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Proteomics reveals disturbances 
in the immune response and energy 
metabolism of monocytes 
from patients with septic shock
Pedro Mendes de Azambuja Rodrigues1, Richard Hemmi Valente2, Giselle Villa Flor Brunoro2, 
Helder Takashi Imoto Nakaya3, Mariana Araújo‑Pereira3, Patricia Torres Bozza4, 
Fernando Augusto Bozza1,6 & Monique Ramos de Oliveira Trugilho2,5,6*

Sepsis results from a dyshomeostatic response to infection, which may lead to hyper or hypoimmune 
states. Monocytes are central regulators of the inflammatory response, but our understanding of 
their role in the genesis and resolution of sepsis is still limited. Here, we report a comprehensive 
exploration of monocyte molecular responses in a cohort of patients with septic shock via proteomic 
profiling. The acute stage of septic shock was associated with an impaired inflammatory phenotype, 
indicated by the down‑regulation of MHC class II molecules and proinflammatory cytokine pathways. 
Simultaneously, there was an up‑regulation of glycolysis enzymes and a decrease in proteins 
related to the citric acid cycle and oxidative phosphorylation. On the other hand, the restoration of 
immunocompetence was the hallmark of recovering patients, in which an upregulation of interferon 
signaling pathways was a notable feature. Our results provide insights into the immunopathology 
of sepsis and propose that, pending future studies, immunometabolism pathway components could 
serve as therapeutic targets in septic patients.

Sepsis represents a significant burden for healthcare systems worldwide due to its high incidence, mortality, 
and associated  costs1. The critical event for the development of sepsis seems to be a dysregulation of the host 
response to infection, resulting in a state of life-threatening loss of homeostasis. However, despite decades of 
research, a clear pathobiological framework of sepsis is still lacking, and no specific immunomodulatory treat-
ment is available in the clinical  setting2.

Our understanding of the course of the immune response in sepsis is scarce. Traditionally, it is described as 
biphasic: after the initial recognition of pathogens by the innate immune system, which may trigger a systemic 
hyperinflammatory state, unregulated inflammatory resolution mechanisms can induce subsequent immuno-
suppression, resulting in protracted or recurrent  infections3. More recently, an alternative model postulates 
that sepsis results in a persistent inflammatory activation and suppression of adaptive  immunity4. Knowledge 
of the link between this pathological immune response and organ dysfunctions is also limited and may involve 
direct inflammatory tissue damage and microcirculatory disturbances. Intriguingly, although in shock states the 
main cause of organ failure is a reduction in oxygen delivery, in septic shock, oxygen consumption may remain 
impaired despite restored tissue perfusion. This observation led to the hypothesis that sepsis-induced primary 
bioenergetic alterations may be relevant disease  mechanisms5,6.

Monocytes are key coordinators of inflammation. When activated, they can rapidly migrate to tissues and 
differentiate into macrophages and dendritic cells. Also, monocytes act as direct effectors of innate immunity, 
exhibiting phagocytic microbicidal activity, producing inflammatory mediators, presenting antigens, and influ-
encing the adaptive immune  response7,8. Therefore, these cells are potential critical elements for the genesis 
and resolution of sepsis. Experimentally, it is possible to induce a polarization of mononuclear phagocytes into 
pro-inflammatory (M1) or anti-inflammatory (M2) subsets. Curiously, the M1 phenotype is dependent on a 
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metabolic shift from oxidative phosphorylation to glycolysis, termed the "Warburg effect" 9,10. Interestingly, all 
effector T cell subsets undergo similar metabolic alterations upon  activation11,12. Although the M1/M2 paradigm 
has been used as a surrogate for disease states, mononuclear phagocytes exhibit a high degree of immune phe-
notypical plasticity in response to complex environmental  stimuli13,14, which may also correspond to particular 
metabolic  alterations15. Hence, it is important that disease-specific phenotypes be characterized directly from 
clinical samples.

