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Abstract 

Infectious diseases may affect brain function and cause encephalopathy even when the pathogen does not directly 
infect the central nervous system, known as infectious disease-associated encephalopathy. The systemic inflamma‑
tory process may result in neuroinflammation, with glial cell activation and increased levels of cytokines, reduced 
neurotrophic factors, blood–brain barrier dysfunction, neurotransmitter metabolism imbalances, and neurotoxicity, 
and behavioral and cognitive impairments often occur in the late course. Even though infectious disease-associated 
encephalopathies may cause devastating neurologic and cognitive deficits, the concept of infectious disease-associ‑
ated encephalopathies is still under-investigated; knowledge of the underlying mechanisms, which may be distinct 
from those of encephalopathies of non-infectious cause, is still limited. In this review, we focus on the pathophysiol‑
ogy of encephalopathies associated with peripheral (sepsis, malaria, influenza, and COVID-19), emerging therapeutic 
strategies, and the role of neuroinflammation.
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Background
Encephalopathy is an umbrella term which refers to brain 
dysfunction, regardless of etiology and pathophysiology. 
A broad range of diseases are capable of causing encepha-
lopathy, including infections (whether or not the underly-
ing pathogen is able to invade the central nervous system, 
CNS) (Table  1). Encephalopathies are characterized as 
temporary or permanent disturbances of brain functions, 
and the clinical picture is widely variable depending on 
the etiology [1].

Peripheral infections caused by viruses, bacteria, or 
parasites may lead to a secondary inflammatory response 

in the brain, commonly known as neuroinflammation 
[27], through the action of inflammatory mediators 
which affect the brain endothelium and parenchyma, and 
a response of brain cells to these mediators [28]. There-
fore, this type of encephalopathy is not considered to be 
due to direct neurotropism, i.e., invasion of the CNS by 
the infectious agent. Numerous variables, such as inten-
sity, duration, and immunological imprinting [29], play 
relevant roles in defining each patient’s outcome; neu-
roinflammation has been causally linked to long-term 
neurological damage and to a range of cognitive and 
behavioral symptoms, including memory loss, cognitive 
impairment, anxiety, and depression. Indeed, neuro-
logical consequences associated with infectious diseases 
may even influence the future incidence and progno-
sis of neurodegenerative disorders [30], thus making 
their proper management a meaningful way of reducing 
the burden on public health systems. To date, however, 
there is no established treatment or prevention strategy 
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for the neurological damage associated with peripheral 
inflammation.

Peripheral immune responses can crosstalk with the 
brain through several pathways. Afferent nerves, includ-
ing the vagal nerves and trigeminal nerves, respond 
to circulating interleukin (IL)-1β [31–33]. In addition, 
vagotomized animals do not exhibit sickness behav-
ior after lipopolysaccharide (LPS) or IL-1β injection, 
despite increased peripheral cytokines levels [34, 35]. 
The humoral pathway involves macrophage-like cells 
present in the circumventricular organs and the choroid 
plexus, which express innate immune receptors that rec-
ognize pathogen-associated molecular patterns (PAMP), 
damage-associated molecular patterns (DAMP), and 
cytokines. The circumventricular organs do not appear 
to have an intact blood–brain barrier (BBB); therefore, 
inflammatory mediators are able to access the brain by 
volume diffusion, and the cytokine-saturable transport-
ers in the BBB allow the overflowing cytokines present 

in the peripheral circulation to enter the cerebral paren-
chyma [31, 36]. The last pathway involves the activation 
of IL-1 receptors expressed in perivascular macrophages 
and endothelial cells located in brain microvasculature 
that initiate a local immune response with local synthesis 
of prostaglandin E2 [37]. Furthermore, systemic inflam-
mation often leads to an increase in BBB permeability, 
and, in some cases, frank disruption. The loss of BBB 
integrity allows cytokines and immune cells to invade the 
brain parenchyma and directly affect neurons and glial 
cells [38] (Fig. 1). Glial activation is associated with cog-
nition, memory, and mood disorders, and is a hallmark of 
neuroinflammation [39, 40].

