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Abstract: Croton heliotropiifolius Kunth (Euphorbiaceae), whose occurrence has already been regis-
tered in the most varied Brazilian biomes, is commonly found in the Chapada do Araripe, Ceará. The
species is traditionally used to treat fungal, parasitic, and degenerative diseases. This study investi-
gated the chemical composition and pharmacological potential (antioxidant, antifungal, antiparasitic,
and cytotoxic) of an aqueous extract obtained from the roots of C. heliotropiifolius. Following a quali-
tative phytochemical screening, the chemical constituents were identified by ultra-efficiency liquid
chromatography coupled witha quadrupole/time-of-flight system (UPLC-QTOF). The antioxidant
potential was verified by thin-layer chromatography (TLC). The direct and combined antifungal
activity of the extract against opportunistic Candida strains was investigated using the microdilution
method. The minimal fungicidal concentration (MFC) was determined by subculture, while the
modulation of the morphological transition (fungal virulence) was evaluated by light microscopy.
The in vitro antiparasitic activity was analyzed using epimastigotes of Trypanosoma cruzi and pro-
mastigotes of Leishmania braziliensis and Leishmania infantum, while cytotoxicity was determined in
cultures of mouse fibroblasts. The phytochemical analysis identified the presence of acids, terpenes,
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flavonoids, lignans, and alkaloids. Among these constituents, the presence of polar and non-polar
phenolic compounds with known antioxidant action was highlighted. While the extract showed
clinically ineffective antifungal effects, it could enhance the effectiveness of fluconazole, in addition
to inhibiting the morphological transition associated with increased virulence in Candida strains.
Although the extract showed low cytotoxicity against fibroblasts, it also had weak antiparasitic
effects. In conclusion, Croton heliotropiifolius is a source of natural products with antifungal and
antioxidant potential.

Keywords: Croton heliotropiifolius; phenolic compounds; antioxidant; antifungal; cytotoxicity

1. Introduction

Natural products have significantly impacted the discovery of new drugs [1], as
they represent an alternative for rapid and economic development, due to their high
availability [2]. In this context, ethnopharmacological research stands out for documenting
the use of plants in folk medicine, serving as a pre-screen to guide pharmacological studies.

According to Patwardhan and Mashelkar [2], this drug development strategy based on
natural products has been returned to a prominent place in the pharmacological market [3],
despite the existence of some skepticism about the effectiveness of natural products used
in folk medicine and the development of synthetic substances in recent decades [4].

In recent years, natural products have gained prominence for their therapeutic po-
tential in the treatment of parasitic infections, such as those caused by bacteria, fungi,
and protozoa. Since the rapid emergence of resistant strains has increasingly limited
the effectiveness of conventional drugs, the identification of secondary metabolites of
plants may represent an important alternative in the management of infections by resistant
microorganisms [5–8].

Fungal infections caused by yeasts of the genus Candida stand out due to their high
incidence in hospital environments [9]. In this context, Candida albicans presents remarkable
virulence, inwhich the morphological change of the yeast to forms that present pseudo-
hyphae and hyphae stand out for increasing both virulence and resistance to antifungal
drugs [10–13].

Brazil is one of the 149 countries affected by neglected diseases, which affect more
than one billion people worldwide, especially populations withsocial vulnerability and
precarious access to basic sanitation. Neglected tropical diseases (NTDs), such as leish-
maniasis and American trypanosomiasis (Chagas’ disease), are a group of communicable
diseases with prevalence in tropical and subtropical regions, where the population is in
direct contact with vectors [14]. When compared withthe context of other diseases of
public health importance, investments into research, drug development, and control of
NTDs are quite reduced. Since NTDs incapacitate and kill millions of people around the
world [15], the development of safe and effective medicines is urgent. In this context,
evidence indicates that compounds capable of modulating the inflammatory response and
oxidative imbalance have potential applications in the development of new drugs for the
treatment of infectious and non-communicable chronic inflammatory diseases [16–18].

Croton heliotropiifolius Kunth (Euphorbiaceae) is a shrub popularly known as “velame”
and “pau-de-leite” [19]. This species is widely distributed in the Caatinga, a seasonally dry
tropical forest biome located in Northeastern Brazil [20]. Ethnopharmacological studies
have registered the use of this species for the treatment of diseases such as diabetes mellitus,
Alzheimer’s, Parkinson’s [21], flu, pain, inflammation, skin diseases [22], back pain [23],
cough, stomach pain, menstrual disorders, anemia, blood disorders [19], and parasitic
diseases [24].

