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a b s t r a c t

Extracellular vesicles (EVs) are double-membrane particles associated with intercellular communication.
Since the discovery of EV production in the fungus Cryptococcus neoformans, the importance of EV release
in its physiology and pathogenicity has been investigated. To date, few studies have investigated the pro-
teomic content of EVs frommultiple fungal species. Our main objective was to use an orthology approach
to compare proteins identified by EV shotgun proteomics in 8 pathogenic and 1 nonpathogenic species.
Using protein information from the UniProt and FungiDB databases, we integrated data for 11,433 hits in
fungal EVs with an orthology perspective, resulting in 3,834 different orthologous groups. OG6_100083
(Hsp70 Pfam domain) was the unique orthologous group that was identified for all fungal species.
Proteins with this protein domain are associated with the stress response, survival and morphological
changes in different fungal species. Although no pathogenic orthologous group was found, we identified
5 orthologous groups exclusive to S. cerevisiae. Using the criteria of at least 7 pathogenic fungi to define a
cluster, we detected the 4 unique pathogenic orthologous groups. Taken together, our data suggest that
Hsp70-related proteins might play a key role in fungal EVs, regardless of the pathogenic status. Using an
orthology approach, we identified at least 4 protein domains that could be novel therapeutic targets
against pathogenic fungi. Our results were compiled in the herein described ExVe database, which is pub-
licly available at http://exve.icc.fiocruz.br.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Eukaryotic and prokaryotic organisms release small bilayer
extracellular vesicles (EVs) ranging from 20 to 5,000 nm under
distinct biological or environmental conditions [1–3]. In eukary-
otes, EVs is a generical term referring to bilayered membrane
structures that are released by many cell types. EVs are classified
into exosomes, microvesicles, and apoptotic bodies based on
size, cargo and biogenesis pathways [4]. Exosomes are small
structures in the 30 to 100 nm diameter range generated from
the release of luminal vesicles in late endosomes after fusion
with the plasma membrane [1,5]. Microvesicles range from
100 nm to 1000 nm in size, and they are formed by budding
off the plasma membrane [5,6]. Apoptotic bodies are the largest
vesicle structures (1 mm to 5 mm) [1], observed only in cells that
undergo apoptosis [1,5].

The functions of EVs are consistently associated with cellular
communication. EVs are known to transport several molecules to
distant organs or tissues [4,7]. In fungi Rodrigues et al. (2007)
described that EV plays a role in fungal trans-cell wall transport
[8]. Monguió-Tortajada and colleagues (2017) identified an
immunomodulatory potential of EVs derived from umbilical cord
mesenchymal stem cells [9]. Cancer cells also produce EVs, which
are related to tumor development and progression [10], invasion
[11], angiogenesis [12] and metastasis [13]. In pathogens, EVs are
the vehicles of exportation of several antigens [14–16].
Pathogen-derived EVs also participate in the host-pathogen inter-
action [8,14,17], since they concentrate virulence factors [4,18–
22]. The role of EVs as vehicles of virulence factors for many taxa,
including fungi, protozoa and bacteria, has been comprehensively
reviewed by Campos and colleagues [7].
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The seminal discovery of EV production in the fungal pathogen
Cryptococcus neoformans unraveled a mechanism of secretion in
fungal cells that was extended to other fungi [4,8]. For instance,
Ikeda and colleagues (2018) associated Sporothrix brasiliensis EVs
with host environmental adaptation and increased fungal
pathogenicity. Sporothrix EVs contained heat shock proteins, major
facilitator superfamily transporters, and other enzymes that could
increase fungal virulence [23]. Candida albicans EVs were described
as playing a role in biofilm drug resistance. Additionally, iRNA
sequences in C. albicans EVs have the potential to modulate gene
expression in host cells [24,25]. In Cryptococcus EVs contain several
molecules associated with virulence and survival in the host envi-
ronment, including laccase, glucosylceramides and urease [26].
Several other examples of the biological functions of fungal EVs
are available in the current literature, as recently reviewed by
Rizzo and colleagues [17].