Currently, omics technologies have a consolidated role among the tools employed in sepsis translational 
research. To this date, most omics-based studies carried-out in the clinical setting aimed at the characterization 
of syndrome-related  biomarkers16. As such, they primarily sought molecules that have a reproducible associa-
tion with diagnosis or clinical outcomes, and inferences about the disease biology are often limited or absent. 
To this last end, proteomics has inherent advantages over transcriptomics, as proteins are the main effectors 
of most cellular processes, and post-transcriptional regulation often renders RNA and corresponding protein 
levels  uncorrelated17.

In this study, we explore the proteome of monocytes in sepsis through a discovery-driven approach. Using 
samples from patients in the acute and recovery phases, we applied functional analysis methods to provide fresh 
insights into disturbed cellular mechanisms, which revealed that alterations in energy metabolism and inflam-
matory pathways are prominent molecular features in monocytes of patients with septic shock.

Results
Study population. Nine patients with septic shock and six healthy volunteers (Control group) were 
included, whose demographic and clinical characteristics are shown in Supplementary Table S1. Age and sex 
were similar between groups. Blood samples were collected from patients in the acute phase (Sepsis group), 
within 72 h of hospitalization, and in the recovery phase (Recovery group), before discharge from the intensive 
care unit (ICU). The infection sites were equally distributed between pulmonary, abdominal, and urinary tract. 
All patients in the Sepsis group had hemodynamic shock, two-thirds required mechanical ventilation, and one-
third required renal replacement therapy. The ICU stay was, on average, 19 days. Despite an average SOFA of 11 
for the Sepsis group, there were no deaths in 28 days and only one late hospital death.

Measurement of monocyte proteomes. A shotgun proteomics (LC–MS/MS) approach was applied 
to obtain comprehensive coverage of monocytes’ proteins isolated from the blood. We were able to confidently 
identify (FDR < 1%) 40,447, 43,016, and 48,339 peptides, with inference by maximum parsimony of 3454, 3496, 
and 3716 proteins in the control, sepsis, and recovery groups, respectively (Supplementary Table S2 and Supple-
mentary File 1). A total of 3689 proteins were identified—considering only those present in multiple biological 
replicates—with 3014 proteins in common among all groups and 101, 97, and 143 proteins characterized exclu-
sively in Control, Sepsis, and Recovery groups, respectively (Fig. 1a).

The molecular degree of perturbation (MDP) score, which measures the proteome’s alteration compared to 
healthy controls, demonstrated a clear separation between individuals from both Sepsis and Recovery groups 
and the Control group (Fig. 1b). Although there is some overlap between individuals of the Sepsis and Recovery 
groups, the sepsis group’s median MDP was significantly higher, indicating that sepsis induces significant mono-
cyte proteome changes. It also highlights the differences between the Control and Recovery groups: the first was 
composed of healthy volunteers and the former of patients who overcame the acute phase of organ dysfunctions 
but were still under hospital treatment.

To study the alterations that reflect sepsis progression, we worked with comparisons between the Sepsis and 
Control and Sepsis and Recovery groups (isoforms were discounted): the number of proteins showing statisti-
cally significant differences was 268 and 182, respectively (Fig. 1c and Supplementary File 2). For the functional 
analysis of the proteomes, we also included proteins detected exclusively in one group. Although there is no 
p value assigned to each protein abundance comparison, we argue that since multiple biological and technical 
replicates were analyzed and such proteins were only detected in one biological condition, this strongly suggest 
differential regulation abundance. These comprised 485 and 430 proteins in the comparisons between the Sepsis 
and Control and Sepsis and Recovery groups, respectively. Each comparison revealed a unique expression profile, 
as most of the up and downregulated proteins were not coincident (Fig. 1d).

