the immune re-
sponse show variations during pregnancy; for example, 
early pregnancy seems to be more susceptible to adaptive 
changes in response to fetal antigens, but the mother’s 
endocrine and immune response tends to become more 
balanced and stable in the final stages of pregnancy. The 
crucial period of fetal organ development is early preg-
nancy, and the immune system is off balance at this stage. 
For this reason, fetal organ development is particularly 
sensitive to infections in this period [112].

The current COVID-19 pandemic is still recent, and 
cases of COVID-19 during pregnancy have been report-
ed. Despite the small amount of information available, it 
is already clear that infection by SARS-CoV-2 induced a 
relevant disturbance in the immune response of pregnant 
women.

Viruses and bacteria can use toll-like receptors and 
NOD-like receptors expressed by immune cells. Maternal 
infections, such as sepsis, can cause damage to the fetus 
CNS by mechanisms that involve the activation of mi-
croglia. To fight a current infection, the pregnant woman 

immunological mechanisms increase the secretion of 
pro-inflammatory cytokines capable of crossing the pla-
cental barrier. These cytokines induce activation of the 
fetal microglia, dysregulating the production of cytokines 
in the fetus. In fact, inflammatory cytokines such as IL-6, 
IL-17, and IL-1β are elevated in CNS after birth in ani-
mals exposed to prenatal infection. This mechanism 
could be linked to psychiatric disorders in the offspring 
[113].

Severe COVID-19 patients show signs of viral sepsis. 
Neutrophils and neutrophil-derived extracellular traps 
(NETs) are critical for sepsis pathogenesis [114–116]. Ve-
ras et al. [117] demonstrated that patients with severe 
COVID-19 have increased levels of NETs in the plasma 
and tracheal aspirate. NETs were equally found in the 
lung tissue from autopsies of COVID-19 victims. SARS-
CoV-2 also induces the in vitro release of NETs by acti-
vating arginine deiminase 4 (PAD-4) in healthy neutro-
phils. In this way, the number of circulating neutrophils 
could be used as a marker of severity for patients with 
COVID-19 [117, 118]. It is conceivable that a similar 
mechanism could be operating in pregnant women with 
COVID-19.

Fever and cough were the most common symptoms 
reported in the literature [119–126], but lymphopenia 
and increased levels of C-reactive protein were also fre-
quent [119–123, 125, 127–131]. Other laboratory find-
ings showed increased concentrations of alanine amino-
transferase and aspartate aminotransferase (AST) [120], 
increased neutrophil count, and no differences in IL-6 
levels [128]. Most pregnant women infected with SARS-
CoV-2 developed mild to moderate COVID-19 pneumo-
nia [120–122, 128, 130]. Severe pneumonia occurs rarely 
and is related to neonatal death [119].

Abortions can be caused by different mechanisms; 
among them, infections are the most reported [132]. 
SARS-CoV-2 infection is related to acute inflammation 
of the placenta. Baud et al. [133] described a case of an 
obese 28-year-old pregnant woman in Switzerland. The 
patient had high fever (102.5°F [39.2°C]), myalgia, fa-
tigue, mild pain when swallowing, diarrhea, and dry 
cough but no pneumonia. The stillborn infant tested neg-
ative for SARS-CoV-2, and fetal autopsy showed no mal-
formations. However, the placenta was positive for SARS-
CoV-2. Placental histology showed infiltrates of neutro-
phils and monocytes, in addition to funisitis (inflammation 
of the umbilical cord connective tissue, which indicates 
an inflammatory response in the fetus) [133]. Another 
reported case was that of a previously healthy 35-year-old 
woman also presenting fever and classical symptoms of 
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COVID-19. SARS-CoV-2 infection was confirmed by 
laboratory tests. Histological examination of the placenta 
showed inflammatory infiltrates with macrophages and T 
lymphocytes, in addition to the presence of diffuse peri-
villous fibrin. SARS-CoV-2 was located in syncytiotro-
phoblast cells [134].