The molecular composition investigation of fungal EVs is the
first step towards the comprehension of their functional role in
pathogenic and nonpathogenic species. Among others, the descrip-
tion of EV proteins is currently the focus of several research groups.
These studies can benefit from the new proteomic technologies
and facilitated EV isolation methods [27–29]. An accurate method
of EV isolation associated to an efficient proteomic shotgun
approach may contribute to the identification of EV-associated
proteins in a large number of pathogenic and nonpathogenic fungal
species [4,8,20,30].

The integration of publicly available datasets is a trend in mod-
ern science to accelerate novel findings. Due to the large amount of
data, databases focused on gathering and organizing this informa-
tion may contribute to data sharing and encourage other studies
[18,31,32]. ExoCarta [33], Vesiclepedia [34], and EVpedia [35] are
the databases currently available to investigate EV proteomics data
of several species. These databases may assist researchers in data
mining of published data and additional analysis of their own data-
sets [18,33–35]. However, there is no publicly available database
regarding EV data of fungal species [35].

To integrate gene and protein data of distinct fungal species,
orthology databases have been created [36,37]. Orthology analysis
may contribute to understanding the biological function of differ-
ent proteins and biological pathways under many conditions and
even to comprehending the evolutionary history of a group or spe-
cies [31,37]. To date, there is no publicly available database to inte-
grate proteomics data from pathogenic fungal EVs. Here, we
present ExVe, a publicly available database that integrates EV pro-
teomic data from nine fungal species focusing on orthology, which
can be freely accessed at http://exve.icc.fiocruz.br.
2. Material and methods

2.1. Fungal EV proteomics data

To build ExVe, first we selected articles with a full description of
EV isolation and proteomics methods. From these articles, we used
the list of identified proteins by shotgun proteomics experiments
available in previously published fungal EV research articles
(Fig. 1). We retrieved data from the following eight fungal species
with clinical or medical relevance for humans: Aspergillus fumiga-
tus, Candida albicans, Cryptococcus deuterogattii, Cryptococcus neo-
formans, Histoplasma capsulatum, Paracoccidioides brasiliensis,
Sporothrix brasiliensis, and Sporothrix schenckii. Additionally, we
included Saccharomyces cerevisiae as representative of a non-
pathogenic fungus (Table 1).

The aim of ExVe is to offer authors in the field an alternative to
access qualitative fungal EV shotgun proteomics identification
with focus on orthology. As ExVe relies on third-party analysis,
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we highlight that each article applied its own statistical threshold,
including false positive rates. Proteins with any peptide detected in
such experiments are listed as present in EVs from fungal species.
We created a computer program written in Perl to retrieve all
required data and gather all the information in a single file. First,
we retrieved UniProt accession numbers for all proteins based on
gene symbols, protein name descriptions and species (Fig. 1)
[32]. Thereafter, we used each UniProt accession number to obtain
a unique protein name and biological function (protein_descrip-
tion) from UniProt TREMBL and SWISSPROT databases. For protein
names, we retrieved the name recommended by the UniProt con-
sortium (‘‘RecName”), and in its absence, the first submitted name
(‘‘SubName”) for that protein accession was chosen [32].

2.2. Protein orthologous groups

The protein orthologous groups for each protein in our database
were retrieved by the OrthoMCL algorithm available from the Fun-
giDB database, release 48 [46] (Fig. 1). We downloaded the web
data from all fungal species available at FungiDB [46] to retrieve
the orthologous group available to all fungal EV proteins using a
dictionary based on UniProt accession number or using the gene
symbol associated with a species. Associated with the orthologous
group information, we retrieved the most frequent Pfam domain
for functional annotation of the group.

2.3. ExVe integrated data

In ExVe, users can visualize information about proteins identi-
fied in EVs as follows: gene name, protein accession number, pro-
tein name, protein description, species, strain, PubMed number,
and orthologous group (Table 2). Information about proteins that
could not be recovered was named ‘‘not available”, and it is avail-
able in the downloadable ExVe flat file.