Functional analysis of differentially regulated proteins. We used the InnateDB  platform18, with the 
annotations imported from the Reactome  database19, to explore the biochemical pathways statistically over-
represented on the differentially regulated abundant proteins of the experimental groups (Fig. 2a–c). Among 
the up-regulated proteins in the Sepsis group compared to the Control group, the pathways with the highest 
statistical significance were related to glycolytic metabolism, including the canonical enzymes PGK1, ALDOA, 
ALDOC, GADPH, PKLR GPI, as well as LDHA, responsible for converting pyruvate into lactate in situations 
where oxidative phosphorylation decreases. On the other hand, proteins down-regulated in sepsis were associ-
ated with oxidative phosphorylation and Krebs cycle pathways (ATP5C1, DLST, ETFB, NDUFA11 NDUFA2, 
NDUFS7, NDUFS8, PDK3, PDP1, PDPR, RXRA, SUCLG2, TACO1 and UQCRQ), beta-oxidation of fatty acids 
(ACADM, DECR1, PCCA, PCCB), and, in parallel, to the MHC class II antigen presentation pathway (CD74, 
CTSH, DCTN3 DYNC1LI2, HLA-DMA, HLA-DMB, HLA- DPA1, HLA-DQA2, HLA-DRA, HLA-DRB1, 
KIF2A, OSBPL1A) and the related interferon signaling pathway (EIF2AK2, EIF4A3, EIF4E2, HLA-DPA1, HLA-
DQA2, HLA-DRA, HLA-DRB1, IFIT1, MX1, NUP35, OAS3, PSMB8, UBE2L6). This immune profile was com-
patible with the results of flow cytometry experiments on the surface expression of HLA-DR in patients from the 
participant ICUs ( Supplementary Figure S1). The analysis of positively regulated proteins in the Recovery group 
in relation to the Sepsis group revealed a high representation of proteins associated with cytokine signaling 
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(CASP1, CRK, DDX58, EIF2AK2, EIF4E, GBP4, GBP5, HLA-DPA1, HLA-DRA, HLA- DRB1, ICAM1, IFIT1, 
IFIT3, IL1RN, MAP2K6, MAPK1, MX1, OAS3, PTPN6, RNASEL, SHC1, SQSTM1, STAT1, UBE2L6, YWHAB), 
highlighting the interferon pathway (GBP4, GBP5, HLA-DPA1, HLA-DPA1, HLA-DPA1, HLA-DPA1, HLA-
DPA1, HLA-DPA1, HLA—DRA HLA-DRB1, ICAM1, OAS3, PTPN6) and the presentation of MHC class II 
antigens (AP2B1 CD74, DCTN3, DYNC1LI2, HLA-DMA, HLA-DPA1, HLA-DRA, HLA-DRB1, KIF2A).

Immunometabolic profile of the experimental groups. Since annotations related to energy metabo-
lism and the immune response featured prominently on the enrichment analysis, we selected the proteins most 
specifically associated with those pathways and with high coverage (> 90%) on the experimental groups for 
a detailed expression profiling (Fig.  3a,b). Among glycolysis proteins, glucose-6-phosphate isomerase (GPI), 
aldolase (ALDOA, ALDOC), glyceraldehyde-3-phosphate dehydrogenase (GAPDHS), phosphoglycerate kinase 
(PGK1), and pyruvate kinase (PKLR) are involved in the main chain of reactions of the conversion of glucose 
to pyruvate (steps 2, 4, 6 and 7, and 10 respectively). Lactate dehydrogenase (LDHA) catalyzes the interchange 
between pyruvate and lactate. Of the citric acid cycle, dihydrolipoyl succinyltransferase (DLST) is a compo-
nent of the α-ketoglutarate-dehydrogenase complex that oxidizes α-ketoglutarate to succinyl-CoA and CO2. In 

