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ABSTRACT Aspergillus fumigatus is an important fungal pathogen and the main etio-
logical agent of aspergillosis, a disease characterized by a noninvasive process that can
evolve to a more severe clinical manifestation, called invasive pulmonary aspergillosis
(IPA), in immunocompromised patients. The antifungal arsenal to threat aspergillosis is
very restricted. Azoles are the main therapeutic approach to control IPA, but the emer-
gence of azole-resistant A. fumigatus isolates has significantly increased over recent
decades. Therefore, new strategies are necessary to combat aspergillosis, and drug
repurposing has emerged as an efficient and alternative approach for identifying new
antifungal drugs. Here, we used a screening approach to analyze A. fumigatus in vitro
susceptibility to 1,127 compounds. A. fumigatus was susceptible to 10 compounds,
including miltefosine, a drug that displayed fungicidal activity against A. fumigatus. By
screening an A. fumigatus transcription factor null library, we identified a single mutant,
which has the smiA (sensitive to miltefosine) gene deleted, conferring a phenotype of
susceptibility to miltefosine. The transcriptional profiling (RNA-seq) of the wild-type and
DsmiA strains and chromatin immunoprecipitation coupled to next-generation sequenc-
ing (ChIP-Seq) of an SmiA-tagged strain exposed to miltefosine revealed genes of the
sphingolipid pathway that are directly or indirectly regulated by SmiA. Sphingolipid
analysis demonstrated that the mutant has overall decreased levels of sphingolipids
when growing in the presence of miltefosine. The identification of SmiA represents the
first genetic element described and characterized that plays a direct role in miltefosine
response in fungi.

IMPORTANCE The filamentous fungus Aspergillus fumigatus causes a group of diseases
named aspergillosis, and their development occurs after the inhalation of conidia dis-
persed in the environment. Very few classes of antifungal drugs are available for asper-
gillosis treatment, e.g., azoles, but the emergence of global resistance to azoles in A.
fumigatus clinical isolates has increased over recent decades. Repositioning or repurpos-
ing drugs already available on the market is an interesting and faster opportunity for
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the identification of novel antifungal agents. By using a repurposing strategy, we iden-
tified 10 different compounds that impact A. fumigatus survival. One of these com-
pounds, miltefosine, demonstrated fungicidal activity against A. fumigatus. The mecha-
nism of action of miltefosine is unknown, and, aiming to get more insights about it,
we identified a transcription factor, SmiA (sensitive to miltefosine), important for milte-
fosine resistance. Our results suggest that miltefosine displays antifungal activity against
A. fumigatus, interfering in sphingolipid biosynthesis.

KEYWORDS Aspergillus fumigatus, drug repurposing, miltefosine, sphingolipids,
transcription factor

Fungi are widespread in nature, surviving as saprophytic organisms or associated
with animals and plants, where they can behave as commensal or opportunistic

organisms. In humans, pathogenic fungi can cause both superficial and invasive
infections, giving rise to the death of millions of people annually (1–3). Cryptococcus,
Candida, Aspergillus, and Pneumocystis species are responsible for the most represen-
tative invasive fungal infections (1), showing death rates as high as those of tubercu-
losis and malaria (2, 4, 5). The levels of mortality are dependent on host immune sys-
tem integrity, being particularly important for immunocompromised patients (6–8).
These individuals comprise a risk group that is expanding quickly due to the increas-
ing number of immune-deficient patients who underwent transplant or chemother-
apy and patients under therapy with high dosage of corticosteroids (9–11).

Aspergillus spp. cause a group of diseases collectively named aspergillosis, and their
development occurs after the inhalation of conidia dispersed in the environment (12).
In immunocompetent patients, the development of aspergillosis is mainly character-
ized by noninvasive diseases, including aspergilloma, chronic necrotizing pulmonary
aspergillosis, chronic cavitary pulmonary aspergillosis, and chronic fibrotic pulmonary
aspergillosis, which together are defined as chronic pulmonary aspergillosis (12–16).
Invasive pulmonary aspergillosis (IPA) is an important clinical manifestation caused by
Aspergillus spp., presenting high levels of mortality in immunocompromised patients
(1, 17). IPA is the most common invasive fungal infection in recipients of both hemato-
poietic stem cells and solid-organ transplants (1, 17). In this group of high-risk patients
for IPA, A. fumigatus represents the major cause of the disease, reaching up to 90% of
mortality (9–12, 18).

