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Abstract

Congenital Zika Syndrome (CZS) is a critical illness with a wide range of severity caused by

Zika virus (ZIKV) infection during pregnancy. Life-threatening neurodevelopmental dysfunc-

tions are among the most common phenotypes observed in affected newborns. Risk factors

that contribute to susceptibility and response to ZIKV infection may be related to the virus

itself, the environment, and maternal genetic background. Nevertheless, the newborn’s

genetic contribution to the critical illness is still not elucidated. Here, we aimed to identify

possible genetic variants as well as relevant biological pathways that might be associated

with CZS phenotypes. For this purpose, we performed a whole-exome sequencing in 40

children born to women with confirmed exposure to ZIKV during pregnancy. We investigated

the occurrence of rare harmful single-nucleotide variants (SNVs) possibly associated with

inborn errors in genes ontologically related to CZS phenotypes. Moreover, an exome-wide

association analysis was also performed using a case-control design (29 CZS cases and 11

controls), for both common and rare variants. Five out of the 29 CZS patients harbored

known pathogenic variants likely to contribute to mild to severe manifestations observed.

Approximately, 30% of affected individuals carried at least one pathogenic or likely patho-

genic SNV in genes candidates to play a role in CZS. Our common variant association anal-

ysis detected a suggestive protective effect of the rs2076469 in DISP3 gene (p-value: 1.39 x

10−5). The IL12RB2 gene (p-value: 2.18x10-11) also showed an unusual distribution of non-

synonymous rare SNVs in control samples. Finally, genes harboring harmful variants are
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involved in processes related to CZS phenotypes such as neurological development and

immunity. Therefore, both rare and common variations may be likely to contribute as the

underlying genetic cause of CZS susceptibility. The variations and pathways identified in

this study may also have implications for the development of therapeutic strategies in the

future.

Author summary

Since the beginning of Zika virus outbreak in Brazil, five years ago, we still don’t under-

stand the genetic factors associated with the small number of babies born with Congenital

Zika Syndrome (CZS). Here, we focused on the host genetic susceptibility by studying the

whole-exome of the CZS affected (n = 29) and healthy (n = 11) neonates, both born to

ZIKV infected women from Brazil. We applied two strategies: 1) Determine whether cases

individuals have pathogenic or harmful variants that explain the CZS outcomes (i.e.

microcephaly) independently of ZIKV infection or not, 2) Exploring the common and

rare variants association with CZS. We found that common and rare variants in genes like

DISP3 and IL12RB2 could explain some level of the susceptibility to CZS. Moreover, by

considering these and other candidate genes, we observed an over-representation of Gene

Ontology terms related to neurological system, metabolism and microtubule-cytoskeleton

organization.

Introduction

Novel and recurrent viral outbreaks are of enormous concern for global health management as

it can cause life-threatening illness and severe economic damage. Latin American countries

are at increased risk of spreading viruses due to favorable environmental conditions and lim-

ited resources to fight infections. In the past few years, Brazil has been struggling with several

arboviral outbreaks such as Yellow fever, Dengue, Zika, and Chikungunya [1]. Specifically,

Zika virus (ZIKV) infection has been under the spotlight due to the association of its vertical

transmission with microcephaly and even death of fetuses during pregnancy [2–6]. These out-

comes and other neurological impairments are part of the so-called Congenital Zika Syndrome

(CZS) [7].

CZS is a complex phenotype and several risk factors may contribute to its susceptibility and

severity. These include factors related to the virus itself, to the environment, and to maternal

and children’s genetic background. Viral-related factors include ZIKV genetic diversity and

coinfection events with chikungunya virus (CHIKV) [8] or previous dengue virus (DENV)

[9]. Among maternal factors, it was described that gestational age at the moment of ZIKV

infection, the immune response at the maternal-fetal interface [10] and genetic variation in

adenylate cyclases [11] and TLR3 [12] genes are associated with CZS outcomes.

Transcriptome- and exome-wide analyses of dizygotic twin pairs, discordant for CZS,

revealed differential gene expression signature in mTOR and Wnt pathways, both involved in

cell proliferation and cell migration processes [13]. Polymorphisms of collagen-family genes

and extracellular matrix alterations were also found in postmortem brains of CZS neonates,

suggesting an underlying molecular mechanism for neurological malformations [14]. A pre-

liminary analysis has also suggested a role for TNF polymorphisms in severe microcephaly
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[12]. However, most of the studies cited above include a small sample size and a clear role for

genetic variations in children and CZS still remains to be determined.