Figure 1.  Alterations in the proteome of monocytes in the acute phase of sepsis (Sepsis group), compared with 
the recovery phase (Recovery group) and healthy subjects (Control group). (a) Total, unique, and shared protein 
identifications among the experimental groups. (b) Molecular degree of perturbation of the Sepsis end Recovery 
groups in relation to the Control group. The plot represents individual values with median and IQR per group. 
(c) Volcano plot of all shared proteins in the comparisons between the Sepsis and Control and Sepsis and 
Recovery groups. Each dot represents a protein mapped according to its log2 (fold change) on the y-axis and its 
− log2 (t-test p value) on the x-axis. The red dots indicate proteins that satisfy neither the fold-change cutoff nor 
the p value (0.05). Green dots depict protein entries that meet the fold-change cutoff but not the p value. Orange 
dots indicate proteins that satisfy both fold-change and p value but have low abundances, as determined by an 
additional stringency filter. Blue dots represent protein entries that met all statistical filters and were selected for 
further analysis. (d) Total and shared proteins significantly up (red bars) or down (blue bars)-regulated in the 
comparisons between the Sepsis and Control and Sepsis and Recovery groups.
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Figure 2.  Functional analysis of the sepsis monocyte proteome. Enriched Reactome pathways among the 
differentially expressed proteins in groups (a) Sepsis, compared to Control and; (b) Sepsis, compared to 
Recovery. The y-axis represents the − log10 of the p value for the association between the pathways and the 
set of proteins up (red bars) or down (blue bars)-regulated. Significance (dotted lines) was defined as p ≥ 0.05 
(Benjamini and Hochberg); (c) A network of pathways selected from (a,b). Nodes represent proteins up (red) or 
down (blue)-regulated in the comparisons between Sepsis and Control (circles), Sepsis end Recovery (squares), 
or both comparisons (triangles).
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Figure 3.  Immunometabolic profile of the experimental groups. (a) On the left, the columns (individuals) and 
rows (proteins) of the heatmap were clustered hierarchically by the Euclidean distance. The expression values 
were normalized by the z-score of each line. On the right, the fold changes of the protein abundance ratios 
(NSAF) between the control (C), Sepsis (S), and Recovery (R) groups are displayed. The gray bars represent 
statistically non-significant differences (TFold); (b) Expression (z-scores) of proteins separated by function. The 
samples were organized on the y axis by the identifier of individuals in the Control group (C1 to C6) followed by 
the Sepsis (S2 to S10) and Recovery (R2 to R10) groups. Each dot represents a protein with the corresponding 
smooth line (loess regression) showing each group’s expression trends.
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sequence, the conversion of succinyl-CoA to succinate is catalyzed by succinyl-CoA ligase (SUCLG2). From oxi-
dative phosphorylation, electron-carrying flavoprotein (ETFB) transfers electrons from mitochondrial dehydro-
genases to the electron transport chain, which produces an electrochemical gradient used by ATP mitochondrial 
synthase (ATP5C1) to catalyze ATP synthesis. Of the proteins involved in the inflammatory response, the signal 
transcription activating factor and activation transducer-1 (STAT1) is a mediator of interferons’ intracellular 
signaling, and the mitogen-1 activated protein kinase (MAPK1) participates in the regulation of transcription 
activated by growth factors and cytokines. The human leukocyte antigen-DR (HLA-DRA) is an MHC class II 
antigen-presenting cell surface molecule. The MHC class II (CD74) invariant chain participates in the stabiliza-
tion and cell transport of these molecules.

Even though heterogeneity of protein regulation among biological replicates was evident—as expected for 
clinical samples—hierarchical clustering was able to completely separate individuals from the Control and Sep-
sis Groups. The Recovery group, except for one individual, was grouped with the Control group. Similarly, the 
proteins of the immune response, citric acid cycle, and oxidative phosphorylation were grouped separately from 
those related to glycolysis (Fig. 3a). In the Sepsis group, compared to the Control group, the glycolysis proteins 
showed a consistent positive regulation. In contrast, those of the inflammation, citric acid cycle, and oxida-
tive phosphorylation were negatively regulated. These differences were largely reversed in the recovery group 
(Fig. 3a,b). Most of the differences in expression between the recovery and control groups were not statistically 
significant.