2.4. Enrichment analysis

The enrichment analysis of groups of species that shared at least
50 orthologous groups (Fig. 2) was performed using Gene Ontology
annotations Fig. 2. Briefly, we retrieved the orthologous groups
shared by each group of species and recovered the genes associated
with these orthologous groups for a selected representative spe-
cies. We chose A. fumigatus as the reference fungus due to its pres-
ence in all groups of species. However, in the group composed
exclusively of Cryptococcus genus the selected species was C.
neoformans.

To retrieve Gene Ontology annotations we used FungiDB webt-
ools as in its own guidelines [46]. We retrieved information of bio-
logical processes, molecular functions, and cellular components,
considering computed and curated evidences with p-value <
0.05. The full list of identifications is available as Supplementary
Table 1 (Table S1).

2.5. Implementation

ExVe was implemented using the Laravel 5.5 and Docker frame-
works in PHP language. A PostgreSQL version 12.3 database was
used to store our datasets using Docker containers.

3. Results

3.1. Proteins identified in fungal EV shotgun proteomics data

In the current version of ExVe, we used protein identifications
of shotgun proteomics EVs from A. fumigatus, C. albicans, C. deutero-
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Fig. 1. Graphical representation of the ExVe workflow. We retrieved shotgun proteomics data from 9 fungal species (8 pathogenic and 1 nonpathogenic). We performed an
association of these data with Uniprot [49], Pfam [48] and FungiDB [46] to provide a web interface with orthology information about proteomic content from fungal EVs.

Table 1
Related articles for each species of fungi present in ExVe.

Species Reference

Aspergillus fumigatus [38]
Candida albicans [14,24,39,40]
Cryptococcus deuterogattii [41]
Cryptococcus neoformans [26,41,42]
Histoplasma capsulatum [43,44]
Paracoccidioides brasiliensis [45]
Sporothrix brasiliensis [23]
Sporothrix schencki [23]
Saccharomyces cerevisiae [19]

Table 2
Data presented on ExVe for proteins present in fungal extracellular vesicles.

Gene Name UniProt based gene name for proteins [32]

Protein ID Unique UniProt accession number for proteins [32]
Protein Name Protein name retrieved from the UniProt

consortium [32]
Protein Description UniProt protein function annotation [32]
Species Fungi species
Strain Fungi strain
Type of fungal Culture Media used for EV isolation (liquid or solid)
Proteomics Method Equipment used for proteomics analysis
PMID PubMed number from which the data were

obtained [47]
Orthologous Group Protein orthologous group obtained from the

FungiDB [46]
Pfam The most frequent Pfam ID in each orthologous

group (Orthogroup) [48]
Description_pfam The description of protein domains based

on Pfam [48]
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gattii, C. neoformans, H. capsulatum, P. brasiliensis, S. brasiliensis, S.
schenckii, and S. cerevisiae (Table 3).
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The EV isolation methods of eleven out of the thirteen articles
selected to populate ExVe were based on the original study on fun-
gal EVs using liquid media [8,50]. The exceptions were the C. albi-
cans study by Zarnowski and colleagues (2018) using biofilms [24]
and the study by Rizzo et al. on C. neoformans and C. deuterogattii
performing EV isolation from solid media [29].

ExVe integrates data for 11,433 hits detected in fungal EVs. Any
identified protein in each study with no UniProt accession number
was purged from ExVe. We identified 5,367 proteins with a Swis-
sProt [32] accession number, of which 1,879 have a biological func-
tion annotated. For the remaining proteins, 6,043 were associated
with a Trembl accession number, of which 614 have computation-
ally inferred biological functions [32].

We noticed that different sets of equipment were used to gen-
erate the proteomics shotgun data. The NanoLC 1D Plus (Eksigent)
associated with LTQ XL linear ion trap (Thermo Fisher) was the
most frequent combination to generate shotgun proteomics data,
which was applied to S. cerevisiae, P. brasiliensis, H. capsulatum, C.
neoformans and C. albicans. The spectrometer Orbitrap Q Exactive
Plus (Thermo Fisher) associated to the chromatograph EASY-nLC
(1000/1200) (Thermo Fisher) was used to generate shotgun pro-
teomics data of A. fumigatus, C. albicans and C. neoformans. Interest-
ingly, the spectrometer 5600 TripleTOF (AB Sciex) in conjunction
with chromatograph Ekspert nanoLC 400 (Eksigent) enabled the
identification of more than 1,100 proteins for each H. capsulatum
study, the highest number of detected proteins.
3.2. Protein orthologous groups

ExVe has 11,189 proteins clustered in 3,834 different ortholog
groups (Table 4), whereas 292 were defined as orphan proteins,
which are unavailable for website visualization.