From 2015 to 2020, 3,534 cases of CZS were confirmed in Brazil, including 239 stillborn [15].

This number may be even higher considering the suspected cases. According to the Brazilian

Ministry of Health data, most of the cases were found in Northeast (56%) and Southeast (26.7%)

regions of the country (Fig 1A). Nearly half of cases were observed during late 2015 and 2016,

decreasing after late 2017 (Fig 1B). In this work, we explore the genetic basis of susceptibility to

CZS in newborns by analyzing the whole-exome data of 40 unrelated infants, originated from the

most affected regions of Brazil, exposed to ZIKV during pregnancy and presenting different clini-

cal neurological outcomes (Fig 1C). We analyzed common and rare variants aiming to determine

pathogenic or likely pathogenic variants that could explain the CZS phenotype. Furthermore, we

seek genetic association with CZS in children exposed to ZIKV during pregnancy. To our knowl-

edge, this is the largest cohort of children exposed to ZIKV infection sequenced to date.

Methods

Ethics statement

This study was approved by the Institutional Ethical Committee number

52888616.4.0000.5693 and 52675616.0.000.5269. All patients agreed to participate and signed a

consent form.

Sampling and phenotypic information

During the first outbreak of ZIKV in Brazil (July 2015—June 2016), pregnant women with

acute febrile illness with a rash, fetal CNS abnormalities at prenatal ultrasonography, or post-

natal microcephaly or other CNS malformation that was believed to be characteristic of con-

genital infection were referred to the Microcephaly Reference Center Instituto de Pesquisa

Professor Amorim Neto (IPESQ) in Campina Grande (Paraı́ba, Brazil) or Instituto Fernandes

Figueira–Fiocruz (Rio de Janeiro, Brazil). Detailed demographic, medical, and prenatal history

information, as well as clinical findings, was entered into case report forms by multidisciplin-

ary medical teams. The onset symptoms included fever, exanthema, arthralgia, conjunctivitis,

and headache in the pregnant women during gestation. All women were referred for at least

one fetal ultrasonography during gestation and magnetic resonance imaging. Just after birth,

the cephalic perimeter was measured and the percentile was calculated according to the

expected for the gestational age 1. Microcephaly was confirmed at the birth by measuring the

cephalic perimeter in which the head circumference was less than 2 SDs for gestational age in

most infants. Postnatal head computed tomography was also performed.

ZIKV infection during pregnancy was confirmed in the mothers or babies by serological tests

(ELISA IgM/IgG) and RT-qPCR analysis targeting the env virus gene [16] (S1 Table). ZIKV

RNA was detected in fluid samples, including blood, urine, amniotic fluid obtained by amnio-

centesis during gestation, or in other fluids after birth (amniotic fluid, cord blood, or both) [14].

Dengue and chikungunya, arboviruses that circulate in the same area, and other congenital

pathogens (syphilis, cytomegalovirus, herpes virus 1/2, Toxoplasma gondii, and rubella) were

excluded in all cases by IgM / IgG serological enzyme-linked immunosorbent assay (ELISA).

After birth, 29 children that showed microcephaly or other neurological abnormalities

(brain calcifications, ventriculomegaly, cortical malformations, agyria/ lissencephaly, congeni-

tal contractures and ocular abnormalities) were considered as cases and 11 children without

any CZS outcome were considered as controls (Tables 1 and S1). All participants were exposed

to ZIKV infection during pregnancy confirmed by RT-qPCR or/and serology.
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Fig 1. Geographical and temporal distribution, and Population Structure Analysis of Congenital Zika Syndrome (CZS) cohorts from Northeast and Southeast

Brazil. (A) The map shows the accumulated distribution of CZS cases and the states in which the individuals were sampled (Coordenação-Geral de Vigilância das

Arboviroses, 2020). In the Northeast, individuals were sampled in Paraiba state and in Southeast, individuals were sampled in Rio de Janeiro. (B) Bar plots show

accumulated temporal distribution of CZS cases from the first outbreak in Brazil (2015) until present. (C) The cartoon shows the sampling design for cases and controls.