Discussion
Here, we report the alterations in the proteomic phenotype of blood monocytes from patients with septic shock. 
Our investigation highlighted distinctive molecular profiles associated with energy metabolism and the immune 
response. In the acute stage of septic shock, the observed protein expression levels were indicative of a shift 
from oxidative phosphorylation to glycolysis, compatible with the Warburg effect. In parallel, these monocytes 
displayed characteristic features of an impaired inflammatory response, which reversed as patients recovered.

So far, most proteomics studies in clinical sepsis utilized plasma samples, and to our knowledge, none inves-
tigated  monocytes20. In our experiments, isolated monocytes were analyzed through an MS-based workflow, 
which measured over 3600 proteins with high specificity across samples, providing a global assessment of cellular 
processes. Our experimental design included sampling at different time points, which allowed us to explore the 
dynamic nature of the immune response in sepsis. Furthermore, our methodology was unbiased by previously 
selected protein identities or known associations, which we argue is a valuable feature in studying diseases in 
which the molecular diagnosis and pathobiology are not yet clearly established. Our results indicate that septic 
shock induces comprehensive changes in the monocyte proteome, demonstrated by the molecular degree of 
perturbation of both the acute and recovery stages relatively to healthy individuals and the hundreds of differ-
entially regulated abundant proteins between the experimental groups.

Immunometabolism, the interplay between cell metabolism and immunity, has already been shown to 
play a critical role in a wide range of clinical conditions such as autoimmune diseases, cancer, transplant and 
 atherosclerosis21,22. In sepsis, the association between primary defects of cellular metabolism and organ dys-
functions is a well-recognized phenomenon. However, only a few studies sought to describe this link in the 
immune system. Early reports revealed an impaired mitochondrial function in peripheral blood mixed leu-
cocyte populations in the clinical setting, due to inhibited ATP synthase activity or uncoupling of oxidative 
 phosphorylation23,24. More recently, transcriptomics studies in larger cohorts reported overexpression of gly-
colytic genes in whole blood and total blood leukocyte  samples25–27. In our study, a prominent finding of the 
pathway analysis in septic shock was an increase in monocyte proteins associated with glycolysis paired with a 
reduction in oxidative phosphorylation proteins. The positive regulation of most canonical glycolytic enzymes 
was joined by increased lactate dehydrogenase, implying a diversion in the glycolytic flow to produce lactate. 
Also, enzymes related to the beta-oxidation of fatty acids were negatively regulated, indicating a reduction in 
substrates’ supply for the citric acid cycle. There was a consistent trend of reversal of this metabolic profile in 
the recovery stage, although not statistically significant for most proteins, which could reflect the patients’ early 
convalescence status. These results suggest that a bioenergetic shift from oxidative phosphorylation to glycolysis 
in monocytes may be a characteristic of septic shock.

The dysregulated immune response in sepsis involves wide disturbances in both the innate and adaptive 
immune systems. The most validated biomarker of immune dysfunction in sepsis is the reduction of the expres-
sion of the MHC class II molecule HLA-DR on the surface of circulating monocytes, which is associated with 
an increase in the risk of infectious complications and  death28,29. Our study observed a negative regulation of 
several MHC class II proteins, such as HLA-DR, HLA-DP, and HLA-DQ, in the acute phase of septic shock. 
Concordantly, there was a reduction of some of the central mediators of inflammatory activation, like MAPK, 
which participates in the TNF-α, IL-1, and TLR signaling, and Caspase-1, a point of convergence of the inflam-
masome activation, which generates the biologically active forms of IL-1 β and IL-18. This immune profile was 
reversed in the recovery phase, where there was a positive regulation of proteins related to cytokine signaling 
pathways, particularly IFN-ɣ, a potent proinflammatory stimulus. From these findings, we can conclude that, in 
our cohort, septic shock was associated with an impaired monocyte inflammatory profile. Although all subjects 
had clinical markers of severity, there were no sepsis-related deaths, which could be a result of the transition to 
a proinflammatory phenotype observed in the recovery stage.