Very few classes of antifungal drugs are available for IPA treatment, such as polyenes
(amphotericin B), azoles (itraconazole, posaconazole, voriconazole, and isavuconazole),
and echinocandins (caspofungin) (19–22). Although both amphotericin B and echinocan-
dins can be used to treat IPA, these drugs have clinical limitations. Amphotericin B shows
high levels of nephrotoxicity and side effects, while echinocandins are not fully recom-
mended as monotherapy for IPA (9, 13, 23–25). So far, the administration of triazoles is
the first therapeutic approach applied to control A. fumigatus infections showing the
most prominent usage in the medical field (13, 26). Among them, itraconazole (intro-
duced in 1990s), voriconazole (introduced in 2002), and posaconazole (introduced in
2006) are the most common drugs utilized for the treatment of aspergillosis (27).
Voriconazole is the primary treatment against IPA, followed by liposomal amphotericin B
(L-AMB) and echinocandins, which are recommended as a second-line therapy (13, 26,
28). Moreover, the activity of isavuconazole, a new extended-spectrum triazole drug, has
been recently tested against Aspergillus (29–32).

The number of azole-resistant A. fumigatus clinical isolates has dramatically increased
over recent decades and has become a major concern (28, 33–38). Additionally, azoles
are also used in agriculture to combat plant-pathogenic fungi, and, recently, its usage for
agricultural purposes has been linked to the emergence of azole-resistant isolates among
human fungal pathogens (33, 39–42). Therefore, the emergence of global resistance to
currently available antifungals agents represents a significant threat to immunosup-
pressed patients, as the current arsenal of antifungal drugs is very limited.
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This situation highlights the need to understand the mechanisms of drug resistance
and tolerance and the search for novel antifungal agents (43, 44). As few antifungal
compounds are coming to market because their development is time-consuming and
expensive, repositioning or repurposing drugs that are already licensed is an interest-
ing and faster opportunity for the identification of novel antifungal agents (45–47). By
using the repurposing strategy, many compounds have already been identified as new
potential drugs against several diseases, including parasitosis, protozooses, and myco-
ses (45, 47–52). Here, we screened two chemical collections to analyze A. fumigatus in
vitro susceptibility to compounds present in two compound libraries. The first library
has active compounds against neglected diseases (The Pathogen Box), while the sec-
ond one includes drugs previously approved for use against human diseases (National
Institutes of Health [NIH] clinical collection [NCC]). We showed here that A. fumigatus
was susceptible to at least 10 different compounds from the two libraries. One of these
compounds, miltefosine, a drug mainly used in the treatment of visceral and cutane-
ous leishmaniasis (53, 54), demonstrated fungicidal activity against A. fumigatus.
Aiming to get more insights about the mechanism of action of miltefosine, we
screened an A. fumigatus transcription factor null mutant library (484 null mutants) and
identified a single mutant highly sensitive to miltefosine. The gene deleted in this mu-
tant was named smiA (sensitive to miltefosine). A combination of transcriptome
sequencing (RNA-seq) and chromatin immunoprecipitation coupled to next-genera-
tion sequencing (ChIP-seq) studies revealed differentially expressed genes directly or
indirectly regulated by SmiA. The sphingolipid (SL) profiling of the wild-type and the
DsmiA strains exposed to miltefosine revealed that the mutant has overall lower levels
of sphingolipids than the wild type. Our results suggest that miltefosine displays anti-
fungal activity against A. fumigatus by directly interfering in the sphingolipid biosyn-
thetic pathway.

RESULTS
Screening of the Pathogen Box and NIH clinical library. In order to find known