A study conducted at the Johns Hopkins Hospital 
(JHH) showed that pregnant women infected with SARS-
CoV-2 have high concentrations of IL-1β, but not IL-6, in 
blood samples. This pattern was similar to that found on 
the fetal side of the placenta, especially in asymptomatic 
pregnant women. In addition to placental infection, preg-
nant women with SARS-CoV-2 infection showed re-
duced viral antibody response with reduced anti-S-recep-
tor-binding domain IgG and less neutralizing antibody 
detectable. The transfer of maternal nAb via placenta was 
also inhibited by SARS-CoV-2 infection. Notwithstand-
ing this, long-term implications of placental inflamma-
tion in postnatal life need to be investigated [135]. Be-
sides, placental histopathology has already been associ-
ated with neurodevelopmental disabilities such as autism 
spectrum disorders (ASDs) and attention-deficit/hyper-
activity disorder (ADHD) [136, 137].

Preterm births have been reported in pregnant women 
infected with SARS-CoV-2 [120, 121, 130, 138, 139]. Vi-
ruses are capable of changing the trophoblast cell re-
sponse to commensal bacteria from the microbiota pres-
ent on the mother-fetus interface. Under normal condi-
tions, these cells secrete IFN-β, which influences 
receptivity to the fetus and can prevent vertical transmis-
sion of virus [140]. Viral infections decrease the levels of 
IFN-β from trophoblastic cells, changing the inflamma-
tory profile of the mother-fetus interface. As a conse-
quence, viruses impair fetal receptivity and increase the 
chance of preterm birth [141]. The onset of labor includes 
cytokines and chemokines secretion from immune cells 
that infiltrate and reside at the maternal-fetal interface 
[142]. Thus, the potential activation of inflammatory 
pathways by SARS-CoV-2 may result in preterm birth.

Several studies reported that COVID-19 symptoms 
can be intensified after labor. A study conducted with 8 
pregnant patients, 6 laboratory-confirmed SARS-CoV-2 
infections and 2 highly suspected SARS-CoV-2 infection 
cases, and 5 pregnant cases excluding SARS-CoV-2 infec-
tion admitted to the Maternal and Child Health Hospital 
of Hubei Province, Wuhan, China. The patients with 
SARS-CoV-2 were all in the third trimester, and their 
ages ranged from 26 to 35 years. Before labor, 87.5% of 
the patients had no fever or cough. Three of the 7 patients 
developed fever and typical ground-glass opacities in the 

lungs at 1 or 2 days postpartum. Only 1 patient had fever 
and typical ground-glass opacities on prepartum admis-
sion. White blood cell counts, lymphocytes, and C-reac-
tive protein of all patients were normal or slightly higher 
before labor. On the other hand, they had increased white 
blood cell counts and C-reactive protein levels, and lym-
phopenia occurred in 62.5% of the pregnant women after 
labor [143].

The effects of SARS-CoV-2 on pregnancy are still un-
clear. Studies suggest that pregnant women are generally 
in a risk group for infectious diseases (including CO-
VID-19) due to immunological and hormonal changes at 
this period [144, 145]. In fact, patients with COVID-19 
present activation of both Th1 and Th2 axis, resulting in 
increased levels of IFN-γ and IL-1β, in addition to IL-4 
and IL-10 [11]. This feature can favor the immune re-
sponse to SARS-CoV-2 in pregnant women, which may 
result in a lower severity when compared to nonpregnant 
individuals [120].

SARS-CoV-2 Infection-Related Neuroimmune-
Endocrine Alterations over Pregnancy
Maternal infections by viruses have been extensively 

reported to lead to several neuropsychiatric outcomes 
(e.g., psychosis, depression, anxiety, schizophrenia spec-
trum disorders, cognitive deficits, and sensory-motor 
deficits) [146]. Furthermore, abnormal levels of inflam-
matory mediators [147, 148] and steroid hormones [149] 
after prenatal infections can lead to disruption in fetal 
development. In addition, it was recently proposed that 
the increased levels of cytokines observed in COVID-19 
may lead to dysfunctions in the negative feedback be-
tween hypothalamic-pituitary-adrenal (HPA) axis (hy-
peractivity or hypoactivity) and immune system, which 
could be behind mental health disturbances found in CO-
VID-19 patients [26]. Since acute infections can poten-
tially activate the HPA axis, SARS-CoV-2 infection-relat-
ed hormonal changes are expected to modulate the ma-
ternal-fetal interface as well as producing long-term 
neuronal effects.