Both types of individuals were sampled from ZIKV infected mothers. (D) Principal Component Analysis of the exome data of 40 Brazilian individuals with and without

Congenital Zika Syndrome. Purple and yellow forms represent CZS and control individuals, respectively. Squares and circles represent Northeast (Paraiba) and

Southeast (Rio de Janeiro) individuals, respectively.

https://doi.org/10.1371/journal.pntd.0009507.g001
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DNA extraction and whole-exome sequencing analysis

DNA samples were obtained from peripheral blood using QIAmp DNA Mini Kit (QIAGEN),

according to the manufacturer’s instructions. Library preparations were performed using

three different kits (S1 Table): Illumina TruSeq Exome, Agilent and Roche sequencing kits

according to the manufacturer’s protocols. For TrueSeq and Agilent libraries, we performed

the sequencing using Illumina NextSeq 500/550 High Output Kit v2 (150 cycles), generating

2x75 bp paired-end reads. For Roche library, we used Illumina Hiseq X Ten.

Raw data files were processed separately for each sample. Short reads were mapped to the

human reference genome (GRCh38/hg38) using Bowtie2 version 2.3.4.1 [17]. The output files

in SAM format were converted to BAM files, sorted and filtered by MAPping Quality

(MAPQ > 30) using samtools version 1.3 [17,18]. Duplicated reads were later identified using

MarkDuplicates from Picard software version 2.18 (http://picard.sourceforge.net/). Single

Nucleotide Variants (SNVs) and small insertion and deletions (INDELS) calling was per-

formed using the HaplotypeCaller tool from Genome Analysis Toolkit (GATK) version 4.1

[19] with a combined dataset. Best practices steps for variant calling were followed, including

variant quality filtration and base recalibration according to the GATK protocols [20]. SnpEff

and SnpSift software version 4.3 [21] and the Ensembl Variant Effect Predictor (VEP) [22]

were used to predict genetic effects and molecular impacts of the variants called. Next,

dbGWAS [23] and ClinVar [24] information were used to identify variants previously associ-

ated with microcephaly phenotype as well as those with clinical significance. The Minor Allele

Frequency (MAF) was annotated for each variant according to the global variant frequencies

in dbSNP [25], 1000Genomes [26], ExAC [27], GnomAD [27].

After merging all exome sequences, missing data in at least two individuals and variants out

of the Hardy-Weinberg equilibrium (1 x 10−6 threshold for cases and 1 x 10−10 for controls)

were excluded from our analysis using PLINK [28]. We test for relatedness by inferring the

kinship coefficient with REAP [29] (S1 Text). Varsome (https://varsome.com/) was used to

annotate pathogenicity status according to ACMG classification and interpretation of clinical

genetic variant effects. Raw data of this study is publicly available in SRA-NCBI (www.ncbi.

nlm.nih.gov/sra), SRA accession PRJNA655497 and PRJNA517145.

Potentially pathogenic variants in genes associated with CZS phenotypes

In order to identify variants with a potential pathogenic effect in our cohort, we interrogated

variants with deleterious profiles according to computational predictors (SIFT, PolyPhen,

CADD and LoFtool). Potentially pathogenic variants refer to SNVs found using computational

Table 1. Clinical and demographic characteristics of the study cohort.

CZS cases (N = 29) Controls (N = 11)

Sex

Male 11 (38%) 3 (27%)

Female 18 (62%) 8 (73%)

Trimester of exposure to ZIKV

First trimester 19 (65.5%) 3 (27%)

Second/third trimester 7 (24.2%) 7 (64%)

Unknown 3 (10.3%) 1 (9%)

Death 8 (27,6%) 0

CZS = Congenital Zika Syndrome.

https://doi.org/10.1371/journal.pntd.0009507.t001

PLOS NEGLECTED TROPICAL DISEASES Genetics and Congenital Zika Syndrome

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009507 June 14, 2021 5 / 17

http://picard.sourceforge.net/
https://varsome.com/
http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra
https://doi.org/10.1371/journal.pntd.0009507.t001
https://doi.org/10.1371/journal.pntd.0009507


predictors criteria that have not yet been clinically validated. We selected variants with zigozity

profiles in each patient consistent with the phenotypic inheritance pattern of genes related to

symptoms characteristic of CZS. We identify these genes by querying the Human Phenotype

Ontology (HPO; https://hpo.jax.org/) database (S1 Text) [14]. Then, we prioritize rare nonsy-

nonymous variants (MAF < 5%) and sort out those with a deleterious profile according to

computational predictors.