compounds that are active against A. fumigatus, we tested its susceptibility to two
chemical drug libraries, the Pathogen Box (containing 400 compounds; see https://
www.mmv.org/mmv-org) and the National Institutes of Health (NIH) clinical collection
(NCC) (containing 727 compounds; see https://pubchem.ncbi.nlm.nih.gov/source/
NIH%20Clinical%20Collection) through MIC assays. In total, combining both libraries,
1,127 compounds were assessed by using MIC values up to 25mM. A. fumigatus was
susceptible to four known antifungal agents present in these collections (posacona-
zole, difenoconazole, bitertanol, and amphotericin B; MIC values of 5mM, 5mM, 5mM
and 10mM, respectively). These results supported the reliability of the screening
approach. A. fumigatus was also susceptible to other compounds, with MIC values
ranging from 1.56 to 25mM (Table 1). In Table 1, we describe the compound name, the
MIC detected in our screening, the current usage purpose (description), and the mode
of action (if known) for the 10 compounds. These compounds include (i) two azole
salts, econazole and oxiconazole, expected to inhibit A. fumigatus growth to some
extent; (ii) fluvastatin, a statin drug class used for hypercholesterolemia treatment; (iii)
mesoridazine, a piperidine neuroleptic drug; (iv) cisapride, a parasympathomimetic
drug acting as a serotonin 5-HT4 agonist; (v) indinavir sulfate, a protease inhibitor used
in anti-HIV cocktails; (vi) enalaprilat, an angiotensin-converting enzyme inhibitor; (vii)
vincristine sulfate, an inhibitor of microtubule formation in the mitotic spindle; (viii)
iodoquinol, an anti-amoebiasis agent with an unknown mechanism of action; and (ix)
miltefosine, an anti-Leishmania compound with an unknown mechanism of action
(Table 1).

To determine if these compounds are fungicidal or fungistatic, A. fumigatus conidial
viability was tested after 48 h of exposure to each compound at its corresponding MIC
(Fig. 1A). Five compounds (fluvastatin, cisapride, indinavir sulfate, vincristine sulfate,
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and miltefosine) had a 100% fungicidal while six had a fungistatic mechanism of
action, with 80% to 95% conidial killing at the MIC (Fig. 1A).

These results suggest that some of these compounds are fungicidal and can act
directly in specific A. fumigatus cell targets, while others (like cisapride and enalaprilat)
could be a lead compound in antifungal drug discovery.

Miltefosine displays antagonistic interaction with myriocin, a sphingosine
biosynthesis inhibitor. We decided to investigate miltefosine in more detail because
it is a fungicidal drug with an unknown mechanism of action. The combination
between drugs is commonly used in clinical practice aiming to potentialize the antifun-
gal effect of the drugs (55). Furthermore, the combination assay can help unravel the
mechanism of action of the drugs and how this may vary according to the concentra-
tion (56). To check if miltefosine has any interaction with other antifungal drugs, we
combined this compound (ranging from 0.001 to 8.0mg/ml; MIC value of 10mM corre-
sponds to 4mg/ml) with different antifungal drugs (Fig. 1B to 1E). Miltefosine was com-
bined with posaconazole (0.03 to 2.0mg/ml), voriconazole (0.0007 to 0.5mg/ml),
amphotericin B (0.06 to 4.0mg/ml), and caspofungin (4.0 to 256.0mg/ml) (Fig. 1B to
1E). Using the checkerboard microdilution method, the interaction between miltefo-
sine and the other compounds was determined through the fractional inhibitory con-
centration index (FICI). The interaction between the drugs was classified as synergistic
(FICI# 0.5), indifferent (0.5, FICI# 4.0) or antagonistic (FICI. 4.0) (57). Under the assayed
conditions, the FICI index varied from 1 to 2.5 in the combination of voriconazole and mil-
tefosine, 1 to 0.6 between posaconazole and miltefosine, 0.6 to 1.2 between amphotericin
B and miltefosine, and 1.0 to 1.1 between caspofungin and miltefosine. These data show
that the addition of miltefosine did not affect the antifungal effects of the tested clinical
antifungals against A. fumigatus, indicating that there is no interaction between them.

There is evidence in the literature showing that miltefosine can affect the sphingoli-
pid metabolism in trypanosomatids (58, 59). To check if miltefosine could display any
interaction with drugs that affect cellular lipid biosynthesis, we combined different
concentrations of miltefosine (0.001 to 8.0mg/ml) and myriocin (2.0 to 128mg/ml)
(Fig. 1F), an inhibitor of serine palmitoyltransferase, the first step in sphingosine bio-
synthesis (60). At low concentrations of the drugs, indifferent interaction was observed.
Interestingly, at high concentrations, myriocin impaired the antifungal effects of milte-
fosine against A. fumigatus, demonstrating an antagonistic effect between these

TABLE 1MIC values for NIH clinical collection and Pathogen Box compounds against A. fumigatus

Compound MIC (mM) Description Mode of action Reference
Econazole nitrate 12.5 Broad-spectrum antimycotic agent Inhibits ergosterol biosynthesis 120
Fluvastatin 25 Statin drug class used for hypercholesterolemia

treatment; demonstrated antifungal activity
against some fungal species

Blocks ergosterol biosynthesis by inhibition
of farnesyl pyrophosphate production