In light of a neuroendocrine-immune concept, the pla-
centa is far more than an organ for protection and nutri-
tion connecting mother and fetus [150, 151]. The moth-
er’s placenta displays a substantial complexity acting as a 
neuroendocrine organ, capable of secreting neuroactive 
signaling factors (e.g., oxytocin, melatonin, serotonin, 
and thyrotropin-releasing hormone), steroid hormones 
(e.g., progesterone, estrogens, and glucocorticoids), 
growth hormones, and others. These signaling factors can 
act through autocrine, paracrine, and endocrine path-
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ways, which could reach the maternal and fetal circula-
tion, promoting fundamental regulatory functions [150, 
151]. During pregnancy, neuroendocrine-immune inter-
actions become even more complex. The maternal, fetal, 
and placental HPA axes (an important regulatory mecha-
nism of excessive production of inflammatory mediators 
through the release of glucocorticoids [e.g., cortisol]) 
work in an integrated manner to avoid any adverse effects 
of stressors on both mother and offspring [151].

In the course of pregnancy, the levels of maternal glu-
cocorticoids and progesterone increase and are essential 
for pregnancy maintenance, as low levels of progesterone 
have been associated with preterm labor [152] and spon-
taneous miscarriage [153]. It is noteworthy that proges-
terone can also shift the cytokine balance of immune re-
sponses toward an anti-inflammatory profile and may in-
duce the expansion of regulatory T cells (CD4+ and CD8+) 
at the maternal-fetal interface [154, 155]. There is evi-
dence that H1N1 influenza virus infection in pregnant 
mice disrupts the production of progesterone and placen-
tal architecture (increased regions of fetal endothelial cell 
death, degradation of the spongiotrophoblast layer, and 
fibrinoid necrosis in the maternal decidual layer) and 
dysregulates inflammatory responses, promoting pre-
term labor, impairment of fetal growth, and increased fe-
tal mortality [156]. In this context, it seems reasonable to 
presume that SARS-CoV-2 infection in pregnant women 
may also lead to disruptions of progesterone production, 
which in turn could generate major complications for fe-
tal development and health.

As progesterone, balanced levels of glucocorticoids 
during pregnancy are essential for suitable fetal brain de-
velopment. As cited above, the infection by SARS-CoV-2 
has been proposed to unbalance HPA axis activity [26], 
which raises concern about the pregnant women popula-
tion. To protect the fetus from excessive exposure to these 
hormones throughout gestation, a mechanism such as the 
fetoplacental expression of the glucocorticoid-inactivat-
ing enzyme 11β-hydroxysteroid dehydrogenase type 2 
(an enzyme that metabolizes bioactive cortisol into bio-
inactive cortisone) is elicited [149]. Under some circum-
stances, as high fetus exposure to glucocorticoids evoked 
by stressors (e.g., maternal infections and/or excessive ex-
posure to inflammatory mediators), this regulatory 
mechanism can be disrupted; potentially triggering a 
mechanism termed fetal or developmental “program-
ming” [149, 157, 158]. Early life programming increases 
the fetus susceptibility to diseases including neuroendo-
crine and psychiatric disorders in adulthood [159] and 
influences adult behavior and HPA axis responses [157]. 

In this respect, we can propose, and it will not be surpris-
ing, that SARS-CoV-2 may damage fetal brain develop-
ment and lead to neuropsychiatric disturbances in child-
hood or adulthood by fetal “programming” triggered by 
excessive exposure to maternal glucocorticoids.

Of note, since cross talk between inflammatory media-
tors and steroid hormones in the placenta is crucial for 
proper fetal brain development [160], we hypothesize 
that the exacerbated inflammatory response triggered by 
SARS-CoV-2 infection could also disrupt such interac-
tions and impair the offspring’s neurodevelopment. Cor-
respondingly, maternal inflammation is thought to result 
in elevated pro-inflammatory cytokines that can cross the 
placental barrier and access placental cells via maternal 
blood in the SAs and intervillous spaces, influencing the 
fetal brain development [160]. Studies have shown that 
maternal immune activation (MIA) induced sustained al-
terations in motility patterns of fetal microglia, which 
may contribute to subsequent risks for cognitive diseases 
[161]. Moreover, it has been demonstrated that MIA may 
lead to an increase in Th17 cells in maternal serum, which 
can be associated with ASD-related cortical and behav-
ioral abnormalities in the offspring [113]. Notwithstand-
ing this, MIA can lead to a disruption in immune toler-
ance, blood circulation, and cytoarchitecture of the pla-
centa [160] and may alter the expression of genes that 
encode important fetal endocrine and growth factors, 
which are associated with schizophrenia and ASD [162].