Association analyses

Population structure and confounding variables. To infer population structure and

ancestry proportions, we performed a Principal component analysis (PCA) using SNPRelate

[30] and a genetic clustering using ADMIXTURE [31] (S1 Text). To determine if population

structure or a non-genetic variable explain the differentiation between cases and controls, we

performed association analyses among the phenotype (CZS/Control) and 10 first principal

components (Fig 1D), ancestry proportions, sex, and timing of gestational exposure to ZIKV

(S1 Text). CZS cases and controls were compared using Fisher exact tests for categorical vari-

ables (Sex and the timing of gestational exposure to ZIKV) and Wilcoxon rank-sum tests for

continuous variables (ancestry proportions and principal components).

Variant-based association analyses. For this approach, we performed a MAF filter

(MAF > 5%) on our dataset. Using this dataset, we tested for association between each com-

mon variant with CZS using a Firth’s logistic regression. We applied the Firth’s logistic regres-

sion due to our small and unbalanced sample size [32], avoiding the traditional logistic

regression because of the need for more than 500 individuals to have a good inference of

parameters [33]. Moreover, considering our sample size and a minor allele frequency of 0.3,

the minimum OR value to achieve power of 80% under an additive model would be 7.5 for

risk effect and 0.13, considering a protective effect.

The exome-wide analysis was performed under an additive model using the R package

logistf. Variants with p-value < 5 x 10−4 were also analyzed under a dominant model. R scripts

for running and plotting the logistic analyses are freely available on https://github.com/vicbp1/

Genetic-Arquitecture-of-Zika.git.

Gene-based association analyses. Due to the potential to cause disease, we also focused

on rare nonsynonymous variants in coding regions. We investigated whether the patterns of

accumulation and distribution of genes harboring more rare variants have an effect on the

CZS phenotype. Genes with less than three rare variants were filtered out according to Dutta

et al. [34]. We applied the C-alpha and SKAT approaches and set a stringent significance

threshold at 8 × 10−6 corresponding to the Bonferroni adjustment for 6,219 genes (S1 Text).

SKAT approach was run with and without adjustment for covariates (S1 Text). Finally, in

order to associate the biological relevance of mutated genes to the patient’s clinical outcome,

we performed an enrichment analysis using Gene Ontology and KEGG in clusterProfiler [35],

and Reactome in ReactomePA package [36].

Results

Whole-exome sequencing analysis

The whole-exome sequencing (WES) performed in the 40 patients reached, on average, 98% of

the reads mapped to the reference genome. Targeted exonic regions achieved a mean of cover-

age of 125-fold with a per-base depth greater than 20-fold in 92% of the sites (S1 Table). We

were able to identify a total of 378,649 SNVs across the 40 individuals. Among the variants tar-

geting coding regions, 46% of them were missense, followed by synonymous (42%), splice sites

(9%), frameshift (1%), insertions and deletions in frame (1%), and nonsense (1%) variations.
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Next, we separated the variant table into two distinct dataset containing common SNVs in our

cohort and rare variations according to the population databases, respectively. The S1 Fig

describes the workflow followed in the present study. After removing low-quality SNVs and

filtering out missing data, we selected 144,153 sites with allele frequency greater than 5% in

our cohort to be used in the association analysis based on a case-control design (29 CZS cases

and 11 controls). The second dataset included 38,361 rare nonsynonymous SNVs with

MAF < 5% in GnomAD and 1000Genomes (S2 Fig) in order to perform a gene-based associa-

tion analysis and prioritize pathogenic variants.

WES analysis unveiled known germline pathogenic variants across CZS

patients

Three well-established germline pathogenic variants were identified in three genes known to

cause genetic disorders. All variants were found in heterozygosity with the wild type allele in

genes previously associated with phenotypes supporting a dominant effect. The amount of read

sequences carrying the pathogenic allele in each site was greater than 90 reads for all patients.

Two CZS-affected individuals, CZS_8 and CZS_27, both females, carried the variant rs1050828

(MAF gnomAD: 0.009) in G6PD gene associated with hemolytic anemia due to G6PD deficiency

(OMIM #300908) in an X-linked dominant manner. Furthermore, two affected males, CZS_18

and CZS_25, carried a pathogenic variant (rs61755320; MAF gnomAD: 0.0029) that promotes an

Alanine to Valine modification in the SPG7 gene causing spastic paraplegia 7 (OMIM #607259).

In the affected individual CZS_28, a female patient, we reported the missense variant

rs118192168 (MAF gnomAD: 0.00001) in RYR1 gene previously associated with susceptibility to

malignant hyperthermia (OMIM #145600), central core disease (OMIM #117000), and minicore

myopathy with external ophthalmoplegia (OMIM #255320). Therefore, known pathogenic

mutations (i.e. those previously reported as pathogenic in the databases used) are likely to con-

tribute to mild to severe manifestations observed in five out of the 29 cases.