It is noteworthy that our cohort’s immunometabolic profile differs from those resulting from the in vitro M1 
activation, where aerobic glycolysis accompanies a classic proinflammatory  phenotype9,10. In this regard, aerobic 
glycolysis in the early stage of septic shock could be an event promoting the transition to immunocompetence 
observed in the recovery phase. Alternatively, it could represent a peculiar state resulting from the monocytes’ 
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adaptation to clinical sepsis, not mimicked by in vitro models. It would be interesting to assess whether this 
phenotype differs between patients with different clinical outcomes, which was not possible in our cohort since 
all patients survived sepsis and were discharged from the ICU.

As immunopathologic mechanisms unravel, ensuing therapies are proposed, which have so far included 
nonselective anti-inflammatory agents, administration or specific inhibition of inflammatory mediators, and 
the neutralization of microbial  products30. In this regard, an interesting point for discussion from our results is 
the role of IFN-ɣ as a potential therapy in sepsis. Previous clinical studies demonstrated that IFN-ɣ treatment 
could restore monocytic HLA-DR expression, the secretion of TNF-α upon ex vivo LPS stimulation, and reduce 
infection-related  mortality31,32. Hence, the upregulation of IFN-ɣ signaling observed in our recovering patients 
may have been essential to the restoration of the immune function and resolution of sepsis, highlighting the value 
of further investigation of this cytokine as a treatment in immunosuppressed sepsis populations.

Our study had several limitations. As is usual in studies based on clinical samples, our experimental design 
did not allow us to determine causal relationships between the disturbed cellular processes. However, the inter-
dependence between aerobic glycolysis and immune activation states has already been well established in vitro in 
cells of the mononuclear phagocytic system, through, for example, pharmacological inhibition of  glycolysis33,34. 
There were also limitations related, directly or indirectly, to technical issues. First, the relative abundance of 
proteins may not represent the functional activation of a pathway, especially regarding immune signaling, which 
depends on post-translational modifications such as phosphorylation. In this sense, phosphoproteomics or 
immunodetection techniques could represent an interesting, complement but would require another set of sample 
preparation and protein quantities greater than those obtained in the present study. Also, we included a relatively 
small number of patients, reflecting the time and resources required for our in-depth and cell-specific analyti-
cal goals. Given our experimental design’s exploratory nature, it should be considered as a proof-of-concept 
study, which may serve as a foundation for further studies in larger cohorts using more focused protein-based 
methodologies.

In conclusion, this study indicates that the transition to aerobic glycolysis in monocytes may be an important 
clinical sepsis feature. Also, we were able to demonstrate the association of these metabolic changes with patients’ 
immune activation states in the acute and recovery phases (Fig. 4). Our cohort profile was initially suggestive 
of immunosuppression, succeeded by the restoration of immunocompetence, which was documented at the 
molecular level by the positive regulation of proteins involved in the presentation of antigens and signaling 
by cytokines, and was accompanied by the clinical resolution of the infection and organic dysfunctions. Pro-
teomics is a powerful yet underused tool for identifying molecular profiles that lead to biological phenomena 
characterization in clinical samples. We argue that obtaining large-scale data at the protein level is a valuable 
complement to the transcriptomics studies that dominate the field and may help us build more coherent and 
reliable pathophysiological models.