Overall, although it can be possible all remodeling at 
the maternal-fetal interface (immune and hormonal 
changes) during pregnancy may be slightly protecting the 
offspring brain development against severe COVID-19 
outcomes [163, 164], there is a large body of evidence, as 
discussed here, that support various conceivable ways by 
which SARS-CoV-2 infection could impair these protec-
tive maternal mechanisms (Fig.  1). However, further 
studies are needed to better understand how such mecha-
nisms could be impaired by the SARS-CoV-2 infection.

Neuroimmune Disorders Associated with Maternal 
Infections

Immune and endocrine activation during pregnancy, 
as well as infections and stress, may influence fetal neu-
rodevelopment and increase the risk of neurological and 
psychiatric diseases during postnatal life [165–176]. 
Stress conditions, such as anxiety and depression, are as-
sociated with a number of psychiatric disorders, such as 
ASD [177–179], depressive symptoms [180], anxiety, 
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borderline personality disorder, eating disorders [181], 
ADHD [179, 182–184], and schizophrenia [185], which 
arise later in life.

SARS-CoV-2 infection is very recent; it is not yet pos-
sible to assess whether and what neurological conse-
quences may occur in children born from mothers who 
had COVID-19. However, based on its clinical manifesta-
tions and making a parallel with other infections already 
described in the literature, attention is drawn to the risks 
represented by COVID-19 from a neurological point of 
view.

Fever was one of the most reported symptoms among 
both pregnant and nonpregnant patients infected with 
SARS-CoV-2. Fever during pregnancy can have different 
outcomes, depending on the cause (pneumonia, virus, 

bacterial infections, malaria, genitourinary tract infec-
tions, etc.), temperature elevation, its duration, and the 
gestational period [186, 187]. Elevated body temperature 
of the pregnant woman can lead to events that compro-
mise the development of the fetus such as vascular disrup-
tions and placental infarction [187, 188]. Maternal fever 
during pregnancy has been associated with problems in 
fetal development as neural tube defects, congenital heart 
defects, oral clefts, growth retardation, abortions, and fetal 
death [186, 187, 189, 190]. The CNS is one of the most af-
fected, leading to behavioral and cognitive problems that 
can develop during postnatal life [187] as an increased risk 
for development of ADHD [191] and autism [192–194].

Lymphopenia is frequently observed in COVID-19 
patients. In fact, the lymphocyte count, as well as the neu-

Fig. 1. Hypothetical neuroimmune-endo-
crine mechanisms by which SARS-CoV-2 
infection may lead to damages in fetal brain 
development. Under normal conditions, the 
maternal, fetal, and placental HPA axes 
work in an integrated manner to avoid dam-
ages to fetal neurodevelopment. During 
pregnancy, the levels of placental 11β-HSD2 
(glucocorticoid-inactivating enzyme) rise 
throughout gestation, ensuring proper fetus 
exposure to glucocorticoids. Steroid hor-
mones (e.g., progesterone) also increase 
during gestation progress, shifting the cyto-
kine balance toward an anti-inflammatory 
profile at the maternal-fetal interface. Dur-
ing a viral infection (e.g., SARS-CoV-2 in-
fection), such regulatory mechanisms could 
be impaired. In these circumstances, SARS-
CoV-2 (1) may lead to a disruption in the 
suitable regulation of the HPA axis; (2) glu-
cocorticoids controlling mechanisms, as 
placental 11β-HSD2 expression, may be dis-
rupted and rise fetal exposure to these hor-
mones, which could lead to neuropsychiat-
ric disturbances in childhood or adulthood; 
(3) a dysregulation of progesterone produc-
tion by the placenta can contribute to an un-
balanced inflammatory environment for the 
fetus; and (4) the exacerbated maternal in-
flammation may break proper immune-en-
docrine interactions and impair the off-
spring’s neurodevelopment (e.g., ASD-re-
lated cortical and behavioral abnormalities). 
SARS-CoV-2, severe acute respiratory syn-
drome-related coronavirus 2; HPA, hypo-
thalamic-pituitary-adrenal; CRH, cortico-
trophin-releasing hormone; 11β-HSD2, 
11β-hydroxysteroid dehydrogenase type 2; 
ASD, autism spectrum disorders.
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trophil count, has been associated with the severity of 
COVID-19 [118, 195, 196]. Some hypotheses have been 
raised to explain lymphopenia. (1) The death of lympho-
cytes could be a result of direct infection by SARS-CoV-2. 
(2) The drop in the number of lymphocytes could be a 
result of the damage caused by SARS-CoV-2 to organs 
such as the thymus and spleen. (3) The death of lympho-
cytes could be caused by the cytokine storm characteristic 
of some viral infections [197]. The latter has been widely 
reported in the literature [198–202] and can influence the 
fetal development in many ways as well as induce clinical 
manifestations that will only appear in postnatal life [55]. 
Neuropsychiatric and neurodevelopmental disturbances 
can be associated with MIA and have been widely report-
ed in the literature, such as schizophrenia spectrum dis-
orders, ASD, and ADHD (Table 1) [113, 173–175, 203–
209].