Potentially pathogenic variants in genes associated with CZS phenotypes

Our search for novel candidate pathogenic variants was focused on a list of genes ontologically

related to common phenotypes observed in CZS (S1 Text). We identified 38 rare SNVs com-

putationally predicted as potential candidates to cause damage spread across 33 genes (S2

Table). All variants were heterozygous in genes associated with autosomal dominant pheno-

types, being most of them classified as uncertain significance following the ACMG/AMP stan-

dards rules for classification of genetic variants [37]. The C6 gene showed the greatest number

of likely pathogenic variants among the highlighted genes. Patients CZS_4 and CZS_27 shared

the same rare SNV (rs375762365, MAF gnomAD:0.00188) characterized as likely pathogenic in

C6 gene. We also observed a large number of deleterious variants in the affected individual

CZS_22 (Fig 2 and S2 Table).

We found two pathogenic variants in the CAPN3 (rs80338802; MAF gnomAD: 0.00003) and

FIG4 (rs121908287; MAF gnomAD 0.00098) genes in patients CZS_26 and CZS_22, respectively.

The heterozygous missense variant found in CAPN3 was previously associated with muscular

dystrophy, limb-girdle, autosomal recessive 1 (OMIM #253600). However, autosomal domi-

nant forms of the disease were also associated with variants in this gene. The rs121908287 in

the FIG4 gene was reported as related to Charcot-Marie-Tooth disease, type 4J (OMIM

#609390) when found in compound heterozygosity with a second FIG4 pathogenic variant.

Nevertheless, we did not observe the second pathogenic allele in the CZS_22 patient.

Seven likely pathogenic variants were identified in six genes (COL2A1, CRB1, FGFR3,

FLNB, SHH and C6), being six of them missense and one frameshift (Fig 2 and S2 Table). We
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also found 12 novel variants in FGFR3, FBN2, TNXB, KMT2A, CHD4, COL4A2, SYT2,

ZNF423, RNF213, DNM2, and LMNB2 genes of seven CZS patients (S2 Table). With exception

made for patients CZS_25 and CZS_27, that carried both known and likely pathogenic muta-

tions previously described, more than 30% (n = 10/29) of the affected individuals harbored at

least one harmful SNV classified as pathogenic or likely pathogenic in genes related to CZS.

DISP3 and IL12RB2 as likely candidate genes associated with CZS

Previous sections showed that some pathogenic variants could mislead our association analy-

sis. For this reason, association tests were conducted using the complete dataset of patients

(n = 40) and a subset (n = 35) by excluding five CZS individuals with known pathogenic

SNVs. We performed association analysis at two levels: variant-based and gene-based analyses.

Due to our small sample size, we did not reach the statistical significance for a typical genome-

wide analysis (5 x 10−8). However, by analyzing the differentiation between affected and

healthy individuals, we identified candidate associations among the CZS outcome and SNVs

and genes.

Fig 2. Co-occurrence of rare non-synonymous variants in genes associated with CZS phenotypes. Comut plot representation of harmful genetic variants in a series of

22 newborns with CZS. (Right) Frequency of variants per patient ranked by the number of mutations. (Middle) Heat-map of variants in each patient for an individual

gene by the type of mutation. (Bottom) Human Phenotype Ontology term associated with each gene. Asterisk indicates genes with likely pathogenicity variants.

https://doi.org/10.1371/journal.pntd.0009507.g002
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After testing for association between the phenotype with ancestry proportions and non-

genetic variables, we observed a significant association between the timing of gestational expo-

sure to ZIKV (p-value: 0.03, S3 Fig and S3 Table), which was included for adjustment in the

common and rare variant analyses. Moreover, we detected some level of population structure

on the sample related to the geographical origin but apparently not to the CZS condition (Figs

1D and S3).