Neuroinflammation
Neuroinflammation, an inflammatory condition in the 
CNS, is a common feature of infectious disease-associ-
ated encephalopathies, which is mediated by cytokines, 
chemokines, reactive oxygen species, among others. 
These mediators are mainly produced by microglia and 
astrocytes, endothelial cells, and peripherally derived 
immune cells. Within the brain, cytokines are able to acti-
vate glial cells, modulate neurotransmitter metabolism, 
and lead to neurotoxic mechanisms [27, 39, 41]. After 
exposure to pro-inflammatory stimuli, microglia undergo 
morphological and functional changes, and orchestrate 
an immune response in the CNS. A pro-inflammatory 
milieu also leads to several pathological alterations 
in astroglia. This reactive astrogliosis is characterized 
by hypertrophy, a modified secretome, and increased 
expression of intermediate-filament proteins, especially 
glial fibrillary acidic protein (GFAP) and vimentin [42].

Cytokines exert deleterious effects on the brain, espe-
cially the hippocampus. IL-1β inhibits synaptic strength 
and long-term potentiation in the rodent hippocam-
pus, impacting neuronal morphology, synaptic plastic-
ity [43, 44], and memory and learning processes [45, 46]. 
Cytokines also affect brain function by modulating neu-
rotrophins. Brain-derived neurotrophic factor (BDNF) 
signaling is impaired by cytokines, particularly IL-1β 
[47]. Moreover, systemic injection of LPS has been shown 
to reduce BDNF, nerve growth factor (NGF), and neuro-
trophin-3 levels [48], and changes in levels of neurotro-
phins are known to impact synaptic plasticity, memory, 
and neuronal survival.

Neuronal cells are also affected by glial reactivity and 
the subsequent loss of the supportive function of glial 
cells. Astrocytes regulate the concentration of neu-
rotransmitters, such as gamma-aminobutyric acid 
(GABA), glutamate, and glycine at the synaptic cleft 
[49]. One of the major consequences of astrogliosis is 
loss of this function, resulting in glutamate toxicity [39]. 
Toxicity by glutamatergic activation are also mediated 

Table 1  Major pathogens implicated in infectious disease-
associated encephalopathy

Organism Specific References

Viruses Herpes simplex virus [2]

Human herpesvirus [3]

Influenza A virus [4]

Influenza A(H5N1) virus [4, 5]

Influenza B virus [4, 5]

Human immunodeficiency virus (HIV) [6]

Human T-cell lymphotropic virus (HTLV) [7]

Chikungunya virus [8]

Cytomegalovirus [9]

Dengue virus [10]

Rift valley fever virus [11]

Varicella zoster virus [3]

SARS-CoV [12]

Protozoa Toxoplasma gondii [13]

Trypanosoma cruzi [14]

Cryptococcus neoformans [15]

Cryptococcus gattii [15]

Plasmodium falciparum [16]

Plasmodium vivax [17, 18]

Bacteria Klebsiella pneumoniae [19]

Chlamydia pneumoniae [20]

Chlamydia psittaci [20]

Leptospira spp. [21]

Listeria monocytogenes [22]

Mycobacterium tuberculosis [23]

Mycoplasma pneumoniae [24]

Streptococcus pyogenes (group A) [25]

Streptococcus (group B) [26]
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by indoleamine-2,3 dioxygenase (IDO), an enzyme 
expressed by microglial cells [50]; in the presence of 
inflammatory mediators, including interferon (IFN)-γ 
and tumor necrosis factor (TNF)-α, IDO activity is mod-
ulated. Moreover, IDO is also involved in tryptophan-
serotonin availability suggesting that pro-inflammatory 
cytokines causes neurotransmitter disbalance [50, 51] 
(Fig. 2).

Sepsis‑associated encephalopathy
Definition and diagnosis
The brain is among the multiple organs affected by sep-
sis [52, 53]. Neurological complications associated with 
sepsis in the absence of CNS infection fall under the 

umbrella term sepsis-associated encephalopathy (SAE), 
which affects 70% of septic patients. It represents a risk 
factor for mortality, and survivors often face long-term 
disabilities [54, 55]. In its acute stage, SAE involves 
sickness behavior, lethargy, delirium, memory impair-
ment, mood disorders, and, in the most severe cases, 
coma. The diagnosis includes several clinical features 
such as disturbances in sleep–wake cycles, level of con-
sciousness in disagreement with the dose of sedative 
received, hallucinations, agitation, and other symptoms 
of delirium. Moreover, SAE may also lead to paratonic 
rigidity, and, in 70% of advanced cases, neuromyopa-
thy. Despite these features, SAE is basically a diagnosis 
of exclusion, with no specific clinical manifestations; it 