Methods
Study design and patients. We enrolled prospectively adult (≥ 18 years old) patients with sepsis from 
community-acquired infections, diagnosed according to the Third International Consensus Definitions for Sep-
sis and Septic Shock (Sepsis-3) criteria, admitted to the general intensive care units of the participant hospitals 
(Hospital São Lucas, Hospital Copa D’or and Instituto Nacional de Infectologia Evandro Chagas). Blood samples 
were obtained within the first 72 h from the sepsis diagnosis (sepsis phase) and on the day before ICU discharge 
(recovery phase). The Control group consisted of age-matched healthy volunteers. We excluded subjects with 
AIDS, advanced cancer, hematological diseases, and pregnancy. Demographic, clinical, and laboratory data were 
recorded by local investigators and used for calculating the Simplified Acute Physiological Score (SAPS) -3 
and the Sequential Organ Failure Assessment (SOFA) score. Patients were managed by the critical care teams 
based on the Surviving Sepsis Campaign’s recommendations and followed until death or hospital discharge. The 
study protocol was approved by the National Institute of Infectious Diseases Evandro Chagas Review Board 
(INI-FIOCRUZ # 059/2011), and the experiments were performed in compliance with this protocol. Written 
informed consent was obtained from all subjects or their legal surrogates before any study-related procedures.

Monocyte isolation. Blood samples (20 mL) were drawn into cell preparation tubes with sodium heparin 
(Vacutainer CPT, BD Biosciences). The tubes were centrifuged at 1700×g for 25 min at 20 °C. The mononuclear 
cell layer (PBMC) was transferred to a conical centrifuge tube and washed twice with PBS (300×g centrifugation 
for 15 min at 20 °C). Monocytes were then separated by an immunomagnetic technique based on anti-CD14 
antibodies (EasySep human CD14 positive selection kit, StemCell Technologies): a suspension was prepared 
at a concentration of 1 ×  108 cells/mL in PBS containing 1 mM EDTA and 0.5% (w/v) bovine serum albumin, 
followed by incubation with tetrameric anti-CD14/anti-dextran antibody complexes (100 μL/mL of cell suspen-
sion) for 15 min and with dextran-coated magnetic beads (100 μL/mL of cell suspension) for 10 min at room 
temperature. Finally, the suspension volume was adjusted to 2.5 mL, and the monocytes (CD14+) were sepa-
rated by exposure to a magnetic field for 10 min, followed by two washes. The samples were snap-frozen imme-
diately after the cell separation procedure and kept at − 80 °C until further processing for proteomics. Acceptable 
cell viability (≥ 95%) and purity (≥ 90% CD14+) were assessed by Trypan blue labeling and flow cytometry, 
respectively (Supplementary Table S3).

Shotgun proteomics. Sample preparation. Isolated monocyte samples were thawed at 4 °C, suspended in 
115 μL of Rapigest SF (Waters) at 0.1% (w/v) in 50 mM ammonium bicarbonate, and centrifuged at 20,000×g for 
30 min at 4 °C. Supernatants were separated, and protein concentration was estimated by absorbance reading at 
280 nm (NanoDrop 2000, Thermo Scientific). For each sample, 50 μg of protein were reduced in dithiothreitol 
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(3 h at 37 °C, 10 mM final concentration) and alkylated in iodoacetamide (30 min in the dark at room tempera-
ture, 25 mM final concentration). Next, samples were incubated with trypsin (Promega) 1:50 (m/m) at 37 °C for 
19 h and at 56 °C for 45 min in a thermoblock (Eppendorf). The reaction was stopped by adding trifluoroacetic 
acid to a final concentration of 1% (v/v). The tryptic peptides were purified in reversed-phase homemade micro-
columns with POROS R2 resin (Applied Biosystems). The peptide concentration was estimated by absorbance 
reading at 280 nm (NanoDrop 2000, Thermo Scientific), and samples were stored at − 20 °C for mass spectrom-
etry analysis.