121

Mesoridazine 3.12 Piperidine neuroleptic drug used for the
treatment of schizophrenia, organic brain
disorders, alcoholism, and psychoneuroses

Acts indirectly on reticular formation,
whereby neuronal activity into reticular
formation is reduced without affecting its
intrinsic ability to activate the cerebral
cortex

122

Cisapride 1.56 Gastroprokinetic agent, increases motility in the
upper gastrointestinal tract

Parasympathomimetic acting as a serotonin
5-HT4 agonist

123

Oxiconazole nitrate 25 Salt form of oxiconazole with antifungal activity Inhibits ergosterol biosynthesis 124
Indinavir sulphate 6.25 Antiretroviral protease inhibitor used in the

therapy and prevention of HIV infection and
AIDS

Protease inhibitor 125

Enalaprilat 25 Used in the treatment of hypertension Angiotensin-converting enzyme inhibitor 126
Vincristine sulfate 25 Used in cancer chemotherapy Inhibits microtubule formation in mitotic

spindle salt of a natural alkaloid with
antimitotic and antineoplastic activities

127

Iodoquinol 2 Antiprotozoal agent used as an amebicide drug Unknown 128
Miltefosine 10 Antiprotozoal, bactericidal and antifungal agent Unknown 129

dos Reis et al. ®

July/August 2021 Volume 12 Issue 4 e01458-21 mbio.asm.org 4

https://mbio.asm.org


FIG 1 Miltefosine is a potential new anti-aspergillosis compound and shows its interaction with the sphingolipid inhibitor myriocin. (A) Screening of
chemical libraries reveals potential new anti-aspergillosis compounds. (B) Interaction between miltefosine and posaconazole. (C) Interaction between
miltefosine and voriconazole. (D) Interaction between miltefosine and amphotericin B. (E) Interaction between miltefosine and caspofungin. (F) Interaction
between miltefosine and myriocin.
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compounds (Fig. 1F). Considering that myriocin has only a single target identified, this
result suggests the existence of a component of the sphingolipid pathway important
to the antifungal effect of miltefosine.

SmiA is the major transcription factor that mediates miltefosine response in A.
fumigatus. To assess if there are transcriptional programs modulating the tolerance
response to miltefosine, a library of 484 A. fumigatus transcription factor (TF) null
mutants (61) was screened for sensitivity to miltefosine (0.001 to 8.0mg/ml). A primary
screening using 96-well plates identified six TF null mutants with different susceptibil-
ities to miltefosine. To validate the differential susceptibility of these mutants to milte-
fosine, the 6 TF null mutants were grown in the absence or presence of different milte-
fosine concentrations, and their radial growth was measured (Fig. 2). When compared
to the wild-type strain, we observed discrete differences in five of these mutant strains
(Fig. 2). DmcnB (AFUA_5G05600) strain, which encodes a homologue of A. nidulans
McnB, a multicopy supressor of A. nidulans nimA1, (62) showed about 20% growth inhi-
bition (Fig. 2A and B), while DpacC (AFUA_3G11970) strain, which encodes PacC, a pro-
tein important for pH regulation (63), showed about 50% inhibition compared to the
wild-type strain at 8mg/ml (Fig. 2A and B). The DsslA (AFUA_5G04333) strain, which
encodes a homologue of Saccharomyces cerevisiae Ssl1p, a subunit of the general
transcription factor TFIIH, has about 50% growth inhibition compared to the wild-
type strain at 8mg/ml (Fig. 2A and B). The DsebA (AFUA_4G09080) strain encodes a
TF important to cope with different kinds of stress (64) and showed 40% inhibition to
miltefosine at 8mg/ml, while the wild type is inhibited 60% at this concentration
(Fig. 2A and B). The AFUA_5G03030 null mutant has 65% growth inhibition compared to
the wild-type strain for miltefosine at 8mg/ml (Fig. 2). Notably, the AFUA_2G12070 mutant
was unable to grow at 4mg/ml miltefosine (Fig. 2A and B and 3A and B). AFUA_2G12070
encodes a 492-amino-acid novel fungal Zn2-Cys6 transcription factor (http://pfam.xfam
.org/family/PF00172#Zn2/Cys6). We named this gene smiA (sensitive to miltefosine). The
phylogenetic distribution of SmiA across fungal classes and genomes represents 24 spe-
cies in two different taxonomic classes, Eurotiomycetes (Chaetothyriomycetidae and
Eurotiomycetidae) and Sordariomycetes (Hypocreomycetidae) (Fig. 3A; see also Table S1
at https://doi.org/10.6084/m9.figshare.14762991.v4).