Fig. 1  Inflammatory signaling pathways to the brain. Systemic inflammation caused by pathogens, including viruses, bacteria, and parasites, 
leads to neuroinflammation with consequent cognitive and behavior impairments. The central nervous system is able to recognize systemic 
inflammation through (1) BBB dysfunction, with activation and apoptosis of endothelial cells, allowing cytokines and immune cells to invade the 
brain parenchyma; (2) the humoral pathway and saturable transport system in the blood–brain barrier (BBB), which involves the circumventricular 
organs (CVOs) and the choroid plexus, as local macrophage-like cells express innate immune receptors that recognize pathogen-associated 
molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and cytokines, allowing inflammatory mediators to access the 
brain by volume diffusion and through cytokine-saturable transporters, since the CVOs do not have an intact BBB; (3) through activation of the 
afferent nerves (including the vagal nerves in abdominal/visceral infections and the trigeminal nerve in oro-lingual infections) by cytokines; and 
(4) IL-1β pathway signaling, through activation of IL-1 receptors expressed in perivascular macrophages and endothelial cells located in the brain 
microvasculature, initiating a local immune response
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can be inferred and should be suspected after menin-
gitis, encephalitis, and septic emboli from endocarditis 
have been ruled out. Thus, the final diagnosis relies on 
the clinical context and evidence of infection in some 
part of the body [53].

Pathophysiology and biological alterations
The pathophysiology of SAE is complex and involves sev-
eral mechanisms, including neuroinflammation, ischemic 
processes, neurotransmitter imbalances, and mitochon-
drial dysfunction [56, 57]. The challenge in defining 
SAE pathophysiology is the involvement of nonspecific 
mechanisms and the lack of specific biomarkers. The 
systemic cytokine storm of sepsis increases BBB perme-
ability and leads to dysfunctions in microcirculation due 
to exacerbated endothelial-cell activation, resulting in 
microvascular tone impairment, coagulation activation, 
and ischemic lesions [58] (Fig. 3). In addition, SAE leads 
to increased expression and activity of endothelial nitric 
oxide synthase in neurons and glial cells [59, 60], result-
ing in augmented NO levels and, consequently, tissue 
edema and NO-mediated cell death [61, 62].

A decrease in brain volume, especially in the cortex 
and hippocampus, has been observed in clinical and 
experimental models of sepsis [63–65]. Damage to these 
brain areas are associated with impairments in long-term 
potentiation, affecting learning and memory in models 
of SAE [66]. Imaging changes can occur in the cortex, 
subcortical regions, and white matter. Magnetic reso-
nance imaging (MRI) changes are, in the most consist-
ently reported cases, due to cytotoxic edema (caused by 
hypoxia/ischemia) and vasogenic edema (due to BBB dis-
ruption) [67]. In patients diagnosed with some degree of 
SAE, mortality was directly related to the electroenceph-
alogram (EEG) severity [68].

Changes in neurotransmitter pathways (acetylcho-
line, GABA, dopamine, norepinephrine, serotonin and 
glutamate) are considered a hallmark of SAE and are 
closely related to delirium [69–75]. These changes are 
in part induced by increased IDO activity [70], but also 
due to increased plasma levels of the aromatic amino-
acid precursors of neurotransmitters, such as tyrosine, 

tryptophan, and phenylalanine, due to muscular proteol-
ysis and liver failure [71]. These alterations enhance CNS 
amino acid uptake, which directly impacts neurotrans-
mitter synthesis, leading to abnormalities in neurotrans-
mission [71–73].

During neuroinflammation, several changes occur in 
cellular metabolism, resulting in mitochondrial dysfunc-
tion [76–79], which involve ROS production, increased 
superoxide dismutase activity [80], energy deficit due 
to a decrease in adenosine triphosphate (ATP) genera-
tion, and cellular apoptosis triggered by the release of 
cytochrome c [76].

Therapeutic tools
Sepsis survivors are a complex and heterogeneous group, 
making it difficult to find a specific therapeutic target. 
To date, there are still no approaches to prevent or treat 
the neurological consequences of SAE or the subsequent 
cognitive decline. In clinical SAE, treatment is primarily 
symptomatic, despite the fact that these neurological def-
icits may persist for many years after hospital discharge 
[77]. Investigation of SAE therapies is a necessary and 
promising field.