Our findings indicate that A. fumigatus and C. neoformans pre-
sented the highest number of unique orthologous groups: 1,253



Fig. 2. Graphical representation of ortholog group intersections without unique clusters. The upper histogram shows the number of orthologous groups represented in the
intersection. The lower dots show the combinations that perform the intersections.

Table 3
Species, strain, number of distinct proteins, proteomic approach and references used to populate the ExVe database.

Species Strain Number of distinct proteins Proteomics approach Ref.

A. fumigatus ku80 3,037 EASY-nLC 1000 (Thermo Fisher)
Orbitrap Q Exactive Plus (Thermo Fisher)

[38]

C. albicans strain 11*
ATCC90028
SC5314
SC5314
YLC280
YLC294
YLC337
YLC344
YLC375
modified SN152

132
50
96
164
242
163
197
213
179
1,110

NanoLC 1D Plus (Eksigent)
LTQ XL/ETD linear ion trap (Thermo Fisher)
EASY-nLC II (Thermo Fisher)
LTQ-Orbitrap Velos (Thermo Fisher)

NanoLC 1D Plus (Eksigent)
LTQ XL linear ion trap (Thermo Fisher)
1100 nanoflow system (Agilent)
LTQ-Orbitrap (Thermo Fisher)

[14,39,40,24]

C. deuterogattii R265 1,292 EASY-nLC 1200 (Thermo Fisher)
Orbitrap Q Exactive Plus (Thermo Fisher)

[41]

C. neoformans 2ETU-C
CAP67
H99
CAP67
K99alpha

26
92
25
111
1847

NanoLC 1D Plus (Eksigent)
LTQ XL linear ion trap (Thermo Fisher)
NanoLC 1D Plus (Eksigent)
LTQ XL linear ion trap (Thermo Fisher)
EASY-nLC 1200 (Thermo Fisher)
Orbitrap Q Exactive Plus (Thermo Fisher)

[26,42,41]

H. capsulatum ATCC26032 283 NanoLC 1D Plus (Eksigent)
LTQ XL linear ion trap (Thermo Fisher)

[43,44]

H. capsulatum (cont.) ATCCG217B 1,127 Ekspert nanoLC 400 (Eksigent)
5600 TripleTOF (AB Sciex)

[44]

P. brasiliensis Pb18 205 NanoLC 1D Plus (Eksigent)
LTQ XL linear ion trap (Thermo Fisher)

[45]

S. brasiliensis 5110 63 NanoLC-1DPlus (Proxeon)
LTQ-Orbitrap (Thermo Fisher)

[23]

S. schenckii M�64 40 NanoLC-1DPlus (Proxeon)
LTQ-Orbitrap (Thermo Fisher)

[23]

S. cerevisiae RSY113
RSY255
RSY782
RSY954
SEY6210
SF264-1D
Snf7
VPS23

88
102
96
103
99
99
91
110

nanoLC 1D Plus (Eksigent)
LTQ XL/ETD linear ion trap (Thermo Fisher) [19]

