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Abstract: Açaí berry is a fruit from the tree commonly known as açaízeiro (Euterpe oleracea Mart.)
originated from the Amazonian region and widely consumed in Brazil. There are several reports of the
anti-inflammatory activity of its pulp and few data about the seed’s potential in inflammation control.
This work aimed to evaluate the effect of catechin-rich açaí extract on lipopolysaccharide (LPS)-
stimulated RAW 264.7 cells and carrageenan-induced paw edema. The treatment with E. oleracea ethyl
acetate extract (EO-ACET) was used in an in vitro model performed with macrophages stimulated
by LPS, in which pro-inflammatory markers were evaluated, and in an in vivo model of acute
inflammation, in which edema inhibition was evaluated. EO-ACET showed an absence of endotoxins,
and did not display cytotoxic effects in RAW 264.7 cells. LPS-stimulated cells treated with EO-ACET
displayed low levels of nitrite and interleukins (IL’s), IL-1β, IL-6 and IL-12, when compared to
untreated cells. EO-ACET treatment was able to inhibit carrageenan-induced paw edema at 500
and 1000 mg/kg, in which no acute inflammatory reaction or low mast cell counts were observed
by histology at the site of inoculation of λ-carrageenan. These findings provide more evidence to
support further studies with E. oleracea seeds for the treatment of inflammation.

Keywords: inflammation; Euterpe oleracea; fruit; nitric oxide; cytokines; histology; mast cells

1. Introduction

The use of dietary supplements of botanical origin has been widespread worldwide
and the advancement of studies in this area has been possible due to the involvement of
the National Center for Complementary and Alternative Medicine, the Office of Dietary
Supplements, as well as other components of the National Institute of Health. The use of
these supplements has health, as well as economic, implications [1,2]. However, it is very
important to draw attention to the veracity of information contained on product labels,
which may be configured if it does not comply with the uniformity test of dosage forms.
Therefore, many studies described in the literature show the need for the better quality
control of these products and the existence of stricter rules [3].
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Compounds from plant foods are cheap sources of products with anti-inflammatory
and antioxidant properties. The increasing interest of consumers in foods with high health
potential made the pomace from berries a good source of bioactive compounds [4]. These
studies seem to look for compounds that can simultaneously inhibit cyclooxygenase-2
(COX-2) and 5-lipoxygenase (5-LOX), which are called double COX/5-LOX inhibitors. In
this field, anthocyanins are identified as compounds that have anti-inflammatory activity.
Various processed fruit products have traditionally been used to treat colds and flu [5].

Euterpe oleracea Mart. belongs to the Arecaceae family and is commonly known as
“açaizeiro”. It is the most popular large palm tree (Figure 1A) from the floodplain Amazon
region, measuring from 6 to 14 m in height. The fruit is a small berry, with a size that varies
between 1 to 2 cm in diameter and weighs an average of 1.2 g (Figure 1B). The epicarp (bark)
and the mesocarp (pulp) is dark purple when ripe. Mesocarp measures approximately
1–2 mm thick and surrounds the endocarp, which is a bulky and hard structure, whose
shape follows that of the fruit, which contains a seed. The açaí seed fills most of the fruit,
representing 73% of its mass, presenting a globose shape, dark brown color and an average
diameter of 11.5 mm (Figure 1C) [6–9].
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Figure 1. Euterpe oleracea tree (A), fruits (B) and seeds (C).

Different parts of E. oleracea have been studied for chemical composition and phar-
macological properties [10]. The oil extracted from the pulp or seed of the fruit presents
mainly fatty acids, whose oleic acid (47.58%), palmitic (24.06%) and linoleic (13.58%) acids
are the major compounds, while palmitoleic, vaccenic, lauric and stearic acids were minor
constituents [11]. High concentrations of (+)-catechin and procyanidin oligomers have also
been found in E. oleracea pulp and oil extracts [12].