The DsmiA strain was complemented, and the DsmiA::smiA1 complementing strain
presented a reversible phenotype in terms of miltefosine sensitivity, indicating that the
miltefosine sensitivity phenotype of the DsmiA strain is due to the specific deletion of
the smiA gene (Fig. 3B and C). The DsmiA mutant has no differential susceptibility to
different stress conditions, such as growth on increasing concentrations of NaCl,
Calcofluor white, sorbitol, CaCl2, 1,4-dithiothreitol (DTT), brefeldin (growth at 44°C),
and menadione (Fig. S1 at https://doi.org/10.6084/m9.figshare.14762991.v4). The wild-
type and DsmiA strains have the same MICs for amphotericin, itraconazole, voricona-
zole, posaconazole, and caspofungin (data not shown).

Aiming to localize SmiA, we constructed a functional C-terminal SmiA-GFP strain (Fig.
S2 at https://doi.org/10.6084/m9.figshare.14762991.v4) that showed no fluorescence in
the absence of miltefosine (Fig. 3D and E). However, when the SmiA-GFP strain was
shifted 15 min to MM supplemented with 3mg/ml miltefosine, SmiA-GFP can be detected
in about 50% of the nuclei (Fig. 3D and E). In addition, we also constructed a functional
SmiA-3�HA strain (Fig. S2 at https://doi.org/10.6084/m9.figshare.14762991.v4). This strain
was grown in VMM and further exposed to RPMI supplemented (or not) to an inhibitory
concentration of miltefosine (12.5mg/ml) for 4 and 8min. A very faint band of 54.3 kDa,
corresponding to SmiA-3�HA, was observed in the control not exposed to miltefosine,
while increased-intensity bands were observed after 4 and 8 h of exposure to miltefosine
(Fig. 3F).

These results indicate that the SmiA protein quickly translocates to the nucleus, and
its expression is also increased upon miltefosine exposure.

Miltefosine induces necrosis-like cell death and increases mitochondrial
fragmentation in A. fumigatus. A. fumigatus forms mitochondrial tubular and highly
dynamic networks that are fragmented in the presence of antifungal and oxidative
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FIG 2 Radial growth of transcription factor (TF) null mutants in the presence of miltefosine. (A) A
total of 1� 105 conidia of each species was inoculated on MM supplemented or not with increasing
concentrations of miltefosine. Plates were incubated for 3 days at 37°C. (B) Quantification of the
results obtained in panel A. For each strain, three independent experiments were realized, and the
graphic shows the means 6 standard deviations.
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FIG 3 Molecular characterization of smiA. (A) The phylogenetic distribution of SmiA across fungal classes and genomes. Orthologs are
determined using orthoMCL algorithm on FungiDB (www.fungidb.org). Sequences were aligned through pairwise Mercator (XX) analysis

(Continued on next page)
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stressing agents such as hydrogen peroxide (65, 66). This increased mitochondrial frag-
mentation has been described as a marker for cell death (66). Propidium iodide (PI) is a
fluorescent DNA-binding dye that freely penetrates cell membranes of dead or dying
cells but is excluded from viable cells. Late apoptosis and early necrosis are character-
ized by an increased number of PI-positive cells. To evaluate the effects of miltefosine
and PI on the mitochondrial morphology and viability, germlings from the wild-type,
DsmiA, and DsmiA::smiA1 strains were treated with 3mg/ml of the drug for 0, 5, or
10min, and green MitoTracker (a mitochondrial fluorescent probe) or PI was added
and further analyzed by fluorescence microscopy (Fig. 4A). In the absence of miltefo-
sine, an intact mitochondrial network was observed in all three strains. However, upon
5 min of miltefosine exposure, the DsmiA cells showed about 60% mitochondrial frag-
mentation, evidenced by the presence of a punctated fluorescent pattern observed in
the cytoplasm of the cells (Fig. 4A and B), while in the wild-type and complemented
strains the levels of mitochondrial fragmentation were much lower, 20 and 30%,
respectively (Fig. 4A and B). When the wild-type and the DsmiA::smiA1 germlings were
left unexposed to miltefosine, about 5% of cells were stained by PI, while in the DsmiA
strain this level was about 7% (Fig. 4C). However, upon miltefosine addition, the wild-
type and the DsmiA::smiA1 germlings were about 12% stained by PI (Fig. 4C), while
more than 50% of the DsmiA germlings showed PI staining (Fig. 4C). These results sug-
gest that miltefosine induces both mitochondrial fragmentation and necrotic cell
death in A. fumigatus, which was accentuated in the DsmiA strain, emphasizing the im-
portance of SmiA for survival and viability of A. fumigatus.