After removing SNVs with MAF below 5% in our cohort, we kept 144,153 variants. Results

of the Firth’s logistic regression under the additive model are shown in Fig 3 (See also S4 and

S5 Figs and S4 and S5 Tables). None of the variants reached a genome-wide significance level

(lowest adjusted p-value: 1.16 x 10−5). Moreover, the inflation in analysis due to population

structure was not observed (Figs 3, S4 and S5, λGC = 0.903). Interestingly, both FBXO34
(rs1045002; MAF gnomAD: 0.3837; Odd ratio: 0.041; 95% CI: 0.0003–0.3081) and MYO15B
(rs820152; MAF gnomAD: 0.3219; Odd ratio: 0.1294; 95% CI: 0.0229–0.4385) showed missense

mutations with protective effect (S4 and S5 Tables). Overall, 27 variants of 17 genes were asso-

ciated with CZS under a suggestive threshold of 5 x 10−4 (S4 Table). When these variants were

analyzed under a dominant model, a strong protective effect was observed for rs2076469 with

higher significance, at DISP3 gene (S4 and S5 Tables, MAF gnomAD: 0.2375; Odd ratio: 0.0126;

95% CI: 0.0001–0.1223; lowest adjusted p-value < 6.32 x 10−6).

Next, we investigated whether the patterns of accumulation and distribution of rare variants

in SNP sets were different among cases and controls. We applied the C-alpha test [38] and

SKAT Binary [39] to analyze 33,417 rare nonsynonymous (MAF < 5%) variants across 6,219

genes. We found that the IL12RB2 gene showed the most significant unusual distribution of

rare variants in our cohort for both approaches (lowest p-value C-alpha < 2.18x10-11 and lowest

p-value SKAT Binary Adjusted: 4.1x10-4; S6, S7 and S8 Tables and Fig 3B). Interestingly, most of the

rare alleles in this gene were observed in controls. Both results from common and rare analyses

were in congruence with the CZS reduced dataset results.

Enrichment analysis unveils variations in biological pathways associated

with CZS

We investigated the biological significance of the genes prioritized in our analyses, including

those with harmful SNVs and harboring common and rare variants highlighted by association

analyses. We performed functional enrichment analysis using GO terms, KEGG, and Reactome.

Gene ontology over-representation approach revealed 20 GO terms significantly enriched in our

gene set (p-value< 0.05; Bonferroni method; S9 Table) related to extracellular matrix organiza-

tion, transmembrane receptor protein serine/threonine kinase signaling pathway, calcium ion

transport, nervous system development and regulation of Wnt signaling pathway (S9 Table).

Alterations in collagen family genes significantly contributed to enrichment in pathways linked

to assembly and degradation of extracellular matrix organization through collagen fibrils forma-

tion (S10 Table). We also found differentiation in immune system pathways associated with the

TLR signaling cascade due to mutations in TLR2 and TLR3 genes. Furthermore, nine mutated

genes (CHD4, COL2A1, COL4A2, COL9A2, EGF, ITGB4, TERT, TLR3, TNXB) belonged the

same pathway of the Human papillomavirus infection (hsa05165) according to KEGG over-

representation analysis. Focal adhesion, ECM-receptor interaction, and PI3K-Akt signaling

pathway were also significantly enriched in our analysis (S11 Table).

Discussion

The risk of CZS has been a major concern for women exposed to ZIKV infection early in preg-

nancy [40,41]. Previous studies showed that genetic and epigenetic factors, such as DNA
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Fig 3. Association analyses of common and rare variants. (A) Manhattan plot of the Firth’s logistic modelling for common variants of the CZS dataset (n = 35). We

modeled the parameters considering the binary response (CZS / Control) and the genetic variants while adjusting for the gestational exposure to ZIKV in the mother.

Each point corresponds to a genetic variant. (B) Manhattan plot of the results of the C-alpha test of the CZS dataset (n = 35), we determine the differential distribution

and accumulation of rare variants grouped in genes between cases and controls. Each point represents a gene.

https://doi.org/10.1371/journal.pntd.0009507.g003
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variations and maternal protein malnutrition, may contribute to this disorder [10,11,42].

Thus, to address genetic variation and susceptibility to life-threatening neurodevelopmental

dysfunctions in CZS patients, we carried out an exome-wide screening in 40 children with and

without CZS born to ZIKV infected mothers. To date, this cohort comprehends the largest

group of ZIKV infected patients ever sequenced using a high-throughput approach. We identi-

fied candidate variants in genes that could play a protective/deleterious role for CZS

susceptibility.