The fruit açaí, is widely consumed by the population in Brazil [13]. Besides the nu-
tritional value, açai berry presents antioxidant properties due to its high level of phe-
nolic compounds, such as anthocyanins [14], which also exerts anti-inflammatory, anti-
proliferative and cardioprotective activities [15]. A variety of phenolic compounds iden-
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tified in E. oleracea, such as the flavonoids quercetin, vitexin, luteolin, chrysoeriol and
dihydrocaempferol, and the anthocyanins cyanidin-3-rutinoside, cyanidin-3-glucoside,
cyanidin-3-sambioside and peonidine-3-rutoside, showed antioxidant effect [16].

The literature shows that both the pulp and the ethanolic extract of the fruit have
anti-inflammatory action. It was demonstrated that C57BL/6 mice exposed to cigarette
smoke and treated with hydroalcoholic fruit extract showed a lower number of neutrophils
and macrophages in the lung when compared to the control group, which demonstrates
the anti-inflammatory activity of the açaí fruit extract [17]. Other experiments showed that
both dried and frozen hydroalcoholic extract of the fruit pulp interfered with the activation
and proliferation of macrophages, promoting the arrest of the cell cycle due to the reduction
of NOD-like receptor family pyrin domain containing protein 3 (NLRP3) activation [18].

The anti-inflammatory activity of açaí is often associated with the presence of flavonoids,
such as catechin and epicatechin, both in the pulp fruit [18] and in the seeds [19]. Cate-
chin’s anti-inflammatory effect is well described alone, acting via the regulation of Toll-like
receptor (TLR) 2/4 and inflammasome signaling [20], or in combination with other com-
pounds, suppressing the production of inflammatory cytokines in mouse macrophages
in vitro in association with baicalin and β-caryophyllene [21], and inhibiting the activa-
tion of TLR4-MyD88-mediated nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) and mitogen activated protein kinase (MAPK) signaling pathways in RAW
264.7 macrophages in association with quercetin [22].

The use of digested or undigested açaí seed extract, rich in catechin and epicatechin,
shows that there was a reduction in the activation of NF-κB and levels of tumor necrosis
factor alpha (TNF-α), confirming that the anti-inflammatory activity of the extract is not
altered after ingestion, which suggests the açaí seeds may be used to obtain and bioactive
compounds for various purposes [19]. However, besides the use of the in vitro digested
açaí seed extract, the study only performed in vitro experiments, which limits the evidence
of the possible anti-inflammatory potential of the açaí seed. Thus, this work aimed to
evaluate the effect of catechin-rich açaí extract on lipopolysaccharide (LPS)-stimulated RAW
264.7 cells and the in vivo model of acute inflammation carrageenan-induced paw edema.

2. Materials and Methods
2.1. Plant Material

The fruits of E. oleracea used in this study came from Parque da Juçara, São Luís,
Maranhão, Brazil (latitude −2.6274201, longitude −44.2922708). The collection was carried
out in the dry period in September 2017. A sample of the specimen was stored under
exsiccate number 30, issued by Herbário Rosa Mochel of the Nucleus of Biological Studies
of the State University of Maranhão (UEMA). To obtain the seeds, the fruits were washed
in running water and in distilled water at 60 ◦C for 5 min, and the pulp was removed with
the aid of a pulper. The seeds were placed to dry in an oven at 47 ◦C. After drying, the
fibers covering the seed were removed manually.