*male patient at Institute of Hematology Arthur Siqueira Cavalcanti

Vinícius da Silva Coutinho Parreira, Letícia Graziela Costa Santos, M.L. Rodrigues et al. Computational and Structural Biotechnology Journal 19 (2021) 2286–2296
and 590, respectively. The orthologous group OG6_100083 was
unique to all nine species in ExVe. This orthologous group com-
prises a set of chaperone-encoding genes with the Hsp70 protein
(PF00012) as the most frequent Pfam protein domain. The compar-
ison of all nine fungi revealed that C. neoformans and C. deuterogat-
tii shared 296 orthologous groups, which was the highest number
among all possible pairs of species (Fig. 2). However, C. albicans, H.
capsualtum, C. deuterogattii, C. neoformans and A. fumigatus was the
group of different genera that shared the highest number of orthol-
ogous groups (231 groups).
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We used FungiDB tools to retrieve Gene Ontology (GO) annota-
tions to investigate the enrichment of GO terms for species that
shared more than 50 orthologous groups (Table S1). With the high-
est number of orthologous groups shared, the Cryptococcus genus
had an ‘‘extracellular region” term (GO:0005576) enriched for the
‘‘cellular compound” category (Table S1). Additionally, ‘‘hydrolase
activity” terms (GO:0016810, GO:0004553, GO:0016798) were
enriched in the ‘‘molecular function” category (Table S1). The
‘‘biological process” category in the Cryptococcus genus contained
the ‘‘mRNA processing” and ‘‘mRNA splicing” associated terms



Table 4
Number of orthologous groups for each species at ExVe.

Species Number of orthologous groups

A. fumigatus 2,717
C. albicans 1,019
C. deuterogattii 1,194
C. neoformans 1,736
H. capsulatum 1,084
P. brasiliensis 186
S. brasiliensis 38
S. schenckii 30
S. cerevisiae 95
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(GO:0000375, GO:0000398, GO:0000377, GO:0008380,
GO:0006397, GO:0016071) were the most enriched GO terms.

The second group of species with the highest number of orthol-
ogous groups shared (C. albicans, H. capsualtum, C. deuterogattii, C.
neoformans and A. fumigatus) revealed the ‘‘cytoplasm” term
(GO:0005737) as the most enriched GO term for the ‘‘cellular com-
ponent” category. In this group, the ‘‘organonitrogen compound
biosynthetic term” (GO:1901566) was the most enriched ‘‘biologi-
cal process” term. At last, our analysis revealed the enrichment of
‘‘structural” terms (GO:0005198 and GO:0003735) for the ‘‘molec-
ular function” category for this group of species (Table S1).

Next, we investigated the occurrence of orthologous groups
related to fungal pathogenicity. According to our analysis, no
orthologous group was exclusively present in the eight pathogenic
fungi (Table 5). However, if a single pathogenic species is excluded
at a time from the analysis, some orthologous groups are pin-
pointed. If a given Sporothrix genus was excluded at a time from
the comparison to all other fungi, another exclusive pathogenic
orthologous group was identified. S. brasiliensis exclusion permit-
ted the identification of OG6_100304 and OG6_100832 exclusive
pathogenic orthogoups, which represent proteins associated with
nucleoside-diphosphate kinase (PF00334) and ribosomal S17
(PF00833) Pfam domains, respectively. If S. schenckii was not con-
sidered in the comparison, the orthologous groups OG6_100082
and OG6_100425 are identified, which are associated with core
histone H2A/H2B/H3/H4 (PF00125) and RNA recognition motif
(PF00076) Pfam protein domains, respectively. The investigation
of orthologous groups exclusively detected in the nonpathogenic
S. cerevisiae fungus unveiled the following orthologous groups with
protein domains according to Pfam: OG6_100674, OG6_102300,
OG6_142972, OG6_500194, and OG6_222591. These orthologous
groups are related to dihydroorotate dehydrogenase (PF01180),
the phosphoadenosine phosphosulfate reductase family
(PF01507), glucanosyltransferase (PF03198), and the glycolipid 2-
alpha-mannosyltransferase (PF01793) Pfam protein domains. The
orthologous group OG6_222591 was identified as exclusive to S.
cerevisiae, but no Pfam protein domain is available yet.

3.3. Online application, visualization module and functionalities

The online application is available under the URL http://exve.
icc.fiocruz.br. The ExVe contains 6 menus, named ‘‘About”, ‘‘Con-
tact Us”, ‘‘Download”, ‘‘Species”, ‘‘Orthologous Groups”, and
‘‘Proteins” (Fig. 3). The ‘‘About” menu contains a brief description
of the ExVe database, in addition to listing some features of the
web system. The ‘‘Contact Us” menu displays the mail contact for
questions, error reports, feature requests and dataset proposals.
The ‘‘Download” menu allows the user to download the ExVe
database.