Treatment of delirium requires identification and ces-
sation of any medication with anticholinergic, histamin-
ergic, and other psychotropic properties [78]. Sedatives 
and neuroleptics must be used with caution, and potent 
benzodiazepines such as lorazepam must be avoided. In 
some cases, low doses of neuroleptics may be adminis-
tered to improve sleep cycles. Dexmedetomidine was 
associated with shorter duration of clinical encephalopa-
thy, shorter ventilator time, and lower rates of mortality 
when compared to lorazepam [79]. Considering that the 
incidence of seizures in SAE is relatively low (10%), antie-
pileptic drugs should be avoided and only used when jus-
tified [81] (Table 2). Immunotherapy with an anti-TNF-α 
monoclonal antibody reduces mortality in patients with 
septic shock or high levels of circulating cytokines [82]. 
Despite this promising finding, there is no evidence that 
anti-TNF therapy can lead to clinical improvement of 
SAE.

In experimental sepsis, mesenchymal stro-
mal cells (MSC) mitigate BBB dysfunction and 

(See figure on next page.)
Fig. 2  Molecular and cellular mechanisms of neuroinflammation. Blood–brain barrier (BBB) dysfunction contributes to the process of 
neuroinflammation. After losing its integrity, the BBB allows circulating leukocytes (e.g., monocytes and neutrophils) and proinflammatory 
mediators, such as cytokines, to enter the brain parenchyma. Microglia and astrocytes proliferate, become reactive, and undergo functional and 
morphological changes. Microglial cells increase the release of reactive oxygen species, cytokines, chemokines, and indoleamine 2,3-dioxygenase 
(IDO) expression/activity, as well as decrease brain-derived neurotrophic factor (BDNF) expression. Astrocytes increase the expression of glial 
fibrillary acidic protein (GFAP) and vimentin, which cause morphological changes, losing their function as supportive glial cells and developing 
impairment of neurotransmitter recycling. Neuroinflammation also impacts neurons and synaptic transmission, leading to impairments in 
long-term potentiation (LTP) and neurotransmitter system dysfunctions
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neuroinflammation, reduce astrogliosis, and lead to 
long-term improvements in cognition and anxiety-like 
behavior [83], as well as resulting in better memory 

retrieval and decreased sepsis scores at acute time 
points [84]. Treatment with statins [85], antidepressants 
[86], and resveratrol [87] reduces microglial activation 

Fig. 2  (See legend on previous page.)
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and prevents long-term cognitive dysfunction [85] 
and attenuates cognitive and behavioral impairments 
[86, 87]. Mitochondria is a possible therapeutic target 
[88] and the use of the mitochondrial division inhibi-
tor Mdivi-1 attenuates oxidative stress and reduces cell 
death in the hippocampus [89].

Malaria
Definition and diagnosis
Malaria is caused by parasites of the gender Plasmodium 
[90]. In 2019, there were an estimated 229 million malaria 
cases in the world and 409,000 deaths [90]. The proper 
diagnosis of malaria is essential because identification of 