A recent ethnobotanical study [25] conducted in Chapada do Araripe (Ceará, Brazil)
identified C. heliotropiifolius as a species with multiple therapeutic indications, including
the treatment of symptoms resulting from urinary, intestinal, and skin infections. Together,
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this evidence indicates that C. heliotropiifolius may have antimicrobial [26], antiparasitic [27],
and antioxidant [21] activities. Thus, considering the therapeutic potential suggested by
ethnobotanical studies, this work aimed to determine the chemical profile and experimen-
tally investigate the antioxidant, antifungal, antiparasitic, and cytotoxic potential of an
aqueous extract obtained from the roots of Croton heliotropiifolius.

2. Results
2.1. Phytochemical Compositionof Croton heliotropiifolius

A preliminary phytochemical analysis of the aqueous extract of C. heliotropiifolius
roots revealed the presence of several classes of special metabolites (Table 1), including
alkaloids, phenols, xanthones, and some subclasses of flavonoids (flavones, flavonols,
and flavanones). On the other hand, the phytochemical prospection did not identify the
presence of coumarins, steroids, tannins, triterpenoids, or flavonoids such as anthocyanins,
anthocyanidins, catechins, flavanonols, and leucoanthocyanidins.

Table 1. Special metabolite classes identified in the aqueous extract of C. heliotropiifolius roots.

SAMPLE

Special Metabolite Classes (SMC)

SMC
1

SMC
2

SMC
3

SMC
4

SMC
5

SMC
6

SMC
7

SMC
8

SMC
9

SMC
10

PRESENCE + - + - - + - - - +

AECHR - aqueous extract of C. heliotropiifolius roots; SMC1—phenols; SMC2—tannins; SMC3—flavones, flavonols, and xanthones;
SMC 4—anthocyanins and anthocyanidins; SMC5—leukoanthocyanidins and catechins; SMC6—flavanones; SMC7—flavanonols;
SMC8—steroids; SMC9—triterpenoids; SMC10—alkaloids; (+)—present; (-)—absent.

Figure 1 shows the extract’s chromatograms in the negative mode. The characteriza-
tion of the compounds is shown in Table 2, which contain full information regarding their
mass, retention time, fragmentation, and error, generated by MassLynx software.
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Figure 1. Croton heliotropiifolius root extract chromatogram in the negative mode.
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Table 2. Compounds identified in the aqueous extract of Croton heliotropiifolius roots in the negative mode.

Peak RT
mina

[M–H]−
Obs.b

[M–H]−
Calc.b

Ions
(MS/MS)

Emp.
Formula Ppm (error) c Putative Name Ref.

1 2.78 272.9554 272.9551 - C8H2N2O7Cl 1.1 Unknown -
2 3.15 191.0549 191.0556 - C7H11O6 −3.7 Quinic acid [28,29]
3 3.45 133.0141 133.0137 115 C4H5O5 2.3 Malic acid [29]
4 3.78 191.0185 191.0192 111 C6H7O7 −3.7 Citric acid [30]
5 4.50 463.0894 463.0877 301 C21H19O12 3.7 Quercetin

-O-glucoside [29,31]
6 4.89 457.1339 457.1346 171 C20H25O12 0.3 Unknown -

7 5.07 447.0914 447.0927 285 C21H19O11
Kaempferol-O-

glucoside [32]

8 5.20 253.0347 253.0348 137 C11H9O7 −0.4
Hydroxy-

benzoic acid
derivative

[28]

9 5.56 335.2234 335.2222 - C20H11O4 3.6 Diterpene -
10 5.75 357.1323 357.1338 327, 313 C20H21O6 −4.2 Pinoresinol isomer [28]
11 6.00 335.2220 335.2222 - C20H31O4 −0.6 Diterpene -
12 6.35 301.0359 301.0348 - C15H9O7 3.7 Quercetin [29,31]
13 6.45 269.0450 269.0450 - C15H9O5 0.0 Apigenin [33]
14 6.71 303.1958 303.1960 - C19H27O3 -0.7 Diterpene -
15 6.96 303.1950 303.1960 - C19H27O3 −3.3 Diterpene -
16 7.86 317.2115 317.2117 - C20H29O3 −0.6 Diterpene -

a RT, retention time; b molecular ion observed and calculated; c ppm, parts per million.