In the ‘‘Species” menu (Fig. 4), the user can select the organism
species and strain from the complete list (currently including 9
species and 28 strains, as listed in Table 3). For a user-specified
species and/or strain, all available gene symbols, UniProt protein
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IDs and names, strains, orthologous groups and PubMed links
[47] are displayed in a table.

The ‘‘Orthogroups” menu provides features to visualize all avail-
able orthologous groups and PFAM domains they are associated
with (see Fig. 5). Users can submit one or more species and receive
all groups to which both have orthologous proteins. When a pro-
tein is not assigned to any group of orthologs, it is grouped in a
cluster termed ‘‘not available”.

The ‘‘Proteins” menu provides two principal functionalities
(Fig. 6). Users can search for a given protein, and ExVe returns all
orthologous groups with which the selected protein is associated,
the gene symbol when available, the species and strain from which
each protein was isolated, protein name, PMID, and the UniProt ID
[32]. The UniProt ID field contains a link where users can access
additional protein information such as the name and description
of the protein. Additionally, on this page, the user can be redirected
to the research article that described the protein by clicking on the
PMID field [47]. Another feature on this page is the redirection to
the UniProtKB consortium page [32] when clicking on the UniProt
ID.

Another main feature of the menu is the possibility of filtering
by protein, species name and type of fungal culture (liquid or solid
media), and ExVe returns the same information listed above
(Fig. 7).
4. Discussion

Fungal EVs have been recently proposed as vaccine candidates
[51,52], but the molecules inducing protection of different hosts
remain unknown [41,51]. Recently, we identified an EV peptide
inducing protection in an invertebrate host [53], but the immuno-
logical roles of vesicle-associated proteins are still unclear. This
scenario might be linked to one major gap in the field of fungal
EVs: the lack of well-characterized biomarkers, as well as mole-
cules with potential to be vaccine candidates. In this context, a sys-
tematic analysis of components of fungal EVs produced by
different species will likely benefit the whole field. Moreover, an
orthology analysis of EV components produced by pathogenic spe-
cies may contribute to guide future research on the functions of
vesicular molecules.

Reference EV databases such as Vesiclepedia [34] and Exocarta
[33] have limited data regarding fungal species, while other
eukaryotic and prokaryotic organisms have abundant information.
We are launching ExVe as a free web repository that integrates EV
proteins previously identified by shotgun proteomics into nine
fungal species using orthology data, with possibility of expansion
depending on the availability of data in the future literature. The
use of orthology information can improve comparative studies
and assist in protein function prediction [54]. Although there are
orthology databases such as FungiDB [46], OrthoMCL [37], and
AYbRAH [31], none of them provide a subset of fungal EV pro-
teomics data. Additionally, the association of ExVe with FungiDB
allows users to assess a large amount of biological data and bioin-
formatic resources to improve data analysis [46].

Distinct protocols for EV protein analysis will influence the
number of identified proteins [27,30]. The variability in the EV iso-
lation methods, mostly based on differential ultracentrifugation of
samples obtained from liquid media being, has the same potential
to affect protein detection [8,27,50]. Alternative protocols of isola-
tion of fungal EVs, including chromatographic separation and the
use of solid media, have been recently described [9,27,29,30]. All
articles used in to populate the ExVe databases analyzed fungal
EVs by differential ultracentrifugation from liquid media
[8,24,50], excepting for the recent study of Rizzo and colleagues
[41].
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Table 5
Most frequent in ExVe and unique S. cerevisiae ortholog groups.

Ortholog
group

Protein Domain* C.
neoformans

C.
deuterogattii

A.
fumigatus

C.
albicans

H.
capsulatum

S.
schenckii

S.
brasiliensis

P.
brasiliensis

S.
cerevisiae

OG6_100083 Hsp70 protein d d d d d d d d d

OG6_100304 Nucleoside diphosphate kinase d d d d d d d

OG6_100832 Ribosomal S17 d d d d d d d

OG6_100082 Core histone H2A/H2B/H3/H4 d d d d d d d

OG6_100425 RNA recognition motif. (a.k.a.
RRM, RBD, or RNP domain) **

d d d d d d d

OG6_100674 Dihydroorotate dehydrogenase d

OG6_102300 Phosphoadenosine
phosphosulfate reductase family

d

OG6_142972 Glucanosyltransferase d

OG6_500194 Glycolipid 2-alpha-
mannosyltransferase

d

OG6_222591 No domain identified d

*Protein domain is the most represented Pfam domain in the orthologous group from FungiDB.
**a.k.a = also known as.