A. fumigatus germlings were exposed to 4mg/ml a functional fluorescent analogue of
miltefosine, MT-11C-BDP [11-(4,4-difluoro-1,3,5,7-tetrametil-4-bora-3a,4a-diaza-s-indacen-
2-il) n-undecilfosfatidilcolina] (67), for about 5 min (Fig. 5). MT-11C-BDP localizes to tubular
structures that resemble mitochondrial networks and were also fragmented in a fraction
of the germlings (Fig. 5A and B). Colocalization with MitoTracker Deep Red FM indicated
that the MT-11C-BDP analogue is mainly localized at the mitochondria.

Miltefosine induces the modulation of genes encoding proteins responsible for
the metabolism of lipids, fatty acids, and derivatives. Aiming to get insights about
genes that are modulated under miltefosine exposure, we carried out a transcriptomic
analysis (RNA-seq) analyzing the A. fumigatus wild-type strain exposed to miltefosine.
Compared to the wild type grown in MM, when the cells were shifted to RPMI medium
supplemented with 3mg/ml miltefosine for 30 min, a total of 1,248 genes were upregu-
lated (log2 fold change [log2FC] . 1.0; P, 0.005), and 940 genes were downregulated
(log2FC , 21.0; P, 0.005). In both cases the false discovery rate (FDR) was less than
0.05 (Table S2 at https://doi.org/10.6084/m9.figshare.14762991.v4).

The enrichment analysis using FunCat (https://elbe.hki-jena.de/fungifun/fungifun
.php) showed a transcriptional upregulation of genes involved in vesicular and vacuo-
lar transport, metabolism of glutamate, caspase activation, ABC transporters, osmo-
sensing response, transport ATPases, stress response, proteasomal degradation, lipid
transport, and high enrichment in lipid, fatty acid, and isoprenoid metabolism (Fig. 6A).
Genes involved in nuclear transport, RNA transport, mitochondrial transport, tricarbox-
ylic acid (TCA) cycle, nucleotide binding, unfolded protein response, aminoacyl-tRNA-
synthetases, amino acid metabolism, rRNA processing, ribosome biogenesis, and trans-
lation were downregulated upon miltefosine exposure (Fig. 6A). These results suggest
that under miltefosine treatment, A. fumigatus increases the expression of genes

FIG 3 Legend (Continued)
combined with Clustal Omega (YY). The phylogenetic tree was visualized with iTol v6 (ZZ). (B) Growth phenotypes of the wild-type, DsmiA,
and DsmiA::smiA1 strains grown for 3 days on solid MM supplemented with increasing concentrations of miltefosine. (C) Graphical
quantification of fungal growth presented in panel B. The results are averages 6 standard deviations from three repetitions. (D) SmiA-GFP
translocates to the nucleus under exposure to miltefosine. (E) Graphical quantification of SmiA-GFP location shown in panel D. The results
are averages 6 standard deviations from three repetitions of 30 germlings for each repetition. (F) Western blot showing the SmiA-HA
expression after 0, 4, and 8 h of incubation with 12.5mg/ml miltefosine. Anti-HA antibody was used to detect the recombinant protein.
Anti-actin antibody was used as a loading control. Statistical analysis was performed using one-tailed, paired t tests for comparisons to the
control condition (*, P , 0.05; ***, P , 0.001).
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involved in fatty acid metabolism and transport, stress responses, and specific trans-
porters, while it represses mitochondrial functions (e.g., TCA cycle and mitochondrial
transport) and amino acid and protein biosynthesis.

smiA is important for the induction of genes involved in lipid metabolism upon
miltefosine exposure in A. fumigatus. To identify potential targets modulated by SmiA,
we performed transcriptional profiling of the DsmiA null mutant under the same experi-
mental design described for the wild-type strain. We identified 292 differentially expressed
genes (DEGs), with 184 genes upregulated (log2FC, .1.0; P, 0.005) and 108 genes

FIG 4 There is increased mitochondrial fragmentation and cell death when the A. fumigatus DsmiA strain is exposed to miltefosine. (A)
Mitochondrial morphology revealed by MitoTracker in the wild-type, DsmiA, and DsmiA::smiA1 strains. (B) Quantification of the mitochondrial
fragmentation in the absence (control) and presence of miltefosine. (C) Quantification of PI1 (propidium iodide) germlings in the absence (control)
and presence of miltefosine. The results are the averages 6 standard deviations from three repetitions of 30 germlings for each repetition.