Through the analysis of the 16 peaks shown in the chromatogram in negative mode
(Table 2, Figure 2), it was possible to identify nine compounds based on the literature
available for the Euphorbiaceae family, including four acids (quinic, m/z 191.0549; malic,
m/z 133.0141; citric, m/z 191.0185; and hydroxybenzoic acid derivative, m/z 253.0347),
four flavonoids (quercetin-O-glycoside, kaempferol-O-glucoside, quercetin and apigenin),
m/z 463.0894), a lignan (pinoresinol, m/z 357.1323) and five diterpene not identified in the
specie (Figure 3).
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Figure 5. Gypsum-starch chromatoplates (1:1) from the AECHR stained with: A) FeCl3 (detection 387 
of phenols) and B) DPPH (detection of antioxidants). Quercetin (1); gallic acid (2); AECHR (3). 388 
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Figure 3. Gypsum-starch chromatoplates (1:1) from the AECHR stained with: (A) FeCl3 (detection
of phenols) and (B) DPPH (detection of antioxidants). Quercetin (1); gallic acid (2); AECHR (3).
Chloroform/ethanol (9:1) elution.

2.2. Antioxidant Activity Determined by Thin-Layer Chromatography (TLC)

Thin-layer chromatography demonstrated the presence of phenolic substances with
varied polarities, the most polar being located at the bottom of the plate (Figure 4A),
consistent with the dark blue colors resulting from the reaction with FeCl3, as well as
the positive controls quercetin (Spot 1 in Figure 3A) and gallic acid (Spot 2 in Figure 3A).
The yellow-colored bands in Figure 3B indicates DPPH radical scavenging sites, as do the
positive controls quercetin (Spot 1 in Figure 3B) and gallic acid (Spot 2 in Figure 3B).

According to Formagio et al. [34] and Hidalgo, Nunomura, and Nunomura [35], plant
extracts that have blue-colored substances revealed by FeCl3 and yellow colors revealed
by DPPH in chromatoplates are phenolic substances with antioxidant action. Thus, the
results obtained in the present study indicate that the analyzed extract presented polar and
non-polar phenolic substances with antioxidant action.

It is also worth noting that the use of gypsum/starch (1:1) as a fixed phase in glass
chromatoplates was an alternative to the use of silica gel, widely used in CCD, as well as
prefabricated plates with aluminum sheets coated with silica gel, which are significantly
costly [36].
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Figure 4. Cell viability curve of Candida albicans strains ((A), CA INCQS 40006; (B), CA URM 5974) treated with the aqueous
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*** = p < 0.001.

2.3. Antifungal Effects of C. heliotropiifolius against C. albicans

Table 3 shows the IC50 values of the extract and fluconazole when tested either in
combination or separately against Candida albicans strains. Note that the extract presented
IC50 values higher than that of the reference antifungal against both C. albicans strains.
However, the combination of the extract with fluconazole resulted in a synergistic effect
against the INCQS 40006 strain, thus reducing the IC50 of the standard antifungal drug.

Table 3. Half-maximal inhibitory concentration (IC50) of C. heliotropiifolius extract and fluconazole
against C. albicans strains.AECHR—aqueous extract of C. heliotropiifolius roots; AECHR*—subinhibitory
concentration of the extract (1024 µg/mL); FCZ—fluconazole; INCQS—National Institute of Quality
Control in Health; URM—University Recife Mycology. (p < 0.0001).

STRAIN AECHR
IC50 (µg/mL)

FCZ
IC50 (µg/mL)

AECHR* + FCZ
IC50 (µg/mL)

INCQS 40006 5459.3 8 1.7
URM 5974 4385.3 1.7 1.6
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As observed in the cell viability curve (Figure 4), the extract did not show significant
antifungal activity, inhibiting the growth of the strains only at the highest concentration
tested. On the other hand, the curve of fluconazole indicated growth inhibition at all
tested concentrations, which was potentiated by the combination with the extract ata
concentration of 8 µg/mL, especially against the CA INCQS 40006 strain, indicating
a possible modulating effect on antifungal resistance. Additionally, similar effect was
observedat several points of the CA URM 5974 growth curve.

2.4. Minimum Fungicidal Concentration (MFC)

The CFM was defined as the lowest concentration at which no colony growth was
observed after 24 h. In assays using the CA INCQS 40,006 strain, groups treated with the
extract, fluconazole, and the combination of both showed a CFM ≥ 16,384 µg/mL (not
shown). On the other hand, in assays using the CA URM 5974 strain, only fluconazole
presented a CFM lower than 16,384 µg/mL (8192 µg/mL), indicating the absence of
antifungal activity potentiation under these experimental conditions.

2.5. Effects of Croton heliotropiifolius Extract on Fungal Morphology

Morphological analyses were carried out to investigate the effect of the extract on
the dimorphism of Candida albicans strains. Therefore, the extract was tested at the follow-
ing concentrations based on the matrix concentration (MC) value: 8192 µg/mL (MC/2),
4096 µg/mL (MC/4), and 1024 µg/mL (MC/16).