Pregnant women with COVID-19 have elevated levels 
of CRP. CRP is used as a biomarker of systemic inflam-
mation, even during pregnancy [210, 211]. Elevated CRP 
levels in the mid-term of pregnancy are correlated with 
late gestational complications [212], increased risk for 
preeclampsia [213], and increased risk of neonatal sepsis 
[214]. In addition to complications related to pregnancy 
itself, high levels of CRP can influence brain development 
[215] and are also related to psychiatric disorders such as 
schizophrenia [216, 217], autism [206], and bipolar dis-
order [218].

Another aspect that must be considered is the psycho-
logical stress caused by the COVID-19 pandemic in preg-
nant women. In addition to being more susceptible to in-
fections, pregnant women during the pandemic have 
been commonly deprived of regular prenatal consulta-
tions. Social isolation, fear, insecurity, and lack of prena-
tal care contribute to maternal mortality and can interfere 
with fetal development [219]. An example of this is the 
increased risk of developing preeclampsia in women who 
experience depression or anxiety during pregnancy [220–
222]. Vasoactive substances, hormones, and other neuro-
endocrine mediators have their excretion altered during 
depression, contributing to the increase in blood pres-
sure, which, in turn, increases the risk of preeclampsia 
[221, 223].

The literature has shown that SARS-CoV-2 has a cor-
relation with hypertensive complications, such as pre-
eclampsia [119, 126, 224–229]. Hosier et al. [126] demon-
strated a case report in which a patient already had a his-
tory of gestational hypertension and had her condition 
aggravated after SARS-CoV-2 infection. The patient was 
in the second gestational trimester and, until then, had no 

indication of gestational hypertension. After infection, 
her clinical and laboratory tests showed hypertension, 
proteinuria, elevated transaminases, and low platelet 
counts, indicating a diagnosis of severe preeclampsia. The 
examination of the placenta showed inflammation, with 
inflammatory infiltrates composed of macrophages and 
T lymphocytes, in addition to the virus in the syncytio-
trophoblast cells, which suggests that COVID-19 is re-
lated to placental inflammation, which may favor the ap-
pearance of preeclampsia [126]. Other evidence shows 
that SARS-CoV-2 promotes lesions in the placenta that 
increase decidual arteriopathy and maternal vascular 
malperfusion, findings that are compatible with hyper-
tensive disorders and preeclampsia [230]. It is worth 
mentioning that preeclampsia is mostly observed in the 
severe forms of COVID-19 [226] and pregnant women 
who have a history of hypertensive disorders of pregnan-
cy [126, 231, 232].

To date, most evidence indicate that vertical transmis-
sion of SARS-CoV-2 from mother to fetus does not occur 
[120, 233, 234]. Only 2 reports indicate that vertical trans-
mission could occur [235, 236]. However, even if there is 
no vertical transmission, this does not exclude dangers 
for fetal development. The maternal immune system, al-
though naturally altered due to the peculiarities of preg-
nancy, has mechanisms to fight pathogens. Some adap-
tive immune responses are downregulated during preg-
nancy as decreased numbers of T and B cells. On the 
other hand, NK cells and monocytes respond strongly to 
viral challenges, producing inflammatory mediators 
[237]. Thus, even if the virus is not able to cross the pla-
centa and reach the fetus, several complications can occur 
because of the maternal inflammatory response to the vi-
rus. Cytokines and hormones of maternal origin can free-
ly cross the placenta, a phenomenon called “vertical 
transfer” [99].