2.2. Obtaining of Ethyl Acetate Extract from E. oleracea Seed

The dried seeds were ground in a manual mill to facilitate the extraction process.
Then, 500 g of the crushed açaí seeds were weighed and added to 400 mL of 70% hy-
droethanolic solution. The mixture remained under constant agitation for 2 h and was
then left to rest for extraction by maceration, with four successive changes of solvent,
for four days. After the extraction process, the resulting extract was filtered on What-
man filter paper #1, and the solvent concentrated on a low-pressure rotary evaporator
(Fisatom Equipamentos Científicos Ltd.a., São Paulo, Brazil) at 40 ◦C. The hydroethano-
lic extract was then lyophilized (LIOTOP model 202, Fisatom Equipamentos Científicos
Ltd.a., São Paulo, Brazil) at a temperature of −30 to −40 ◦C and a vacuum of 200 mm Hg.
E. oleracea hydroethanolic extract (EO-HE), 15 g, was diluted in 200 mL of methanol:water
(8:2; v/v) solution and partitioned in a liquid separation funnel, using solvents of increasing
polarity (chloroform, ethyl acetate and water). The partition resulted in fractions named
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EO-CLO, EO-ACET, and EO-AQ, respectively. All the fractions were subjected to evapo-
ration under reduced pressure to obtain dry matter and were then identified and kept at
−20 ◦C. Before the biological assays, the fractions were solubilized in dimethyl sulfoxide
(DMSO) (Sigma-Aldrich, St Louis, MO, USA) at 100× the final concentration for in vitro
assays, and the final test concentrations in Dulbecco’s Modified Eagle Medium (DMEM)
culture medium (Sigma-Aldrich, St Louis, MO, USA) presented less than 0.5% DMSO. For
in vivo assays, PBS was used to solubilize the EO-ACET to the final doses. Dilution extracts
were prepared immediately before use.

2.3. Thin Layer Chromatography (TLC) Analysis

The hydroalcoholic extract and fractions were preliminarily analyzed by Thin Layer
Chromatography (TLC) using silica gel 60 F254 in an aluminum chromatography sheet
(20 cm × 20 cm × 0.15 mm; Merck, Darmstadt, Germany) previously activated in an oven
at 105 ◦C for 2 h. As a mobile phase, the mixture of solvents methanol: chloroform: formic
acid (8.5:1.5:0.5 v/v/v) was used. After elution, chromatograms were evaluated under
visible and ultraviolet light at wavelengths of 254 and 365 nm, followed by spraying with
sulfuric vanillin reagent (1% in methanol) and subsequent heating at 110 ◦C for 2 min.

2.4. Analysis by High-Performance Liquid Chromatography Coupled to Diode-Array Detection and
Mass Spectrometry (HPLC-DAD-MS)

The HPLC analysis was carried out with a modified C18 column 250 mm × 4.6 mm × 5 µm
(Shim-pack CLCODS, Shimadzu, Canby, Oregon). The solvents used were (A) water acidi-
fied with 5% formic acid and (B) methanol HPLC grade. The elution gradient established
was 15% B for 5 min, 15 to 80% B in 25 min, and maintaining 80% B isocratic for 15 min to
rebalance the column, using a flow rate of 1.0 mL/min. The mass detection was performed
in a positive mode with a capillary voltage of 2500 V; end plate offset: 2000 V; capillary
output 110 V, skimmer 1 20 V, skimmer 2 10 V, dry gas (N2) temperature 325 ◦C and flow
11 L/min, nebulizer 60 psi, sweep range from 200 to 800 m/z temperature set at 25 ◦C.
Dual online DAD detection was performed using 280 and 520 nm as the wavelengths
of choice.

2.5. Quantification of Endotoxins

The quantification of endotoxin in the EO-ACET dilutions (125, 250 and 500 µg/mL)
was carried out following the recommendations of Pierce™ LAL Chromogenic Endotoxin
Quantitation Kit (Thermo Scientific, Carlsbad, CA, USA) [23].

2.6. Cell Culture

RAW 264.7 cell line murine macrophages (ATCC® TIB-71™) were maintained in
DMEM supplemented with 10% fetal bovine serum (FBS) (Gibco, Gaithersburg, MD, USA),
penicillin (100 U/mL) and streptomycin (100 µg/mL) (Sigma-Aldrich, St Louis, MO, USA)
at 37 ◦C and 5% CO2 in culture flasks.