Many monogenic disorders may overlap common symptoms found in CZS. Thus, identify-

ing pathogenic variants at individual level are crucial to avoid misclassification of children

with mendelian phenotypes as CZS cases. Indeed, well-established germline pathogenic muta-

tions were identified in five cases. These mutations were likely to contribute to the clinical

symptoms observed, since the inheritance pattern of the corresponding genetic disorder was

dominant and the patients were heterozygous. Mutations in SPG7 and RYR1 genes are associ-

ated with muscle developmental impairment causing paraplegia and myopathy, respectively

[43]. Both phenotypes challenge the CZS diagnosis in these patients due to possible overlap-

ping effects. Also, deficiency in G6PD gene seems to enhance susceptibility to viral infection

[44–46]. Therefore, further association analyses were also conducted excluding these individu-

als to avoid a possible confounding, and similar results were found.

Host inter-individual variations in genes responsible for human leukocyte antigen (HLA),

innate immunity and cell receptors greatly contribute to differences in the clinical course of

viral infection among patients [47,48]. Genes included in these categories usually undergo dif-

ferential expression profiles during ZIKV infection mostly associated with extracellular matrix,

cell adhesion, collagen-encoding as well as mTOR and Wnt pathways [13,14,49]. Interestingly,

two genes reported in our analysis, FGFR3 and ITGB4 (S2 Table), were upregulated in the

brain of patients with CZS [14]. Both are important in the regulation of bone development and

cell-cell adhesion. We found a novel harmful variant in FGFR3 classified as likely pathogenic

according to ACMG criteria. Heterozygous mutations in this gene are known cause of achon-

droplasia (OMIM #100800), hypochondroplasia (OMIM #146000) and others congenital

abnormalities. Likely pathogenic variants were also identified in COL2A1, CRB1, FLNB, SHH,

and C6. Overall, these genes were mostly linked to disorders of immunity, ocular abnormali-

ties, ventriculomegaly and abnormality of neuronal migration. Our analysis enabled the identi-

fication of rare variations that might help to explain the clinical phenotypes, but with no

impact on the association analysis due to their low frequencies.

We were unable to find associations among common variants at a genome-wide signifi-

cance level due to the small sample size. However, results of Firth’s logistic regression analyses

under an additive model showed a protective effect for variants at FBXO34, TACC2, MYO15B
and DISP3 genes when a suggestive significance level (5 x 10−4) was adopted. This threshold,

although arbitrary, helps us to select the highly differentiated variants between cases and con-

trols. Despite these variants not reaching the statistical significance for a typical genome-wide

analysis (usually 5 x 10−8), they showed clear differences in the allelic frequencies between

cases and controls and are probably valuable candidates for further investigation. Additionally,

under a dominant model, we detected a suggestive association for SNV rs2076469, at DISP3
gene, which is highly expressed in neural tissue with impact on the proliferation and differenti-

ation of neural precursors [50].

Furthermore, our gene-based analyses showed the IL12RB2 gene as the most significant

results after adjustment for covariates and multiple comparisons. This gene encodes a trans-

membrane protein, corresponding to a subunit of interleukin 12 (IL-12) receptor. IL-12 regu-

lates natural killer (NK) responses, differentiation of Th1 cells and induces interferon-gamma

production. NK cells are important in early response against intracellular pathogens like ZIKV
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or CHIKV [51], being detected in the fetal liver as early as at 6th week of gestation [52].

Recently, Messias et al. [49] demonstrated that IL12β subunit was upregulated in ZIKV

infected thymic epithelial cells. These results suggest a possible role for IL-12 signaling in

early-response to ZIKV infection.

Our findings suggest an over-representation of pathways involved in proliferation of neural

stem cells and viral-induced infection such as PI3K-Akt signaling pathway. In addition, accu-

mulation of damage in biological pathways required for regulation of cellular homeostasis (e.g

focal adhesion and protein digestion and absorption) through variations in structural and

functional proteins such from collagen family seems to be the underlying mechanism of ZIKV

infection. Collagen genes (COL) are part of the extracellular matrix and are essential for the

development of the brain and the blood-brain barrier [53]. It was suggested that COL genes

interact with some virus during infection [54]. Moreover, Aguiar et al. [14] demonstrated the

upregulation pattern of COL genes in microcephalic children associated with ZIKV infection

during pregnancy [14]. We also found differentiation in immune system pathways related to

the TLR signaling cascade due to mutations in TLR2 and TLR3 genes. Santos et al. (2019)

firstly described the association between the rs3775291 in TLR3 and CZS cases [12].