Mass spectrometry. Samples were subjected to nanoLC-nanoESI MS/MS analysis in an Ultimate 3000 (Dionex) 
chromatographic system coupled to the Q Exactive Plus mass spectrometer (Thermo). About 1 μg of peptides 
was initially applied to a 2 cm guard column, followed by fractionation on a 40 cm PicoFritTM Self-Pack column 
(New Objective) packed with 1.9 μm silica, ReproSil-Pur 120 Å C18-AQ (Dr. Maisch, Germany). Samples were 
loaded in 0.1% (v/v) formic acid in water (mobile phase A) on the trap column at 2 μL/min, while chromato-
graphic separation occurred at 200 nL/min. Mobile phase B consisted of 0.1% (v/v) formic acid in acetonitrile. 
Peptides were eluted with a gradient of 2 to 45% B over 32 min, followed by up to 80% B in 4 min. Lens voltage 
was set to 60 V. Full scan MS mode was acquired with a resolution of 70,000 (FWHM for m/z 200 and AGC 
set to 1 ×  106). Up to 12 most abundant precursor ions from each MS scan (m/z 300 to 1500) were sequentially 
subjected to fragmentation by HCD. Fragment ions were analyzed (MS2 scan) at a resolution of 17,500 and AGC 
set to 5 ×  104. Samples were analyzed in technical triplicate and data acquired using Xcalibur software (version 
3.0.63). The mass spectrometry data have been deposited in the ProteomeXchange Consortium via the PRIDE 
partner  repository35 under the identifier PXD023938.

Figure 4.  Graphical summary of the main findings regarding the immunometabolic phenotype. Proteins of 
selected enriched Reactome pathways are listed. Adjacent symbols indicate up (red) or down (blue)-regulation 
in the comparisons between Sepsis and Control (circles), Sepsis end Recovery (squares), or both comparisons 
(triangles).
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Peptide identification and protein inference. The raw data files were processed and quantified using 
PatternLab for Proteomics  software36. Peptide-sequence matching (PSM) was performed using the Comet 
 algorithm37 against the protein-centric human database  NeXtProt38 (downloaded January 29, 2017). A target-
decoy strategy was employed. The search parameters were: tryptic and semi-tryptic peptides, with masses 
between 500 and 5000 Da, up to 2 lost cleavage sites, modifications: carbamidomethylation (Cys), oxidation 
(Met), and initial tolerance of 40 ppm for precursor ions. PSMs were filtered using the Search Engine Proces-
sor (SEPro) module and identifications were grouped by the number of enzymatically cleaved ends, resulting 
in two distinct subgroups. For each result, each metric’s scores (XCorr, DeltaCN, and ZScore) were used to 
generate a Bayesian discriminator, accepting up to 1% false discovery rate (FDR), estimated by the number of 
decoy sequence IDs. Results were further filtered to accept only PSMs with a mass error smaller than 5 ppm and 
protein identifications supported by two or more independent identifications. Proteins identified by a single 
spectrum (1 hit wonder) with XCorr below 2 were excluded. The final list of mapped proteins was grouped 
according to maximum parsimony.

Differentially regulated proteins and in silico functional analysis. Patternlab’s TFold module 
determined differentially abundant proteins based on spectrum counting normalized by  NSAF39, with a q-value 
cutoff of 0.05. The area-proportional Venn diagram module displayed all proteins mapped for each condition. 
For the differential analysis, we included proteins inferred on two or more samples in a group. There was no 
imputation of missing values. The Molecular Degree of Perturbation (MDP) score of the individual samples was 
calculated using the MDP tool (http:// bioco nduct or. org/ packa ges/ mdp/) from the average of the 25% highest 
protein z-scores of Sepsis and Recovery groups, calculated using the Control group as  reference40. The sam-
ple MDP from Sepsis and Recovery groups were compared using the Wilcoxon signed-rank test, with p < 0.05 
defining significance. Heat maps were created using Morpheus (https:// softw are. broad insti tute. org/ morph eus). 
Abundance values were z-score normalized. Hierarchical clustering was based on Euclidean distance. Functional 
analysis was performed with the InnateDB database pathway analysis tool (http:// www. innat edb. com)18, using 
the over-representation analysis (Hypergeometric algorithm, Benjamini- Hochberg correction with p < 0.05 
defining significance) method with Reactome pathway  annotations19. The enrichment network from Reactome 
pathways and chord graph were created using NetworkAnalyst 3.041.
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