Fig. 3  Mechanisms implicated in neurological complications after infection. In COVID-19, SARS-CoV-2 can access the brain by a trans-synaptic 
route and also through endothelial and lymphocyte invasion, resulting in neuroinflammation. Lower thrombin, higher D-dimer, fibrin/
fibrinogen degradation products, and fibrinogen levels are frequent in COVID-19, and activation of the coagulation cascade may contribute to 
the development of stroke and cerebrovascular accidents. Brain-lung crosstalk is an axis involved in brain hypoxia due to systemic oxygenation 
reduction and, subsequently, secondary brain oxygenation damage. In sepsis-associated encephalopathy, the cytokine storm leads to endothelial 
activation and increased eNOS activity, which results in nitric oxide (NO) production, leading to hypotension and ischemic lesions. Cytokines trigger 
glial reactivity, reactive oxygen species (ROS) production, mitochondrial dysfunction, and neurotransmitter imbalances, with consequent glutamate 
excitotoxicity. In malaria infection, there is an exacerbated inflammatory response to the parasite and activation of multiple cell death pathways 
leading to microcirculatory damage. Endothelial dysfunction, platelet activation, cytoadherence, and a downregulation of normal endogenous 
anticoagulant pathways are hallmarks. Dysregulation of the coagulation pathway leads to microvascular lesions; thrombin may be implicated. In the 
process of hemoglobin digestion, the malaria parasite releases heme and aggregates it into hemozoin, a highly toxic and proinflammatory signaling 
molecule. Hemozoin and free heme released into the bloodstream lead to exacerbated inflammation, tissue damage, apoptosis of microvascular 
brain endothelial cells through activation of STAT3, and loss of BBB integrity through binding to the metalloproteinase MMP3. The proinflammatory 
milieu leads to microglial M1 phenotype activation, release of proinflammatory cytokines, astrogliosis, axonal injury, and increase in synapsin I. 
In influenza infection, there is a peripheral inflammatory response and release of several proinflammatory mediators, including interferons (IFs), 
interleukins (ILs), tumor necrosis factor (TNF), and chemokines. Both neurotropic and non-neurotropic strains of influenza are able to induce 
neuroinflammation, with microglial activation, decrease in neurotrophin levels, and increase in IFN-α and other proinflammatory cytokines
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the causative Plasmodium species is decisive for disease 
prognosis and choice of therapy. Diagnosis is simple and 
involves microscopic visualization of parasites in a blood 
sample or rapid diagnostic tests that detect enzymes or 
antigens from Plasmodium. In countries that have a high 
prevalence of P. falciparum, the causative agent of cer-
ebral malaria (CM), the rapid test for Plasmodium falci-
parum histidine-rich protein 2 (PfHRP2) is commonly 
used. Severe malaria carries high mortality rates [91, 92] 
due to complications as metabolic disorders, kidney fail-
ure, liver and lung disorders, anemia, and CM [93–96]. 
Cerebral malaria may lead to neurological complications 
(seizures, delirium, and coma) as well as cognitive defi-
cits in survivors [97] and is the leading cause of non-trau-
matic encephalopathy in endemic regions. Non-cerebral 
malaria may also impact the brain, leading to cognitive 
and behavioral deficits [17, 98–101].

Pathophysiology and biological alterations
The pathophysiology of CM involves apoptosis of 
endothelial cells, BBB rupture, and subsequent neuro-
inflammation [97], related to an exacerbated systemic 
inflammation associated with parasite presence and 
release of toxic molecules, such as heme and hemozoin 
[101–105]. Additionally, the neurological complica-
tions of CM suggest abnormalities in neurotransmitter 
release. Axonal injury has been observed, thus inter-
rupting neural integrity, distribution of neurosecretory 
granules, and the transport of enzymes and chemicals 
involved in the formation of neurotransmitters [103]. 
Pre-synaptic excitation and activation of synapsin I, a 
neuronal phosphoprotein that regulates exocytosis of 
synaptic vesicles and the release of neurotransmitters, 
have also been reported [104] (Fig. 3).

In patients with CM, brain autopsy shows: (1) cerebral 
edema, with blood vessels blocked by red blood cells 
and leukocytes, (2) malarial pigment hemozoin within 
the vessels, (3) petechial hemorrhages in the white mat-
ter, and (4) an abrupt transition from white to gray mat-
ter [105]. MRI in CM has revealed: (1) lesions mainly in 

the frontoparietal lobe, corpus callosum, and internal 
capsule [106], (2) vasogenic and cytotoxic edema mainly 
in posterior areas of the brain [107], and (3) focal or dif-
fuse lesions in the centrum semiovale, corpus callosum, 
thalamus, and cortex [106, 107]. Notably, cases of non-
cerebral malaria also show brain changes on MRI [108].

Therapeutic tools
Although its global impact remains high, malaria is a 
treatable disease. The main objective of current treat-
ment is to ensure elimination of the parasite. The devel-
opment of drug-resistant Plasmodium strains is a major 
obstacle to malaria control [109]. Chemoprophylaxis and 
chemotherapy are currently the only alternatives capable 
of controlling malaria. Rapid treatment prevents trans-
mission and the progression to severe forms of the dis-
ease, including death. The choice of antimalarial drug 
regimen is largely dependent on the causative species of 
Plasmodium, the severity of the disease, and whether the 
patient is part of a high-risk group (children, pregnant 
women, and immunosuppressed individuals) (Table  2). 
The current first-line treatment for cases of complicated 
malaria is combination therapy based on intravenous 
artesunate, artemisinin and its derivatives. Adjuvant 
therapies such as administration of antipyretics, anticon-
vulsants, anti-inflammatories, vasodilators, glucose infu-
sion, and blood transfusion are also used in complicated 
malaria [110]. Routine seizure prophylaxis and induced 
coma are not recommended in patients with CM. Like-
wise, the empirical administration of mannitol to reduce 
intracranial pressure [111] or phenobarbital or fosphe-
nytoin [112] is not recommended. Dexamethasone and 
other corticosteroids have been shown not to improve 
vasogenic edema, coma, or recovery, and are therefore 
not recommended [113, 114].