The main limitation of our study was the small sample size, which reduces our power to

detect associations at a genome-wide significance level and also reduces precision of the effect

estimates. Therefore, replication studies in independent cohorts are still required to validate

the associations observed. Nonetheless, this is the largest cohort of children with the rare phe-

notype of CZS analyzed at exome-wide level to date. In addition, the present study was the first

to include a detailed analysis of possible confounding covariates such as population stratifica-

tion. Our results were all controlled for the time of ZIKV exposure during pregnancy, which

has been clearly associated with CZS outcome.

In the present study, we provided a comprehensive screening for the role of children’s

genetic background, where cases and controls had the same ZIKV exposure. Despite its limita-

tions, this research highlighted promising candidates SNVs affecting pathways associated with

CZS defects to be used for larger studies and functional validation. Our findings suggest that

the complex phenotype of CZS may be mainly related to (i) the presence of known pathogenic

variants in affected individuals, (ii) harmful variations associated with inborn genetic errors,

and (iii) protective effect of SNVs in DISP3 and IL12RB2 genes. The potential protective asso-

ciations for rs2076469 at the DISP3 gene may play a role in CZS pathogenesis due to its associ-

ation with neuronal proliferation and differentiation, both phenotypes are commonly altered

in CZS. In addition, the presence of rare variants in IL12RB2 gene sheds light on possible con-

tributions of early immune-response to ZIKV infection. Description of genetic factors influ-

encing the pathology of ZIKV infection have direct implications for development of

therapeutic strategies as well as surveillance and even protection from ZIKV infection.

Supporting information

S1 Fig. Workflow diagram for the identification of pathogenic variants and association

analyses for CZS phenotypes. The left panel describes the quality control process for the iden-

tification of damaging variants, and association analyses. The right panel showed the two asso-

ciation approaches performed (single variant and gene-based approaches) and the selection of

genes for Enrichment Analysis.

(TIF)

S2 Fig. Common and rare single nucleotide variants filtering strategies in WES data. A)

Filtering strategy used to select common variants (MAF > 5%) in our cohort including non-

coding, synonymous and non-synonymous SNVs. B) Rare variants prioritization, and C)
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Proportion of non-synonymous classification of rare SNVs in CZS patients.

(TIF)

S3 Fig. Population Structure Analysis of Congenital Zika Syndrome (CZS) cohorts from

Northeast and Southeast Brazil. A) Principal component Analysis of Zika cohorts from Para-

iba and Rio de Janeiro inferred for 19,402 variants of the CZS_cleandataset_LD_pruned data-

set. B) Bar plots show the ancestry proportion for three reference ancestries in each individual

resulting from ADMIXTURE K = 3 on the CZS_cleandataset_LD_pruned_1KGP. Red, green

and blue proportions are related to European, Native American and African ancestry propor-

tions, respectively.

(TIF)

S4 Fig. Q-Q plots for Firth’s regression analysis of the reduced dataset (n = 35). A) Q-Q

plot for the unadjusted Firth’s regression analysis. B) Q-Q plot for the Firth’s regression analy-

sis adjusted by timing of gestational exposure to ZIKV.

(TIF)

S5 Fig. Manhattan and Q-Q plots for Firth’s regression analysis of the complete dataset

(n = 40). (Top) Manhattan and Q-Q plot for the unadjusted Firth’s regression analysis. (Bot-

tom) Manhattan and Q-Q plot for the Firth’s regression analysis adjusted by timing of gesta-

tional exposure to ZIKV.

(TIF)
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S9 Table. Gene Ontology overrepresentation analysis of the relevant genes obtained in this

study.
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Rossi, Zilton F. M. Vasconcelos, Fabio R. Faucz, Constantine A. Stratakis, Renato S. Aguiar,

Cynthia Chester Cardoso, Ana Tereza Ribeiro de Vasconcelos.

References
1. Martinez JD, Garza JAC la, Cuellar-Barboza A. Going Viral 2019: Zika, Chikungunya, and Dengue. Der-

matol Clin. 2019; 37: 95–105. https://doi.org/10.1016/j.det.2018.07.008 PMID: 30466692

2. Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, et al. Zika Virus Infects Human Cortical Neural

Progenitors and Attenuates Their Growth. Cell Stem Cell. 2016; 18: 587–590. https://doi.org/10.1016/j.

stem.2016.02.016 PMID: 26952870

3. Schuler-Faccini L, Ribeiro EM, Feitosa IML, Horovitz DDG, Cavalcanti DP, Pessoa A, et al. Possible

association between Zika virus infection and microcephaly—Brazil, 2015. MMWR Surveill Summ.

2016; 65: 59–62.
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