2.7. Cytotoxicity Assay

RAW 264.7 cells (2 × 106 cells/mL, 100 µL per well) were incubated overnight in
96 well plates for adhesion. The medium and non-adherent cells were removed, and the
adherent cells were treated with 100 µL of different concentrations of EO-ACET (125, 250
and 500 µg/mL), diluted in DMEM. Wells without cells only with the medium were used as
blanks, and wells with cells and DMSO 1% were used as a control. Wells with cells treated
with LPS (Sigma-Aldrich, St Louis, MO, USA) at 10 µg/mL and with dexamethasone
(Sigma-Aldrich, St Louis, MO, USA) at 100 µM. After 48 h of treatment, cell viability assay
was performed using the colorimetric MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetra-
zolium bromide] (Sigma-Aldrich, St Louis, MO, USA) method [24], with modifications [25].
Briefly, 10 µL of MTT at 5 mg/mL was added and incubated for two hours at 37 ◦C and
5% CO2. The supernatants were removed, and the formazan crystals were solubilized
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with 100 µL of DMSO. The absorbance was obtained with a spectrophotometer at 540 nm
wavelength. Cytotoxicity was expressed as a percentage, as described elsewhere [26].

2.8. EO-ACET Treatment in RAW 264.7 Macrophages Stimulated with LPS

RAW 264.7 macrophages (2 × 106 cells/mL) were incubated in 24-well plates overnight.
After the removal of non-adherent cells, the adherent cells were treated with EO-ACET at
125, 250 and 500 µg/mL concentrations, or with dexamethasone (100 µM) for one hour, and
then stimulated, or not, with LPS (10 µg/mL). Cells non-treated and non-stimulated, and
cells non-treated and stimulated were used as controls. All treatment dilutions were carried
out in DMEM medium. After 48 h, the supernatant was collected for the quantification of
nitrite and cytokines interleukin (IL) 1 beta (IL-1β), IL-6 and IL-12.

2.9. Nitrite and Cytokines Quantification

Nitrite levels in cell culture supernatant were determined by the Griess method [27].
Then, 50 µL of supernatant was added to 50 µL of Griess reagent (25 µL of sulfanilamide
1% in 2.5% H3PO4 solution and 25 µL of N-(1-naphthyl) ethylenediamine 0.1% solution)
in 96-well plates. After 10 min protected from light, the absorbance of the plate was
measured in a spectrophotometer at 540 nm. The results were expressed in NaNO2 (µM),
based on a standard curve with known concentrations of sodium nitrite (Sigma-Aldrich,
St Louis, MO, USA), at 100 to 3.1 µM NaNO2, obtained for serial dilution 1:2 [28]. The
cytokine quantification of IL-1β, IL-12 and IL-6 (BD OptEIA™) was performed following
the manufacturer’s specifications.

2.10. Animals and Ethical Statement

Female BALB/c mice from six to eight weeks of age were obtained from the Insti-
tute of Science and Technology in Biomodels (ICTB/FIOCRUZ) and maintained under
pathogen-free conditions at a controlled temperature, with food and water ad libitum. The
experiments were conducted in accordance with the National Council for the Control of
Animal Experimentation (CONCEA) and approved by the Ethics Commission for the Use
of Animals of the Oswaldo Cruz Institute, license number CEUA/IOC—L053/2016, 28
December 2016.

2.11. Paw Edema Induced by λ-Carrageenan

The paw edema was carried out as described by Oliveira et al. (2019) [29]. Mice were
separated into six groups of five animals. Four groups were pre-treated with 250, 500
or 1000 mg/kg of EO-ACET by gavage, or dexamethasone (5 mg/kg solubilized in PBS,
intramuscular route), and two groups were pre-treated with PBS by gavage. After one
hour, 25 µL of λ-carrageenan 1% was injected into the left hind footpad. The control group
was inoculated with PBS and pre-treated with PBS. After 1, 2, 3 and 4 h of λ-carrageenan
inoculation, footpad swelling was measured using a Schnelltaster dial gauge caliper (Krö-
plin GmbH, Hessen, Germany). The edema thickness was expressed in millimeters and
obtained from the difference between the inoculated footpad at the evaluation time and
its own basal level at time 0 before inoculation. The animals were euthanized, four hours
after λ-carrageenan inoculation, with 250 µL intraperitoneal injection of a 1:1 mixture of
ketamine (100 mg/mL; Syntec, BRA) and xylazine (20 mg/mL; Syntec, BRA). Fragments of
footpad edema were collected for histological analysis.