Fig. 3. The graphical interface of the ExVe database. A total of 6 menus for different functionalities are implemented in the database.
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The peptide identification criteria may also affect the quantity
and quality of proteins identified in fungal EVs [28,55]. Neverthe-
less, a restricted number of studies in ExVe overpassed the number
of 1,000 proteins identified. Moreover, with the exceptions of A.
fumigatus [38] and C. deuterogattii [41] that have an unique study
for each specie, there were different studies with different pro-
teomics approaches to detect proteins from EVs (Table 3). There-
fore, our data suggests that the different proteomics approaches
had a limited impact on the identification of orthologous groups
in fungal species.

According to our analysis, OG6_100083 is the only ortholog
group in all species available at ExVe. This ortholog group gathers
sequences of heat shock proteins, with a focus on the HSP70 family
Pfam protein domain [46]. Several studies imply the high sequence
conservation of this protein family among different groups and
species [56,57]. The intracellular role of Hsp proteins as chaper-
ones and in the modulation of stress response was previously
described [58,59]. HSP70 proteins were identified at the extracellu-
lar environment playing multiple roles [59,60]. Notably, Hsp70
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was characterized as a component of fungal EVs [59]. The functions
of extracellular Hsp70 can be numerous, but they could be associ-
ated with cell signaling mainly by the modulation of macrophage
activation, and attenuation of the immune response [58,61].

In fungi, heat shock proteins have been described in the
stress response and survival of different fungi under adverse
environmental conditions such as temperature changes, starva-
tion and antifungal stress [56,57,62]. Heat shock proteins are
also involved in morphological changes, including the transition
from mycelium to yeast, and have an important role in the inter-
action with host immune cells [56,63]. Indeed, heat shock pro-
teins are apparently essential for the formation of fungal EVs.
In H. capsulatum, binding of antibodies raised against heat shock
proteins to the fungal surface resulted in EVs with altered pro-
tein loading [44]. In this fungus and in C. neoformans, these pro-
teins were recognized by antibodies produced by infected
patients [14,26]. In summary, our results and the recent litera-
ture strongly suggest heat shock proteins as main components
of fungal EVs.



Fig. 4. (A) Input parameters for Species menu. Species, strain (optional) and items per page. (B) Output for C. neoformans (strain H99) search.

Fig. 5. ExVe graphical output for all species search. The ‘‘Orthogroups” menu contains various widgets, which are designed to receive user input.
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Other 4 orthologous groups were identified in 7 of 8 fungal
pathogenic species, but not in S. cerevisiae (Table 5). The nucleoside
diphosphate kinase (Pfam ID PF00334) is an Pfam protein domain
exclusively identified in most pathogenic fungi. This protein
domain has already been related to EVs derived from breast cancer,
and associated [64]. In fungi, this protein domain is potentially
associated with fungal resistance to oxidative and thermal stress
[65]. For instance, the gene encoding the nucleoside diphosphate
kinase was shown to be essential in A. flavus, with a role in spore
production and sclerotia formation [66,67]. Interestingly, disrup-
tion of this gene in S. cerevisiae resulted in unaltered growth ratio
and spore production levels [68]. Because this orthologous group
was identified only in EVs produced by pathogenic species, we
speculate that it plays a role in pathogenicity.