FIG 5 Fluorescent miltefosine analogue MT-11C-BDP is localized in the mitochondria. (A and B) A. fumigatus germlings (16 h of growth in MM) were
exposed for 5 min to 4mg/ml MT-11C-BDP. Germlings were stained with MitoTracker Deep Red FM.
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downregulated (log2FC, ,21.0; P, 0.005; FDR, 0.05) upon miltefosine exposure (Table
S3 at https://doi.org/10.6084/m9.figshare.14762991.v4). FunCat enrichment analysis has
not shown categories for upregulated genes in the DsmiA mutant. However, FunCat for
the downregulated genes in the DsmiA mutant exposed to miltefosine revealed enrich-
ment for categories of genes encoding proteins involved in lipid, fatty acid, and isoprenoid

FIG 6 Transcriptional profiling of A. fumigatus wild-type and DsmiA strains exposed to miltefosine. (A) FunCat categorization of differently expressed genes
(DEGs) up- and downregulated in the wild-type strain exposed to miltefosine compared to the wild-type strain grown in VMM (control). (B) FunCat analysis
of DEGs downregulated in the DsmiA strain under miltefosine exposure compared to the DsmiA strain grown in VMM. (C) Heat map of log2 fold change
(log2FC) of DEGs as determined by RNA-seq. Log2FC values are based on comparisons between (i) wild-type strain exposed to miltefosine versus wild-type
strain in grown in MM (control); (ii) DsmiA strain grown in VMM (control) versus wild type grown in VMM (control); and (iii) DsmiA strain exposed to
miltefosine versus wild-type strain under miltefosine treatment. Hierarchical clustering was performed in Multiple Experiment Viewer (MeV) (http://mev.tm4
.org/), using Pearson correlation with complete linkage clustering. Heat map scale and gene identities are shown. (D) Validation of RNA-seq data.
Expression of three genes as determined by qRT-PCR after 0 and 30 min of exposure to 3mg/ml miltefosine. Gene expression values were normalized by
the expression of b-tubulin. Standard deviations are shown for biological triplicates.
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metabolism, NAD/NADP binding, homeostasis of protons, ribosomal proteins, electron
transport, and transport of ATPases (Fig. 6B).

A visual inspection of DEGs in both wild-type and DsmiA strains showed zinc finger
proteins (AFUA_5G12760 and AFUA_6g02690), MFS transporters (AFUA_5G09780 and
AFUA_7G01790), and a sensor histidine kinase regulator (AFUA_5G10020) with higher lev-
els of expression in the DsmiA strain than the wild type (Fig. 6C). Genes involved in the me-
tabolism of fatty acids (AFUA_4G00340, AFUA_2G12530, AFUA_6G07270, AFUA_5G10670,
and AFUA_8g02590), cytochrome P450 enzymes (AFUA_3g03930, AFUA_4G03800, and
AFUA_2G04290), cell division control protein (AFUA_2G17110), aldehyde dehydrogenase
(AFUA_4G13500), and isocitrate lyase (AFUA_4G13510) were downregulated in the DsmiA
strain compared to the wild-type strain (Fig. 6C). Accordingly, the RNA-seq data were vali-
dated by performing real-time PCR on 3 selected genes that showed a very similar expres-
sion pattern compared with data from RNA-seq (Fig. 6D).

Taken together, our data show that in the wild-type strain, lipid and fatty acid me-
tabolism are upregulated upon miltefosine exposure, suggesting their importance
for survival in the presence of this drug. On the other hand, the deletion of the smiA
gene leads to a deficiency in the lipid and fatty acid metabolism, strongly suggesting
that it is linked to the higher sensitivity of this mutant to miltefosine.