2.12. Histology Analysis

Skin fragments from footpad were fixed in 10% buffered formalin and routinely pro-
cessed for paraffin embedding. Tissue sections at 5 µm thick were stained with Hematoxylin-
Eosin (HE) and Giemsa using the modified Wolbach method for the quantification of mast
cells. Tissues were observed, analyzed by a researcher with expertise, blinded to the ex-
perimental groups. In HE staining, the inflammatory parameters analyzed were edema,
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congestion and inflammatory infiltrate. Mast cells counting were performed under a light
microscope and representative areas in five fields were selected [29].

2.13. Statistical Analysis

The results are represented as mean ± standard deviation and were analyzed by
Kruskal–Wallis followed by Dunn’s multiple comparisons tests (p < 0.05) or by analy-
sis of variance (two-way ANOVA) followed by Bonferroni’s multiple comparisons test
(p < 0.05). Statistical analyses were carried out with GraphPad Prism 7.00 software package
(GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Chemical Characterization of E. oleracea Seed Extracts

Thin-layer chromatography with catechin standard showed the presence of catechin in
E. oleraceae hydroalcoholic extract (EO-HE) and ethyl acetate fraction (EO-ACET), slight evi-
dence in chloroform fraction (EO-CLO) and absence in aqueous fraction (EO-AQ) (Figure 2A).
The HPLC-MS analysis confirmed this result, as observed in the four chromatograms
shown in Figure 2B. The signs found in each chromatogram, with their respective relative
percentage areas and their tentative identification, are described in Table 1.
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Table 1. Constituents found in Euterpe oleraceae seed extracts with their respective molecular pseudo-ions, relative percentage
areas and their tentative identification.

Peak RT 1 m/z (M+H+) EO-HE 2 EO-CLO 3 EO-ACET 4 EO-AQ 5 Identification 6

1 1.1 203.0528 16.07 25.22 17.06 43.07 Not identified
2 1.3 231.0845 33.87 32.31 15.32 46.07 Not identified
3 1.6 231.0841 9.61 18.06 3.65 10.84 Not identified
4 2.8 867.2142 1.70 - 7.66 - trimeric procyanidins
5 3.0 579.1488 10.23 - 19.62 - pelargonidin-3-rutinoside
6 3.7 291.0860 25.24 21.40 30.91 - Catechin
7 4.6 291.0855 3.25 2.98 5.75 - Epicatechin
1 Retention time. 2 E. oleracea hydroalcoholic extract. 3 E. oleracea chloroformic fraction. 4 E. oleracea ethyl acetate fraction. 5 E. oleracea
aqueous fraction. 6 Tentative identification.
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3.2. EO-ACET Is Endotoxin-Free and Not Displayed Cytotoxicity

The endotoxin quantification shows endotoxin absence in all EO-ACET dilutions
used in macrophage treatment. Cytotoxicity assay performed with the same treatment
conditions of posterior experiments did not show significant alteration in the percentage of
viable cells (Figure 3).
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and stimulated, or not, with LPS (red column) at 10 µg/mL. Data represent the mean ± standard
deviation of the experiment performed in sextuplicate.