Fluconazole was tested at the same concentrations, except against the CA URM 5974
strain, due to differences in matrix concentration: 4096 µg/mL (MC/2), 1024 µg/mL
(MC/4), and 512 µg/mL (MC/16). It was demonstrated that the extract, at the highest
tested concentration, inhibited the dimorphism of the CA INCQS 40006 strain, for which
no hyphae emission was observed (Figure 5A). At other concentrations, the extract did not
inhibit dimorphism but decreased the length of these virulence structures compared with
the control group. On the other hand, fluconazole did not prevent hyphae emission except
at the lowest tested concentration.

Regarding the CA URM 5974 strain (Figure 5B), more promising results were ob-
served with fluconazole and the extract. The extract completely inhibited dimorphism at
the concentrations of 8192 µg/mL (CM/2) and 1024 µg/mL (CM/4) and decreased the
length of these structures at the concentration of 512 µg/mL (CM/16) compared with the
control group.

2.6. Antiparasitic and Cytotoxic Effects of C. heliotropiifolius

Regarding the antiparasitic activity of the C. heliotropiifolius extract, it is possible to
notice that the extract had low antiparasitic activity against T. cruzi epimastigotes, in
addition no significant effects against L. braziliensis and L. infantum. Accordingly, the extract
presented low cytotoxicity at higher concentrations against mouse fibroblasts (Table 4). The
IC50 value against parasites and fibroblasts was 1000 µg/mL.
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Table 4. Antiparasitic and cytotoxic effects of the Croton heliotropiifolius extract.

AECHR
(µg/mL)

%AE
T. cruzi

%AP
L. braziliensis

%AP
L. infantum

%Cit.
Fibroblasts

1000 33.67 ± 0.49a 0.00 ± 1.06a 0.00 ± 0.29a 14.66 ± 7.35
500 13.12 ± 0.70b 0.00 ± 0.02a 0.00 ± 0.31a -
250 8.66 ± 0.95c 0.00 ± 7.99a 0.00 ± 1.15a -

Legend: %AE: percentage of antiepimastigote activity; %Cit: percentage of cytotoxicity. Different letters in the
same column indicate statistical significance by Tukey’s test with reliability at a 95% confidence level.

3. Discussion

Croton species are used in traditional Brazilian medicine to treat infections, inflam-
mation, and gastrointestinal disorders such as diarrhea and dysentery [37], which can be
caused by Candida sp infections. Accordingly, some studies have already reported the anti-
fungal activity of some species of this genus against Candida strains [38–44]. Furthermore,
previous studies have demonstrated the antifungal activity of both the ethanolic extract and
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isolated compounds of Croton heliotropiifolius against Candida albicans strains [45], obtaining
IC50 values even lower than those observed in the present study.

When investigating the chemical composition of the ethanol extract from the leaves of
C. heliotropiifolius, Alencar et al. [46] also observed the presence of flavonoids, including
quercetin. In addition, three of the compounds identified in the present study (quinic
acid, hydroxy-benzoic acid derivative and pinoresinol) were also registered in the work
by Kumar et al. [28]. Other compounds identified in this research were also elucidated in
studies using liquid chromatography in the analysis of species of the same genus, including
citric acid [30], Kaempferol-O-glucoside [32], malic acid, quinic acid, and quercetin-O-
glycoside [29]; the latter was also identified by Nascimento et al. [31].

The antioxidant activity of plants belonging to the genus Croton has been widely investi-
gated [47]. In this context, the antioxidant properties of the ethanolic extract of C. heliotropiifolius
leaves were recently demonstrated by Rodrigues et al. [48] and Aquino et al. [49], who attributed
such activity to the presence of phenolic compounds, including some compounds identified
in the present study. Such compounds were also identified in the ethanolic extract of the
stem bark [50], as well as in a methanolic extract of the leaves [51] of C. heliotropiifolius, also
correlating with the antioxidant properties of this species. In addition to the antioxidant
activity, lignans such as pinoresinol found in this study have antibacterial activity and
may also reduce the risk of breast cancer. When included in the diet, their consumption
was associated with a low incidence of atherosclerosis, cardiovascular disease, and some
cancers, and also demonstrated activity against some viruses [52,53].

Carboxylic acids have been shown to have antimicrobial properties [54], with signifi-
cant antifungal activity against C. albicans [55]. However, Queiroz et al. [45] demonstrated,
in a test with a carboxylic acid isolated from C. heliotropiifolius, failed to show activity
against C. albicans. Thus, it is hypothesized that the antifungal effects demonstrated in
this study are due to the presence of flavonoids, a wide range of metabolites with well-
established antimicrobial activity. Serpa et al. [56] observed synergistic activity between
flavonoids and fluconazole against Candida infections. For the flavonoids quercetin and
catechin, several activities have been verified, such as antioxidant, anti-inflammatory, an-
ticancer, antiparasitic, antiviral, biofilm reduction, and protection of the cardiovascular,
renal, and hepatic systems [57]. Additionally, Araújo et al. [58] found terpenes to be the
main compounds of the essential oil of C. heliotropiifolius, suggesting that these molecules
may be significantly responsible for the antimicrobial activity of this species. Terpenoids
may have a role in the chemoprevention of colon cancer [59].