Histones have a central function in eukaryotes, controlling
chromatin accessibility and chromosome segregation during mito-
sis. In C. albicans, histone H2A was described to regulate aneu-
ploidy, argued as a strategy to acquire tolerance to antifungal
therapy [69]. H3 and a variant histone protein were described to
play a role in biofilm and planktonic forms of C. albicans, depicting
the relevance of such proteins in the fungal cell cycle [70]. Regard-
ing the role of histones in fungal pathogenicity, the histone acetyl-
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transferase Gcn5 was shown to work in chromatin remodeling in
response to stress induced by the human host environment during
C. neoformans invasion [71]. Although the biological function of
histones is known to be related to chromatin accessibility, addi-
tional functions could be found in such proteins. Using a mouse
model, an H2B-like protein was detected in the H. capsulatum cell
surface, which was used to investigate its role in the immune
response [72]. Macrophage histones were detected at the surface
of EVs, which was associated with proinflammatory responses
[73]. However, the biological function of fungal histones in EVs is
not yet known, we suppose these proteins could be associated with
virulence strategies since they were not detected in S. cerevisiae.
The fact that a histone-like protein was detected on the cell surface
in one of the pathogenic fungi studied here sheds light on the rea-
son why such proteins were identified in EVs.

EVs contain distinct types of molecules in their lumen, includ-
ing nucleic acids and proteins. Therefore, it is expected to find pro-
teins holding an RNA binding motif that would carry RNAs, an
unstable molecule. mRNA trafficking occurs extensively in the
cytosol of several fungi [74,75]. In EVs, short RNAs were detected
in C. neoformans, P. brasiliensis, C. albicans, and S. cerevisiae [76].
Surprisingly, according to our analysis, the RNA recognition motif



Fig. 6. Input parameters for Proteins menu. Output for Heat shock protein search.

Fig. 7. Input parameters for Proteins menu. Output for citrate synthase and Cryptococcus neoformans search.
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(Pfam ID PF00076) was identified only in pathogenic species, not in
S. cerevisiae. This observation should be investigated in depth in
further studies to confirm that such proteins may act carrying
some specific pathogenic RNAs.

Some of the orthologous groups were exclusively identified in S.
cerevisiae, and not in any fungal pathogenic species. This observa-
tion points to the existence of still unknown differential mecha-
nisms of protein loading into pathogenic and nonpathogenic
fungal EVs. The dihydroorotate dehydrogenase Pfam protein
domain (Pfam ID PF01180), exclusively found in the S. cerevisiae
EVs, is associated with key proteins related to fungal pyrimidine
biosynthesis, with investigations regarding its structure and mech-
anism of action in S. cerevisiae [77]. The phosphoadenosine phos-
phosulfate reductase family (Pfam ID PF01507), also exclusive to
S. cerevisiae EVs, is another Pfam protein domain associated with
2293
essential fungal metabolism. These proteins are vital to sulfur
uptake by the action of 30-phosphoadenosine-50-phosphosulfate
(PAPS) reductases. This class of fungal enzymes was proposed to
be the target of new molecules aiming at fungal therapy, with a
focus on Aspergillus species [78,79].

Fungal EVs have been recently linked to the formation of the
cell wall [38,80], a key component of the fungal cell. These reports
agree with our findings showing an association of fungal EVs and
the cell wall. Glycolipid 2-alpha-mannosyltransferase (Pfam ID
PF01793) is responsible for the mannosylation of the lipid-linked
oligosaccharide, which is required for the formation of O-linked
saccharides during cell wall synthesis [81]. Fungal proteins with
the Pfam protein domain glucanosyltransferase (Pfam ID
PF03198) have the b-1,3-glucanosyltransferase (Gas1) operate in
cell wall synthesis, silencing of rDNA expression, and stress
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response [82,83]. Since Gas1 was detected in EVs produced by
yeast cells and not in A. fumigatus, the existence morphology-
related functions for this EV protein are expected.
5. Conclusions

The current purpose of ExVe was to integrate available EV pro-
teins identified by shotgun proteomics data for medically relevant
fungal species. However, a database that includes data for differ-
ent molecules could contribute more to the elucidation of addi-
tional questions [35]. Therefore, we plan to implement data
recovery from other molecules such as lipids and RNAs, aiming
for ExVe improvement. Additionally, we aim to enable sequence
search, gene ontology and network analysis as future perspectives.
Our proposal is that ExVe will be updated annually with newly
available data. ExVe is open to continuously integrating proteins
identified by shotgun proteomics data from the scientific
community.
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