3.3. EO-ACET Reduced Levels of Pro-Inflammatory Markers in RAW 264.7 Cells Stimulated with LPS

The treatment of RAW 264.7 macrophages without LPS stimulation with EO-ACET
at the highest concentration analyzed, 500 µg/mL, did not alter the levels of nitrite or
cytokines in the cell culture supernatant. However, LPS-stimulated cells treated with EO-
ACET showed low levels of all four pro-inflammatory markers analyzed when compared
to untreated and LPS-stimulated cells. Treatment with EO-ACET at 125 and 500 µg/mL
displayed low levels of nitrite (p = 0.0237 and p = 0.0028, respectively; Figure 4A), while
only at 500 µg/mL did they present low levels of IL-1β (p = 0.0058; Figure 4B). The in-
hibitory effect of EO-ACET was more evident in IL-6 (Figure 4C) and IL-12 quantification
(Figure 4D). All the three concentrations analyzed (125, 250 and 500 µg/mL) showed low
levels of IL-6 (p < 0.0001, p = 0.0002 and p = 0.0166, respectively) and IL-12 (p = 0.0194,
p = 0.0059 and p = 0.0257, respectively). The reference drug dexamethasone treatment
presented low levels of nitrite (p = 0.0001) and cytokines IL-1β (p = 0.0093), IL-6 (p < 0.0001)
and IL-12 (p = 0.0002), as expected (Figure 4).

3.4. EO-ACET Inhibited Paw Edema Induced by λ-Carrageenan

The treatment with EO-ACET demonstrated lower edema thickness than the PBS group
four hours after λ-carrageenan inoculation (Figure 5A and Table 2). After four hours, EO-
ACET treatment inhibited edema in a dose-dependent manner at 500 and 1000 mg/kg
(Figure 5B). The histological analysis showed that the animals treated with 1000 mg/kg
presented the same results as the animal treated with dexamethasone; in other words, no acute
inflammatory reaction was observed at the site of inoculation of carrageenan, as evidenced by
histology of mast cells (Figure 6). Regarding the participation of the mast cells in the process,
the groups treated with EO-ACET at 500 and 1000 mg/kg presented lower mean mast cell
numbers in comparison with the untreated and stimulated group (Figure 7).
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Figure 5. Paw edema of BALB/c mice inoculated with of λ-carrageenan and treated with Euterpe oleraceae ethyl acetate
fraction (EO-ACET). Macroscopy (A) and kinetic of edema thickness (B) of animals inoculated with 25 µL of λ-carrageenan
1% and treated with 100 µL EO-ACET (purple lines) at 250, 500 or 1000 mg/kg by gavage or with dexamethasone (blue line)
at 5 mg/kg via the intramuscular route. Data represent the experiment carried out in quintuplicate. * p < 0.05, ** p < 0.01,
**** p < 0.0001, when compared with PBS group (red line), after analysis of variance (two-way ANOVA) followed by
Bonferroni’s multiple comparisons tests.
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Table 2. Thickness in millimeters and percentage of λ-carrageenan 1% paw edema inhibition in BALB/c mice treated with
ethyl acetate fraction of Euterpe oleraceae.

Treatment λ-Carragenan Dose
(mg/kg)

Administration Time (% Edema Inhibition)

1 h 2 h 3 h 4 h

PBS
- - 0.04 ± 0.055 0.02 ± 0.045 0.02 ± 0.045 – 1

+ - 0.22 ± 0.084 0.32 ± 0.134 0.48 ± 0.084 0.56 ± 0.055

EO-ACET
+ 250 0.20 ± 0.100 0.25 ± 0.129 0.36 ± 0.089 (25.00) 0.46 ± 0.089 (17.85)
+ 500 0.22 ± 0.096 0.25 ± 0.058 0.34 ± 0.114 (29.16) 0.36 ± 0.114 (35.71) *
+ 1000 0.20 ± 0.100 0.25 ± 0.058 0.32 ± 0.084 (33.33) 0.34 ± 0.055 (39.29) **

Dexamethanose + 5 0.18 ± 0.084 0.20 ± 0.100 0.20 ± 0.071 (58.33) **** 0.20 ± 0.071 (64.28) ****

Data represent the mean ± standard deviation of the experiment performed in quintuplicate. 1 There was no edema thickness in this
group at this evaluation time. * p < 0.05; ** p < 0.01; **** p < 0.0001, after analysis of variance (two-way ANOVA) followed by Bonferroni’s
multiple comparisons test when compared to the PBS group. EO-ACET: Euterpe oleracea ethyl acetate fraction. +: λ-carrageenan inoculation;
-: PBS administration.
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and treated with 100 µL EO-ACET (purple columns) by gavage or with dexamethasone (blue column)
at 5 mg/kg via the intramuscular route. Data represent the mean ± standard deviation of the
experiment performed at least in triplicate. # p < 0.001 compared with the group without stimulation
or treatment (white column); * p < 0.05, when compared with the stimulated and untreated group
(red column) after Kruskal–Wallis analysis followed by Dunn’s multiple comparisons tests.