There are still no therapies to treat the neurological 
sequelae of CM. Several adjuvant therapies for severe 
malaria have been tested, such as: rosiglitazone [115–
118], statins [119], fasudil, and curcumin [120, 121]. In 
experimental cerebral malaria (ECM), several therapies 
have been studied with controversial results [122–139].

Table 2  Therapeutic approaches to sepsis, malaria, influenza, and COVID-19

Disease Clinical treatment

Sepsis Antibiotics for bacterial sepsis: piperacillin/tazobactam, ceftriaxone, cefepime, meropenem, imipenem/cilastatin

Antiviral drugs for viral sepsis: baloxavir, oseltamivir, peramivir and zanamivir for influenza-associated sepsis; 
cidofovir for adenoviral infections in immunocompromised patients

A combination of both antivirals and antibiotics is recommended for viral sepsis

Malaria Quinine, chloroquine, arthemether-lumefantrine, artesunate, artemisinin

Influenza Oseltamivir, peramivir, baloxavir, zanamivir

COVID-19 Dexamethasone (mechanically ventilated patients), tocilizumab (non-ventilated patients)
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Influenza
Definition and diagnosis
Influenza is an extremely contagious disease caused by 
a single-stranded RNA virus and a leading cause of ill-
ness and death worldwide, with an estimated of 1 billion 
cases, and 290,000–650,000 influenza-related respira-
tory deaths occurring every year [140]. Influenza A and 
B viruses lead to an acute respiratory infection with fever, 
cough, chills, myalgia, and headache [141]. Although 
most patients recover completely from influenza infec-
tion, there are short- and long-term consequences in the 
CNS. The most common extra-respiratory complications 
are encephalopathies, presenting as delirium, myelopa-
thy, seizures, and ataxia, among other manifestations 
which usually occur one week after the first symptoms 
of influenza [4]. Since 1918, various neurological and 
cognitive effects have been associated with influenza 
infection. During the 1918 pandemic, several cases of 
post-influenza psychosis were reported in Europe and 
the U.S. [122], followed by a nearly decade-long global 
epidemic of encephalitis lethargica, a complex condition 
which involves Parkinsonism, lethargy, and sleep disor-
ders [4]. In addition, several cases of other CNS disorders 
were reported in flu patients, suggesting that influenza 
may affect the brain and lead to long-term consequences 
[123]. Influenza-associated encephalopathies and other 
neurological complications were described in Japan and 
in several countries following the 2009 pandemic [142]. 
Fifty percent of patients infected with H1N1 presented 
neurological symptoms, such as headache, and 9% pre-
sented several neurological complications [143]. Moreo-
ver, recent outbreaks of seasonal flu have confirmed that 
neurological complications may arise as a consequence of 
influenza infections [124]. Nevertheless, the causal link 
between encephalitis lethargica and influenza remains 
controversial [125].

The diagnosis of influenza-associated encephalopathy 
is challenging due to a lack of specific criteria. Detection 
of influenza RNA in the cerebrospinal fluid, blood sam-
ples, and nasopharynx can confirm infection. EEG, brain 
computed tomography (CT) scan and/or MRI findings, 
this may suffice to confirm influenza encephalopathy 
[126, 127]. The major symptoms are headache, numb-
ness, drowsiness, seizures, and, in some cases, coma. 
Other symptoms such as focal or generalized weakness, 
vertigo, ataxia, dystonia, and speech disorders have been 
reported [128, 143].

Pathophysiology and biological alterations
Some influenza virus strains are considered neurotropic/
neurovirulent because they are able to enter the CNS 
through infection of microvascular endothelial cells or 
through the olfactory, vagus, trigeminal, and sympathetic 

nerves. Nevertheless, neurological complications have 
been reported after infection with neurotropic [129] and 
non-neurotropic [130, 131] virus strains alike. As most 
influenza virus strains are considered non-neurotropic, 
the neurological complications associated with influ-
enza infection likely occur as a consequence of systemic 
inflammation rather than direct viral invasion [123, 
131]. High levels of pro-inflammatory cytokines and 
chemokines are released into the circulation [144, 145] 
(Fig.  3). All viral infections, including influenza, elicit a 
type-I interferon response in the host, which is essential 
to control the infection [132, 133]. However, increased 
levels of IFN-α in the brain may contribute to cerebral 
damage, resulting in memory impairment and depres-
sion in humans [134]. In rodents, increased expression of 
IFN-α leads to neurodegeneration, neuroinflammation, 
and changes in cognitive function [135]. The non-neuro-
tropic H1N1 influenza strain has been associated with an 
increase in the hippocampus cytokine levels after infec-
tion [130], and spatial memory deficits associated with 
changes in hippocampal neuron morphology, increased 
microglial reactivity, and a decrease in neurotrophin 
expression levels have been reported [131].