Candida albicans is an opportunistic fungus that can cause invasive infections in im-
munocompromised individuals [11]. Worryingly, increased resistance to antifungal drugs
threatens the effectiveness of treatments used to combat infections caused by this microor-
ganism [60]. In this context, a study analyzing antifungal resistance in infections by Candida
species, including C. albicans, in Brazilian hospitals recorded high rates of resistance to
conventional antifungal agents such as fluconazole (88.89%), miconazole (66.67%), nys-
tatin (55.56%), and amphotericin B (50.00%) [61]. Similar studies found resistance rates to
fluconazole in C. albicans, ranging between 61% and 100% [62,63]. Fluconazole belongs to
the class of azoles, whose mechanism of action involves the inhibition of lanosterol 14-α-
demethylase, which catalyzes the synthesis of ergosterol (the main sterol in the fungal cell
membrane), resulting in altered membrane permeability and inhibition of replication and
hyphae emission, leading to the accumulation of 14-α-methyl-3,6-diol, a toxic sterol [31,64].

Resistance to this class of antifungal agents mainly involves the following mechanisms:
activation of efflux pumps, decreased sensitivity preventing the binding of azoles, and
ERG3 gene mutation reducing the accumulation of 14-α-methyl-3,6-diol [65,66].

Given the high rates of antifungal resistance, research has been conducted to identify
natural products that are capable of increasing the effectiveness of conventional antifungal
agents against Candida infections [67,68]. Accordingly, different classes of natural products
have been shown to be able to modulate resistance to azoles [67]. The present study
demonstrated the modulating effects of the ethanolic extract of C. heliotropiifolius roots,
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corroborating previous work that found similar effects for plants of the same genus against
Candida strains [69,70].

The morphological transition in C. albicans is a virulence factor crucially involved in the
invasiveness of this microorganism [71]. It is important to emphasize that previous research
has identified natural products that are capable of inhibiting such phenomena [72]. In this
study, C. heliotropiifolius extract significantly inhibited hyphae emission in both the standard
strain (CA INCQS 40006) and the clinical isolate (CA URM 5974) of Candida albicans,
indicating the inhibition of fungal dimorphism, with probable effects on the virulence of
these strains, which should be further investigated using infection models [68,72–74].

Based on previous studies, it is reasonable to assume that this effect may be due
to the presence of components such as carboxylic acids, terpenes [55,58], and pheno-
lic compounds [69]. However, further research is required to investigate the action of
isolated compounds.

With regard to the evaluation of anti-kinetoplastidae activity, the results of the present
study differ from those found by Alencar et al. [46], who used an ethanolic extract obtained
from the leaves of C. heliotropiifolius. These authors observed both leishmanicidal and
trypanocidal effects, but with high cytotoxicity against fibroblasts. On the other hand,
Ramos et al. [75] demonstrated that hexane extracts obtained from both the leaves and
stem of this plant showed moderate cytotoxicity. In this study, we demonstrated that
the root extract does not have significant antiparasitic effects. On the other hand, it has
the advantage of presenting low toxicity. Thus, the potential of C. heliotropiifolius in the
treatment of fungal skin infections is highlighted, both for its anti-Candida effects and
its low toxicity against fibroblasts, cells with important roles in immunity and tissue
regeneration [46,76].

4. Materials and Methods
4.1. Botanical Material

Healthy roots of Croton heliotropiifolius Kunth were collected in an Environmental
Protection Area belonging to the “Chapada do Araripe” Crato, southern Ceará, Brazil
(07◦12′51.169′′ S; 39◦31′30.75′′ W; 922 m altitude). The species collection was authorized by
the Biodiversity Authorization and Information SystemSisBio (registry number 64011-1),
and its use in the present study was registered in the National System for Management of
Genetic Heritage and Associated Traditional Knowledge (registry number A31E860). The
botanical material was identified by Ana Cleide Morais Mendonça de Alcantara, and a
voucher specimen was registered at the Herbarium Caririense Dárdano de Andrade Lima
of the Regional University of Cariri – URCA (registry number 13.554).