Thus, it can be said that the impact that the infection 
will have on fetal development will depend on a set of fac-
tors, such as the trimester of pregnancy and the location 
of the pathogen (whether they are present in the mater-
nal-fetal interface or only in maternal tissues) in addition 
to the maternal-placental immune response [55]. Based 
on the data available in the literature, COVID-19 in preg-
nant women presents itself mostly in mild forms, with 
most fetuses born alive. Thus, since mothers are subjected 
to an exaggerated inflammatory response, attention is 
drawn to possible consequences for neurodevelopment as 
well as neural and psychiatric diseases that may arise in 
postnatal life (Fig. 2).
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The Risk of Fetal and Neonatal SARS-CoV-2 Infection

The clinical manifestations of COVID-19 in pregnant 
women appear to remain the same as in nonpregnant pa-
tients. It is of great importance whether the new corona-
virus can be transmitted vertically from the pregnant 
woman to the fetus. The youngest baby tested positive for 
SARS-CoV-2 was 36 h old [235].

In the SARS-CoV pandemic that occurred in 2002–
2003, from 12 pregnant women infected, 3 died, 4 miscar-
ried in the first trimester, and 4 gave birth prematurely 
[112]. In the MERS-CoV infection, from 11 women in-
fected, 3 died in the second trimester of pregnancy, 6 pa-
tients required hospitalization in the intensive care unit, 
and only 2 neonates died [238].

Although the question of SARS-CoV-2 transplacental 
infection (vertical transmission) has not been conclusive-
ly answered, reports of neonatal infection with COVID 
19 shortly after delivery suggest transplacental migration 
or horizontal transmission by direct contact with the sur-

face at birth or during breastfeeding as the mode of viral 
migration [239]. Transplacental migration is different 
from the direct or “mechanical” transfer of viruses, as 
they can occur in prenatal procedures such as amniocen-
tesis, premature birth, and hemorrhage [240].

Clinical evidence of transplacental viral migration re-
quires the isolation of viral nucleic acids in fetal or pla-
cental tissues in the sterile intrauterine environment and/
or in the newborn as well as the adequate exclusion of 
horizontal transmission, such as direct or mechanical 
transfer of virions or contamination through the genital 
tract fluids during vaginal delivery. It is necessary that the 
diagnostic tests include an adequate range of biological 
samples from the mother and the newborn, such as am-
niotic fluid, umbilical cord blood, vaginal secretions, pla-
centa, and neonatal nasopharyngeal swabs. PCR is the 
method of choice to isolate SARS-CoV-2 nucleic acids 
[241].

Maternal SARS-CoV-2 infection in the first and sec-
ond trimesters of pregnancy increases the risk of early 

Fig. 2. Major pathways for neurodevelop-
mental and neuropsychiatric outcomes in 
the offspring of mothers infected by SARS-
CoV-2. SARS-CoV-2 infection during 
pregnancy could lead to devastating out-
comes in the offspring’s brain, and in this 
case, there are 2 major pathways that can be 
responsible for affecting brain health and 
its proper development. a First, the virus 
could supposedly cross placental tissues 
(vertical transmission) and reach the fetus’ 
brain, leading to harmful effects. b Second, 
despite the SARS-CoV-2 vertical transmis-
sion possibility, the virus can trigger an ex-
acerbated inflammatory response in the in-
fected pregnant mother (upper panel). The 
inflammatory mediators produced by the 
mother can effectively cross all placental 
barriers and the fetus’ BBB, which can trig-
ger neurodevelopmental and/or neuropsy-
chiatric damages in the offspring (e.g., neu-
roanatomical changes, cognitive impair-
ments, schizophrenia spectrum disorders, 
ASD, and ADHD manifestations) (bottom 
panel). SARS-CoV-2, severe acute respira-
tory syndrome-related coronavirus 2; BBB, 
blood-brain barrier; ASD, autism spectrum 
disorders; ADHD, attention-deficit/hyper-
activity disorder.
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miscarriage, fetal death in utero, and growth retarda-
tion. A study published in 2004 during the SARS epi-
demic found a higher rate of miscarriage, premature de-
livery, and stunting but no evidence for vertical trans-
mission of SARS-CoV-1 [112]. In addition, abnormally 
high mortality was not observed in pregnant women in-
fected with SARS-CoV-2 compared to what had been 
observed during the epidemics of SARS-CoV-1 and 
MERS-CoV [242]. For the moment, no fetopathy has 
been described in fetuses or neonates whose mothers 
had COVID-19 [243].