4. Discussion

The study demonstrated the anti-inflammatory properties of the ethyl acetate fraction
from E. oleracea used in Brazil. First, it was performed a chemical characterization of the
extract and their fractions obtained with chloroform, ethyl acetate, and water to define
the catechin-rich one to be used in the biological experiments. The phytochemical analysis
showed that in the ethyl acetate fraction, mainly catechins and pelargonidin were identi-
fied, which differ from the previous results of our laboratory, in which a predominance
of proanthocyanidin A2, trimeric and tetrameric procyanidins was observed [30]. Other
studies also describe the occurrence of catechins and epicatechin in the açaí seed [31,32].

Although the seeds of the present study were collected in the same place and the same
season as Freitas et al. [30], several factors may have interfered, such as the edaphoclimatic
conditions, rainfall index and, mainly, the storage time that in the present work was not
longer. Among the factors that cause the instability of anthocyanins are pH, copigmentation,
light, temperature, metals and oxygen [33,34].

In an overview of food, therapeutic and industrial applications of Brazilian fruits of
Arecaceae family, de Souza et al. considered açaí, from the physicochemical perspective,
as a good supplement in the human diet due to its high content of compounds with
known pharmacological properties and/or health benefits [35], such as oleic acid [36],
anthocyanins [37], carotenoids [38] and phenolic compounds [39]. These compounds are
related to the powerful antioxidant activity of berries [40] and other underused wild plants
seeds [41] such as the acai seed. The “superfruit” nomination given to açaí fruit is due to
the variety of bioactive compounds and their antioxidant ability.

Qualitative analysis by TLC revealed that EO-HE and EO-ACET displayed the pres-
ence of catechin, and the relative percentage area obtained by HPLC-DAD-MS confirmed
this result, with EO-ACET exhibiting the higher amount of catechin and epicatechin be-
tween the analyzed fractions. Thus, EO-ACET was used in further experiments.

Before the in vitro treatment of RAW 264.7 cells, EO-ACET was subjected to an evalua-
tion of the endotoxin quantity. Endotoxins induce pro-inflammatory effects [42] that would
alter the in vitro and in vivo evaluation of the anti-inflammatory activity of E. oleracea
seed extract. In addition, repeated exposure to LPS may induce a state of tolerance that
reprograms the inflammatory response, resulting in reduced inflammatory cytokine pro-
duction in vitro and in vivo [43] that would also modify EO-ACET anti-inflammatory
response. The absence observed in this endotoxin analysis ensures that the fraction is free
of contamination and that all the posterior experiments made with it had no interference
of endotoxins.

The RAW 264.7 murine macrophages were used to assess anti-inflammatory activity,
since they consist of a good in vitro model for the inhibition of the pathways that lead to the
induction and production of pro-inflammatory enzymes and cytokines [29,44]. The lower
levels of nitrite and cytokines observed in the supernatant of cells treated with EO-ACET
indicates an inhibitory effect in the production of pro-inflammatory marker nitrite, IL-1β,
IL-6 and IL-12 by macrophages.

Nitrite was used as an indirect way to quantify the amount of nitric oxide (NO) in
culture supernatants. The NO originated from the conversion of L-arginine to L-citrulline
by the NO synthase (NOS) enzyme that has three isoforms—euronal (nNOS); endothelial
NOS (eNOS); inducible NOS (iNOS)—which is induced by pro-inflammatory factors such
as cytokines or endotoxins and is widely expressed in macrophages [23,45]. The lower
quantification observed in RAW 264.7 cells treated with EO-ACET revealed its inhibitory
effect in NO production, as well as in the cytokines production.
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The IL-1β is typically activated in macrophages after inflammasome sensing of in-
fection or danger, leading to caspase-1 processing and driving inflammation after the
release from macrophages [46]. The TLR4 receptor in monocytes and macrophages, when
activated by LPS, induces IL-12 production and stimulates macrophages to produce other
pro-inflammatory cytokines, driving inflammation [47]. On the other hand, IL-6 may have
contextual protective or exacerbating roles during inflammation [48]. The inhibitory in vitro
effect of EO-ACET treatment in IL-1β, IL-6 and IL-12 production by RAW 264.7 cells sug-
gests a potential anti-inflammatory in vivo.