In up to 50–55% of individuals with influenza-associ-
ated encephalopathy, brain CT scans are normal. MRI 
may show lesions in the corpus callosum, cerebellum, 
brain stem, and thalamus bilaterally. Changes in white 
matter, deep grey matter, and cortical areas may also be 
seen [127, 136–139].

Therapeutic tools
There are few studies about therapeutic approaches to 
treat the neurological complications associated with 
influenza; in clinical practice, treatment is essentially 
symptomatic. The main recommendation is to use antivi-
ral treatment as soon as possible to prevent the develop-
ment of neurological damage [127] (Table 2). The specific 
mechanism behind this effect remains unclear, but it is 
presumed that antiviral drugs inhibit viral expression and 
replication, which results in a diminished inflammatory 
response [146–148].

There are few reports of a combination of high-dose 
oseltamivir with glucocorticoids, such as methylpredni-
solone [149], and dexamethasone [150] with promising 
results. However, whether oseltamivir reaches sufficient 
concentrations to inhibit viral replication in the cerebro-
spinal fluid is unknown [151].

SARS‑CoV‑2 infection
Definition and diagnosis
Severe acute respiratory disease coronavirus 2 (SARS-
CoV-2) is a novel coronavirus that has rapidly dissemi-
nated worldwide, causing the coronavirus disease 2019 
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(COVID-19) pandemic [152]. COVID-19 presents a very 
heterogeneous clinical spectrum from no symptoms 
to multiple organ dysfunction syndrome (MODS) [12, 
153] Neurological symptoms can be present early in the 
course of the disease [154]; thus, the use of blood bio-
markers for diagnosis, such as proteins that have been 
described to be predictive of brain injury (e.g., S100B), 
could be helpful [154].

Pathophysiology and biological alterations
SARS-CoV-2 infects host cells by using its structural 
proteins—spike (particularly S1), envelope, matrix, and 
nucleocapsid—to bind angiotensin-converting enzyme-2 
(ACE2), a transmembrane protein widely disseminated 
in the respiratory tract, heart, lung, vessels, kidney, 
gut, and nervous system. Once bound to ACE2, SARS-
CoV-2 is primed by the transmembrane serine protease-2 
(TMPRSS2) in two subunits (S1 and S2). The resulting 
SARS-CoV-2/S1/ACE2 complex is translocated into the 
target cell, the S2 domain is cleaved, and the genome 
is released into the cytoplasm. Viral RNA is newly syn-
thetized and replicated, and new viral particles are 
then assembled and released to infect other cells [155]. 
Although SARS-CoV-2 enters host cells by endocytosis, 
three key hypotheses have been proposed for cerebral 
involvement: (1) direct viral neurotropism; (2) hyperin-
flammation and hypercoagulation [156]; and (3) brain-
lung cross-talk [157, 158] (Fig. 3).

Viral neurotropism may involve binding of SARS-
CoV-2 to ACE2 at peripheral nerve terminals, followed 
by retrograde trans-synaptic passage into the CNS [159]. 
Other mechanisms include leukocyte migration across 
the BBB or binding to endothelial cells, allowing the 
virus to cross the BBB via the microcirculation [157]. 
Clinically, neurological manifestations of neuro-invasion 
include smell and taste disorders, which occur in 39.2% 
of infected individuals [160], as confirmed by MRI find-
ings of cortical hyperintensity in the olfactory bulb and 
right gyrus rectus [144, 145]. SARS-CoV-2 has also been 
found in the brain parenchyma at autopsy, as has evi-
dence of a lymphocytic panencephalitis and meningitis 
[161]. Moreover, infection of the CNS by coronaviruses 
may be associated with demyelinating, multiple sclerosis-
like lesions [162]. However, the majority of cerebrospinal 
fluid samples are negative for SARS-CoV-2, limiting this 
hypothesis to few cases of COVID-19-related cerebral 
involvement [157, 163].