During primary infections, virus circulation in the 
bloodstream, even for a short time, is an essential factor 
for its transplacental transport and maternal-fetal trans-
mission through viral tropism toward the placenta [243]. 
Indeed, such a mechanism could be applied for the pos-
sible vertical transmission of SARS-CoV-2. The possible 
placental crossing by SARS-CoV-2 is similar to other 
pathogens, and the route for vertical transmission could 
occur by 5 typical pathways: (1) the maternal endothe-
lial microvasculature to endovascular extravillous tro-
phoblasts; (2) spreading through infected maternal im-

mune cells; (3) transcytosis of virions via immune-me-
diated receptors; (4) transvaginal ascending infection; 
and (5) release of inflammatory mediators leading to in-
creased permeability of placental barriers (Fig. 3) [244, 
245].

Studies with placentas delivered from mothers with 
COVID-19 evaluated the presence of SARS-CoV-2 for 
RT-PCR but found no evidence for the virus. Histopath-
ological analysis performed in 3 placentas also did not 
reveal tissue alterations [139, 235, 246–248]. To confirm 
vertical transmission, it has been proposed that detection 
of the virus by PCR in umbilical cord blood, neonatal 
blood collected within the first 12 h of birth, or amniotic 
fluid collected prior to rupture of membranes is needed 
[241, 249]. It is important to note that ACE2, the recep-
tor for SARS-CoV-2, is present only at very low levels in 
the human placenta during the first trimester of preg-
nancy [250], while there are no data on the expression of 
this receptor in second and third trimester placentas 
[243].

Apparently, vertical transmission of SARS-CoV-2 is 
not frequent, although it cannot be, yet, completely dis-

Fig. 3. Possible pathways for SARS-CoV-2 vertical transmission at 
the maternal-fetal interface. Similar to other pathogens, SARS-
CoV-2 infection during pregnancy could reach the placenta and 
impair the fetal development through different pathways. This 
schematic picture shows the fetus inside the intrauterine cavity 
(left panel), along with a magnification of the maternal-fetal inter-
face with its main components such as placenta, decidua, spiral 
artery, fetal blood vessels, trophoblast cells (e.g., cytotrophoblast 
and syncytiotrophoblast), immune cells (e.g., NK cells and macro-
phages), and migrating microglia (middle panel). There are some 

possible pathways for SARS-CoV-2 vertical transmission crossing 
the maternal-fetal interface and were indicated by the numbers 
throughout the picture (dashed red square) and in the right panel: 
(1) through maternal endothelial microvasculature to endovascu-
lar extravillous trophoblasts; (2) spread through infected maternal 
immune cells; (3) transcytosis of virions via immune-mediated re-
ceptors; (4) transvaginal ascending infection; and (5) release of in-
flammatory mediators, leading to increased permeability of pla-
cental barriers. SARS-CoV-2, severe acute respiratory syndrome-
related coronavirus 2; NK, natural killer.
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missed. Reports of neonatal infection with COVID-19 
shortly after delivery suggest either transplacental migra-
tion or horizontal transmission through contact with ma-
ternal mucosa at delivery or during breastfeeding as the 
mode of viral migration [14, 239].

Another possibility for the virus to cross the placental 
barrier is to be carried by an infected blood cell. However, 
SARS-CoV-2, if able to enter into peripheral blood mono-
nuclear cells, does not seem to replicate in these cells, such 
as SARS-CoV [243, 251]. Additionally, the resident mac-
rophages of the lymph nodes express the ACE2 receptor, 
and in terminally ill patients, the virus is found in these 
cells but not in T or B lymphocytes [235, 252]. SARS-
CoV-1, which also uses the ACE2 receptor, is also found 
in alveolar macrophages [253]. Although no replication 
or transport of infectious viruses by macrophage mono-
cytes has been demonstrated, lymph node and spleen 
macrophages can harbor the virus [243].

Maternal-Fetal Interface and the Harmful Effects of 
SARS-CoV-2 Infection on the Fetus
Viruses replicate in various cell types within the ma-

ternal-fetal interface. In the case of ZIKV, evidence of vi-
ral replication was identified in proliferating villus and 
Hofbauer cells (fetal macrophages) in the villous core 
[254]. Additionally, the ability of ZIKV to be transmitted 
sexually allows it to bypass the trophoblast layer via as-
cending infection of the amniochorionic membrane 
[255].