The anti-inflammatory activity of E. oleracea was also verified by a RAW 264.7 murine
macrophage model using phytohemagglutinin. Açaí extract at 1 µg/mL modulated re-
dox status by decreasing NLRP3 inflammasome levels and reducing pro-inflammatory
cytokines IL-1 beta, IL-6, TNF-α, and IFN-G, and the decreasing production of anti-
inflammatory cytokine IL-10 [18]. In addition, the anti-inflammatory and antihypertensive
effects of the açaí seed extract, rich in phenolic compounds, were attributed to the modu-
lating of redox status by the positive modulation of the nuclear factor erythroid 2-related
factor 2 (Nrf2) signaling pathway in human endothelial cells (HUVEC) [49].

In vitro experiments are important tools to evaluate a specific situation and control
variables that cannot be controlled in vivo, and to provide insight into the mechanism of
action of drugs candidate. However, in vitro studies also have their limitations in research
involving inflammation. Inflammation is a complex process, involving several cells, bio-
chemical mediators, and signaling molecules, that is not possible to mimic in vitro. In
addition, is difficult to reproduce the same in vitro results in vivo due to pharmacokinetics
and pharmacodynamics parameters [29,50]. Thereby, we carried out an in vivo acute in-
flammation model of carrageenan-induced paw edema in BALB/c mice to evaluate the
anti-inflammatory activity of ethyl acetate fraction obtained from E. oleracea seed extract.

The animals treated with EO-ACET demonstrated edema inhibition, noticed by the
lower increase in the thickness footpad when compared to untreated animals. The inhibitory
activity was also higher in the highest doses, suggesting an ascending anti-inflammatory
dose response. The edema event happens due to vascular alterations that initiate with the
transitory constriction of the small vessels and posterior vasodilatation [51], generating
deregulation of the osmotic balance. Furthermore, vasodilatation also allows leukocyte
migration to the inflammatory site, producing additional inflammatory factors that sustain
and potentiate the inflammation.

The in vivo anti-inflammatory activity of the E. oleracea seed extract was also observed
in an experiment with C57BL/6 mice, in which açaí seed extract supplementation protected
from obesity-associated hepatic steatosis and fibrosis, reducing oxidative stress, NF-κB
expression and pro-inflammatory markers IL-6 and TNF-α [52].

Mast cells are one of the leucocytes that can migrate through vasodilatation, integrat-
ing a critical first line of defense against endogenous and environmental threats, and being
intrinsically involved in the pathogenesis of skin inflammation. They are found mainly
in vascularized tissues and have cytoplasmic granules that are rich in a wide variety of
mediators as histamine, prostaglandins, heparin and serotonin [53,54]. We observed a
decrease in the mast cell count in the footpads of animals treated with EO-ACET at the
same treatment doses, which also inhibited edema increase, suggesting that mast cells may
be involved in edema inhibition caused by EO-ACET treatment.

5. Conclusions

Overall, the results observed in vitro, with the inhibition of pro-inflammatory markers
suggesting an anti-inflammatory activity of E. oleracea seed, was confirmed by the inhibition
of carrageenan-induced paw edema induced by EO-ACET treatment. These findings add
to the other descriptions of the inflammatory activity of açaí pulp fruit, and our results
confirmed that the E. oleracea seed, which is rich in catechins, has anti-inflammatory
potential. This study provides more evidence to support further studies with E. oleracea
seeds for the treatment of inflammation.
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