SARS-CoV-2 may pass to the systemic circulation, 
enhancing the local inflammatory response. Inflam-
mation is a main activator of the coagulation cascade, 
promoting hypercoagulability, vascular dysfunction, 
immunothrombosis, and diffuse endotheliitis [157]. The 
activation of hypercoagulability and pro-inflammation 

may induce an immune-mediated neuropathology with 
spontaneous or post-traumatic hemorrhages due to 
consumption coagulopathy, which can be enhanced by 
disseminated intravascular coagulation [157]. This hyper-
inflammatory state can lead to a cytokine storm extend-
ing to the nervous system, with possible acute necrotizing 
encephalitis (ANE) [164]. Stroke can also occur second-
ary to altered coagulative status in COVID-19 [165–168].

Finally, the brain-lung crosstalk axis is an underesti-
mated mechanism that suggests implications for venti-
latory management in the pathogenesis of COVID-19 
brain involvement. Reduced systemic oxygenation may 
affect brain tissue oxygenation, followed by second-
ary brain damage. Lung derangement may alter the fine 
balance between oxygen and carbon dioxide [169], an 
important determinant of cerebral homeostasis because 
of the changes in cerebral blood flow with consequent 
brain ischemia or hyperemia [157], eventually causing 
cerebral edema and loss of cerebral autoregulation [157]. 
Brain autopsies reported that acute brain hypoxic dam-
age to the cerebrum and cerebellum was present in 100% 
of COVID-19 deaths, without evidence of encephalitis or 
brain invasion [170].

Therapeutic tools
Emerging therapies for COVID-19 include antivirals, 
immunomodulators, and other agents. No specific 
therapies have been identified for SARS-CoV-2 brain 
involvement [12], although general principles regard-
ing neuro-ICU management (such as maintenance of 
appropriate mean arterial pressure and oxygenation) are 
warranted. Most of the drugs used against SARS-CoV-2 
are currently in clinical trials, and definitive evidence is 
urgently needed. Direct antiviral activity remains elusive. 
However, all these drugs do not have a specific effect on 
the CNS. Dexamethasone has been shown to decrease 
mortality in patients requiring ventilatory support [171]. 
The efficacy of corticosteroids in neurological disorders 
depends on the pathophysiology of the underlying condi-
tion. In case of encephalitis or demyelinating lesions, cor-
ticosteroids may improve the clinical response, while no 
recommendation can be made in neurological disorder 
associated with COVID-19.

The hypercoagulative state characteristic of COVID-
19 can be modulated with anticoagulants (e.g., hepa-
rin) which have been associated with better prognosis 
in those with markedly elevated D-dimer [172–175]. 
In non-ventilated COVID-19 patients, tocilizumab has 
been included among the medications able to reduce 
the likelihood of progression to mechanical ventilation 
or death, but it does not improve survival [176].

Finally, since COVID-19 is characterized by hypoxia, 
maintaining optimal oxygen delivery by modulating 
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the hemoglobin concentration, the cardiac output, 
and optimizing ventilator strategies in patients requir-
ing mechanical ventilation may be essential to pre-
venting hypoxic and ischemic brain damage [157, 177] 
(Table 2).

Conclusions
To date, no literature review has focused on infectious 
disease-associated encephalopathies. In this paper, we 
focused on four infectious diseases known to cause 
encephalopathy: sepsis, malaria, influenza, and, COVID-
19. Observing these infectious diseases caused by differ-
ent pathogens (bacteria, viruses, and parasites), which 
present different diagnostic challenges, distinct patho-
physiology and different therapeutic approaches allows 
us to compare the different processes (e.g., cytokine 
storm, ischemia, alterations in amino acid metabo-
lism) involved in the development of an encephalopa-
thy. Importantly, observing common points shared by 
these different diseases may help develop new or emerg-
ing therapies. Further studies focusing on the treatment 
of encephalopathies are urgently needed, as therapy 
remains largely supportive and most experimental stud-
ies have yet to reach clinical trials. Lastly, neuroinflam-
mation is a key and common factor between several CNS 
disorders, including infectious diseases from different 
etiologies. Thus, the search for therapeutic approaches to 
address infectious disease-associated encephalopathies 
must be prioritized to prevent and mitigate additional 
strain on already overburdened health systems.
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