Findings reported by Jain et al. [256] have described 
2 neonates born from SARS-CoV-2-positive women 
with diverse manifestations. They observed that neither 
infant was positive for SARS-CoV-2 infection by RT-
PCR [256]. These findings are similar to a previous study 
that demonstrated that out of 33 neonates born from 
women with SARS-CoV-2 infection, only 3 were found 
to be positive by RT-PCR at varied time periods after 
birth [257]. In another study case, 7 neonates born from 
SARS-CoV-2-infected women were found to be nega-
tive with diverse manifestations, including premature 
birth, fetal distress, and neonatal respiratory distress 
syndrome [258, 259].

A study by Egloff and colleagues [243] reported that 
patients were infected in late pregnancy and give birth a 
few days after infection. Regarding time, the mean gesta-
tional age was 37 weeks and 1 day, and the range was 
30–40 weeks and 2 days. Of 81 (69%) newborns who were 
tested for SARS-CoV-2, 5 (6%) had a positive result [236, 
260]. Tests were performed more frequently with naso-
pharyngeal swabs in 46 neonates (57%), followed by 16 

breast milk (20%) and throat swabs in 10 neonates (12%) 
[261]. The tests were repeated; of 79 neonates, 49 (62%) 
were subjected to a new test, and all neonates except 1 
subsequently tested negative for SARS-CoV-2 [261]. Pre-
mature birth, defined as a gestational age of <37 weeks, 
was observed in 24 (20%) newborns. In 47 neonates 
whose information on birth weight was disclosed, 42 
(89%) had adequate weight for their gestational age 
(AGA). Three (7%) newborns were underweight for the 
gestational age (SGA), and 2 (4%) newborns were over-
weight for their gestational age (SGA). In another study, 
9 neonates (5%) had respiratory dissipation or shortness 
of breath, depending on the complications. There has 
been 1% neonatal death [138]. A study carried out by 
Thomas et al. in 2020 observed that the newborn’s moth-
er had complications such as vaginal bleeding in the third 
trimester and a positive test for SARS-CoV-2 three days 
after cesarean delivery, when she first presented with 
symptoms of COVID-19 (fever). In the study, the new-
born who died had a negative result for SARS-CoV-2 
[261].

Walker et al. [249] stated that COVID-19 disease 
should not be an indication for cesarean delivery, differ-
entiated feeding, or isolation of the mother’s baby. C-sec-
tions should continue to be performed for normal obstet-
ric indications. Mothers who breastfeed and stay with 
their babies should continue to observe COVID-19 hy-
giene precautions. There are many evidence supporting 
isolation between newborn and mother, in detriment of 
the beneficial contact of them [249].

Conclusion

Pregnancy may be a risk factor for respiratory virus 
infections. For example, during the H1N1 epidemic in 
2009, it was observed that pregnant women had a higher 
risk of complications, as they were 4 times more likely to 
be hospitalized than the rest of the population [262]. 
Pneumonia is one of the most prevalent non-obstetric in-
fections in pregnant women, being one of the most com-
mon causes of maternal death. It also requires ventilatory 
support in 25% of cases [263–265]. During pregnancy, 
morbidity and mortality from viral pneumonia are more 
serious than bacterial pneumonia, frequently causing 
premature rupture of membranes, stillbirth, intrauterine 
growth restriction, and premature birth [263].

So far, this does not seem to be the case for the current 
SARS-CoV-2 pandemic. In contrast, there is no evidence 
showing significant differences in the pathophysiology or 
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severity of the disease between pregnant and nonpreg-
nant women. In fact, pregnant women generally showed 
mild to moderate degrees of infection, with most babies 
being born alive. This scenario calls attention to possible 
neurological consequences that can arise to babies who 
have been subject to an exacerbated maternal immune 
response to fight the virus.

The placenta is a physical and immunological defense 
against fetal infection. Maternal NK cells, deciduous mac-
rophages, and T cells surround the placenta. Immune 
cells are vital in the remodeling and implantation of the 
placenta; deficiencies are associated with spontaneous 
abortion and other adverse pregnancy outcomes [266]. 
Although evidence shows that vertical transmission does 
not occur, infection by SARS-CoV-2 disturbs the mater-
nal-fetal interface, changing immune cells signaling pres-
ent there. This in turn leads to an increase in inflamma-
tory cytokines that cross the placenta and can influence 
the neurodevelopment of the fetus. Therefore, it is impor-
tant to evaluate and monitor these babies to assess wheth-
er COVID may induce neurological sequelae or psychiat-
ric disease in the future.
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