4.2. Extract Preparation

The aqueous extract was prepared using 500 g of C. heliotropiifolius roots. After
collection, the plant material was washed in running water and cut into small pieces of
approximately 1 cm. The decoction was then prepared using 266.7g of roots to 4 L of water,
according to the methodology proposed by Matos [77]. The extract was dehydrated by
spray-drying using a Mini-spray dryer (model MSDi 1.0, Labmaq do Brasil, Ribeirão Preto,
Brazil) with a 1.2 mm sprinkler nozzle, under the following operating conditions: (a) flow
control: 500 mL/H; (b) inlet temperature: 130 ± 2 ◦C; (c) outlet temperature: 76 ± 2 ◦C; (d)
atomizing airflow: 45 L/min; (e) blower flow: 1.4 m3/min [78]. At the end of dehydration,
1.109 g of powdered extract was obtained and stored under refrigeration at 10 ◦C.

4.3. Phytochemical Analysis
4.3.1. Qualitative Analysis

A preliminary qualitative analysis of the extract aiming to identify the main classes of
secondary metabolites was carried out [79]. Briefly, after the addition of specific reagents,
the presence of different classes of metabolites wasdemonstratedby the change in color
or formation of a precipitate, allowing qualitative identification of the presence of the
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following compounds: alkaloids, anthocyanins, anthocyanidins, catechins, coumarins,
steroids, phenols, flavones, flavanones, flavonols, flavanonols, leucoanthocyanidins, tan-
nins, triterpenoids, and xanthones. Initially, 1000 mg of the crude extract was dissolved in
100 mL of distilled water. Subsequently, 3 mL aliquots of these solutions were added to test
tubes, to which specific reagents were added. All experiments were performed in triplicate.

4.3.2. Ultra-Efficiency Liquid Chromatography Coupled with a Quadrupole/Time-of-Flight
System (UPLC-QTOF)

The chemical composition of the extract was determined using the Acquity UPLC
system (Waters Corporation, Milford, MA, USA) coupled with a Quadrupole/Time of
Flight system (QTOF). Chromatographic runs were performed on a Waters Acquity UPLC
BEH column (150 × 2.1 mm, 1.7 µm) injected with 5 µL of the extract solution, with the
temperature adjusted to 40 ◦C. The binary gradient elution system consisted of 0.1% formic
acid in water (A) and 0.1% formic acid in acetonitrile (B), with a linear gradient from 2% to
95% of B (0–15) min) and a flow rate of 0.3 mL/min [80].

The ESImode was acquired in the range of 110–1180 Da, with the source temperature
fixed at 120 ◦C, a desolvation temperature of 350 ◦C, a desolvation gas flow of 500 L/h, an
extraction cone of 0.5 V, and a capillary voltage of 2.6 kV; the acquisition mode was MSE,
with the instrument controlled by the Masslynx 4.1 software (Waters Corporation, Milford,
MA, USA). The precise molecular formula and mass assignments were obtained with
MassLynx 4.1 software (Waters Corporation, Milford, MA, USA). The data were compared
with those described in the literature at the level of the botanical family of the species. Peak
identification was determined by m/z values.

4.4. Analysis of Antioxidant Activity by Thin-Layer Chromatography (TLC)

This analysis was carried out based on the methodology proposed by
Soler-Rivas et al. [81], with some adaptations. The plant extract was analyzed in triplicate
by thin-layer chromatography (TLC) using quercetin and gallic acid as positive standards
for comparison (1 mg/mL in methanol). As an adaptation of the method, chromatographic
plates were prepared using glass plates (10× 5× 0.3 cm) as a support, and a mixture of
gypsum and corn starch (1:1) was used as a stationary phase [82,83]. Aliquots of 20 µL
of each sample were added to the plates along with the positive controls and the elution
system: chloroform/ethanol (9:1). After drying at room temperature (30 ± 2 ◦C), the plates
were sprayed separately with specific developers, as follows: (a) a phenolic compound
developer: diluted ferric chloride solution (FeCl3, 2%), resulting in a dark blue color; (b) an
antioxidant compound developer: a 0.5% solution of the 2,2-diphenyl-1-picrylhydrazyl
(DPPH) radical in methanol, resulting in the appearance of yellowish spots on a purple
background; (c) an antioxidant compound developer with reducing potential: a mixture
(1:1) of aqueous solutions of K3[Fe(CN)6](1%) and FeCl3 (0.1%), resulting in dark blue spots
(Prussian blue).

4.5. Antifungal Potential Analysis
4.5.1. Cell Cultures

The antifungal activity of the extract was evaluated against a standard strain (CA
INCQS 40006) and a clinical isolate (CA URM 5974) of Candida albicans. These strains were
inoculated in Sabouraud Dextrose Agar (SDA, KASVI, Laboratorios Conda S.A., Spain) and
incubated at 37 ◦C for 24 h. After this period, culture aliquots were transferred to test tubes
containing 3 mL of saline solution (0.9% sodium chloride), and the concentrations were
adjusted by comparing the inoculum turbidity with 0.5 on the McFarland scale [84] Microdi-
lutions were performed using doubly concentrated Sabouraud dextrose broth (HiMedia,
Mumbai, India). Depleted potato dextrose agar (PDA) (Becton Dickinson Rowa France,
Le Pont de Claix, France) with added bacteriological agar was used for micromorpholog-
ical analysis. The CA INCQS 40006 strain was obtained from the Reference Collection
of Microorganisms in Sanitary Surveillance (CMRVS) of the National Institute of Health
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Quality Control (INCQS, FIOCRUZ), while the CA URM 5974 strain was obtained from
the University Recife Mycology (URM) library of the Federal University of Pernambuco.

4.5.2. Drugs and Reagents

The extract was dissolved in dimethylsulfoxide (DMSO, Merck, Darmstadt, Germany)
and diluted in sterile water at a test concentration of 16,384 µg/mL [85]. The antifungal
drug fluconazole (Capsule – Prati, Donaduzzi and CIA LTDA, Toledo, Brazil) was diluted
in water to the test concentration (16,384 µg/mL) and used as a reference control drug.

4.5.3. Determination of Intrinsic Antifungal Effect

The intrinsic antifungal effect was determined by the microdilution method in 96-well
plates. The aqueous extract and fluconazole (Capsule – Prati, Donaduzzi and CIA LTDA,
Toledo, Brazil) was serially diluted at concentrations ranging from 8192 to 8 µg/mL in a
96-well plate containing the inoculum and SDB medium [86]. The plates were incubated
at 37 ◦C for24 h, then the readings were performed at a wavelength of 630 nm in a
spectrophotometer (Thermoplate). The values obtained from these readings were used to
elaborate the cell viability curve from which the IC50 values were determined [87]. Wells
containing the vehicle (0.9% saline solution) or the medium were used as sterilecontrols.
These experiments were performed in triplicate.

4.5.4. Minimum Fungicidal Concentration (MFC) Determination

The tip of a sterile swab was inserted into each well of the plate used in the microdilu-
tion test and used to generate a subculture in a Petri dish, at the bottom of which, a guide
plate was fixed. After 24 h of incubation, the plates were inspected for the formation of
Candida albicans colonies [88]. The MFC was defined as the lowest concentration at which
no growth of fungal colonies was observed.

4.5.5. Analysis of Antifungal Resistance Modulation

To assess the ability of the extract to modulate antifungal resistance, we investigated
whether its association with the standard drug fluconazole would result in enhanced
antifungal activity. Therefore, the extract was used in a subinhibitory concentration in
relation to the matrix concentration (CM/16), where CM is equivalent to 16,384 µg/mL [89].
Plates containing the medium, inoculum, and the extract were added to fluconazole at
concentrations ranging from 8 to 8192 µg/mL. The plates were incubated at 37 ◦C for 24 h
in an oven, and then readings were performed as previously described.

4.5.6. Effects of C. heliotropiifolius Extract on Fungal Morphology

Chambers containing sterile slides and dilution-depleted PDA medium were added
with different extract concentrations (CM/2, CM/4, and CM/16). On the solid medium,
two parallel streaks were drawn and covered with a sterile coverslip. The chambers were
incubated at 37 ◦C;24 h later, they were analyzed by light microscopy (AXIO IMAGER
M2-3525001980, ZEISS, Germany) at 200×magnification [90,91]. The size of the hyphae was
determined using Zen 2.0 software. For this purpose, five photos of each slide were taken in
random fields. The results were expressed as the mean size of 25 hyphae analyzed on each
slide [92]. Untreated and fluconazole-treated groups were used as experimental controls.

4.6. Antiparasitic Activity Analysis
4.6.1. Anti-Leishmania Activity Determination

The analysis of anti-Leishmania activity was evaluated against Leishmania braziliensis
(MHOM/BR/75/M2903) and Leishmania infantum (MCAN/ES/92/BCN 83) promastigotes
cultured at 22 ◦C in Schneider’s Drosophila medium supplemented with 20% FBS, as
described by Mikus and Steverding [93]. Briefly, promastigotes were cultivated in mi-
crodilution plates at a concentration of 2.5 × 105 parasites/well, treated with the extract
(250 to 1000 µg/mL) in a final volume of 200 µL, and incubated at 26 ◦C for 48 h. After
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incubation, 20 µL of resazurin solution was added to each well. After reaction, readings
were taken at 570 and 595 nm in a spectrophotometer. The median lethal concentration
(LC50) was determined and the antipromastigote percentage (%AP) was calculated using
the following equation:

%AP =
AE−AEB
AC−ACB

× 100

where AE is the absorbance of the experimental group, AEB is the compound blank, AC is
the absorbance of the control group, and ACB is theculture medium blank.

4.6.2. In Vitro Susceptibility of Trypanosoma cruzi Epimastigotes

The trypanocidal effects of the extract were evaluated using Trypanosoma cruzi (Clone
CL-B5) epimastigotes [94] stably transfected with the lacZ gene of Escherichia coli β-
galactosidase, provided by Dr. F. Buckner through the Gorgas Memorial Institute, Panama.
Parasites were cultured at 28 ◦C in LITB (Difco, Detroit, MI, USA), supplemented with 10%
FCS (Gibco, Carlsbad, CA, USA), penicillin (Ern, SA, Barcelona, Spain), and streptomycin
(Reig JofreSA, Barcelona, Spain) [95].

Epimastigotes that did not reach the stationary phase were seeded at a concentra-
tion of 1 × 105 cells/mL in microdilution plates, followed by the addition of the extract
(250–1000 µg/mL) ata final volume of 200 µL per well. The plates were incubated at 28 ◦C
and, after 72 h, 50 µL of CPRG solution was added at a final concentration of 200 µM.
Following this step, the plates were incubated at 37 ◦C for 6 h, and then readings were
taken at 595 nm. The LC50 and the percentage of antiepimastigoteactivity (%AE) were
calculated as previously described.

4.6.3. In Vitro Cytotoxicity Study

To assess the cytotoxicity of the extract on mouse fibroblast cells, the fibroblast cell
line NCTC 929 (ATCC, Washington, District of Columbio, USA) was used, following the
colorimetric method described by Rolón et al. [96]. Cells were cultured in RPMI medium
(Roswell Park Memorial Institute, Sigma-Aldrich, St. Louis, MO, USA), supplemented with
10% fetal bovine serum (inactivated by heat at 56 ◦C for 30 min), penicillin G (100 U/mL,
Sigma-Aldrich, St. Louis, MO, USA), and streptomycin (100 mg/mL; Sigma-Aldrich,
St. Louis, MO, USA) and maintained at 37 ◦C in a 5% CO2 atmosphere.

NCTC 929 cells were seeded (3 × 104 cells/well) in flat-bottomed microdilution plates
(96 wells) containing 100 µL of RPMI in each well and cultured at 37 ◦C in a 5% CO2
atmosphere overnight. The medium was then replaced by 200 µL of a new medium, where
the extracts were diluted extracts (250–1000 µg/mL). After an incubation period of 24 h,
20 µL of a resazurin solution (2 mM) was added to each well; 3 h later, readings were
performed at 490 and 595 nm. Tests were performed in triplicate, using the experimental
controls as described above. The percentage of cytotoxicity was determined using the
following equation:

%C =
A570 × 117, 216−A595 × 80, 586 (test sample)

A570 × 117, 216−A595 × 80, 586(control)
× 100

where %C corresponds to the percent toxicity of the extract; A570 and A595 represent the
optical density values at 570 and 595 nm, respectively;and the values 80.586 and 117.216 are
the molar extinction coefficients for resazurin corresponding to the respective absorbances.

4.7. Statistical Analysis

Data were checked for normal distribution and then analyzed by one-way ANOVA
comparing the values of each extract concentration, point by point, viaBonferroni’s post
hoc test. The IC50 values were obtained by non-linear regression from the interpolation of
unknowns from standard growth curves as a function of extract concentration, expressed
in µg/mL. These analyzes were performed using Graphpad Prism software, version 6.0
(Graphpad Software, Inc, San Diego, CA, USA).
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5. Conclusions

The data obtained in the present study revealed that the aqueous extract of C. heliotropiifolius
roots is composed by phenolic compounds with antioxidant activity, besides presenting a con-
siderable variety of secondary metabolites, such as alkaloids, phenols, flavones, flavonols,
flavanones, and xanthones.

Although intrinsic fungicidal activity was not demonstrated, the extract was able
to potentiate the activity of fluconazole, indicating a possible modulation of antifungal
resistance. The extract inhibited fungal dimorphism of both the standard strain and the
clinical isolate of C. albicans, which might impact both the virulence and pathogenicity
shown by these microorganisms.

Despite the low cytotoxicity against fibroblasts, the effects demonstrated against
T. cruzi, L. braziliensis, and L. infantum do not encourage the use of the extract as an antipar-
asitic, although tests with isolated components are essential to better characterize the phar-
macological activities demonstrated in the present study. In conclusion, C. heliotropiifolius
has antioxidant and antifungal properties associated with low cytotoxicity, encourag-
ing further comprehensive studies to evaluate its potential for the treatment of fungal
skin infections.
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