SmiA binds to a discrete number of gene promoter regions specifically in the
presence of miltefosine. Considering that SmiA seems to be a TF involved in miltefo-
sine resistance in A. fumigatus, we decided to identify potential direct targets under
SmiA control of this protein using the ChIP-seq approach. The SmiA-3�HA strain
(Fig. 7A and Fig. S2 at https://doi.org/10.6084/m9.figshare.14762991.v4) was grown in
MM and further exposed to RPMI supplemented (or not) with miltefosine for 30min.
After immune precipitation using anti-HA antibody, samples were sequenced using
the Illumina HiSeq2500 platform, the reads were aligned to the A. fumigatus Af293 ref-
erence strain, and the program MACS2 was used for peak calling. The peak intensity
map showed that SmiA binding was enriched at the promoter region of 12 specific
genes that are present in different chromosomes: (i) AFUA_2G08260, encoding a
homologue of S. cerevisiae Oye2p, an NADPH oxidoreductase containing flavin mono-
nucleotide (FMN) that may be involved in sterol metabolism, oxidative stress response,
and programmed cell death (www.yeastgenome.org); (ii) AFUA_3G03230, encoding
a BZIP transcription factor (www.fungidb.org); (iii) AFUA_3G07300, AtrA encoding
an ABC multidrug transporter (www.fungidb.org); (iv) AFUA_3G10770, encoding a
homologue of S. cerevisiae Rbs1p, a sphingoid long-chain base (LCB) efflux transporter,
integral membrane transporter that localizes to the plasma membrane and may trans-
port LCBs from the cytoplasmic side toward the extracytoplasmic side of the mem-
brane, and a role in glycerophospholipid translocation (www.yeastgenome.org); (v)
AFUA_4G03800, encoding a cytochrome P450 alkane hydroxylase (www.fungidb.org);
(vi) AFUA_4G13500, encoding a homologue of S. cerevisiae Hfd1p, a dehydrogenase
involved in ubiquinone and sphingolipid metabolism, converting hexadecenal to
hexadecenoic acid in sphingosine 1-phosphate catabolism, the human homologue
of ALDH3A2, mutated in Sjogren-Larsson syndrome (www.yeastgenome.org) (68);
(vii) AFUA_5G10670, encoding a protein that has a domain(s) with predicted iron
ion binding, oxidoreductase activity, and role in fatty acid biosynthetic process, oxida-
tion-reduction process (www.fungidb.org); (viii) AFUA_2G14410, encoding an ortho-
logue that has a role in xanthophyll metabolic processes (www.fungidb.org); (ix)
AFUA_4G11270, encoding an unknown function hypothetical protein (www.fungidb.org);
(x) AFUA_4G11280, encoding an orthologue that has dolichyl-phosphate-mannose-glyco-
lipid alpha-mannosyltransferase activity and role in the glycophosphatidylinositol (GPI)
anchor biosynthetic process (www.fungidb.org); (xi) AFUA_5G10660, encoding a pentatri-
copeptide repeat protein (www.fungidb.org); and (xii) AFUA_6G03320, encoding an MFS
transporter (www.fungidb.org) (Fig. 7A and Table S4 at https://doi.org/10.6084/m9
.figshare.14762991.v4). SmiA binding to these promoter regions happens specifically in
the presence of miltefosine, suggesting that SmiA is important for the activity of those
genes in the presence of this drug. Accordingly, the RNA-seq data demonstrate that the
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expression levels of AFUA_2G08260, AFUA_3G03230, AFUA_3G07300, AFUA_3G10770,
AFUA_4G03800, AFUA_4G13500, and AFUA_5G10670 are repressed in the DsmiA strain
compared with the wild type when both strains are exposed to miltefosine (Fig. 7B and
Table S4 at https://doi.org/10.6084/m9.figshare.14762991.v4).

To identify putative SmiA-binding motifs in A. fumigatus, we carried out multiple ex-
pectation maximum for motif elicitation (MEME) of the 500 nucleotides surrounding
each peak sequence identified in the ChIP-seq. The results show the enrichment of two
consensus DNA binding sequences for SmiA in the presence of miltefosine (Fig. 7C).

FIG 7 ChIP-seq of the SmiA-3�HA strain exposed or not to miltefosine. (A) ChIP-Seq Integrative Genomics Viewer (IGV; http://software.broadinstitute.org/
software/igv/download) screenshot for promoter regions of genes that bound to SmiA-3�HA when grown for 24 h in VMM or after the addition of
12.5mg/ml miltefosine for 30min. (B) Heat map of the ChIP-seq results for 6 genes showing the fold enrichment of SmiA binding after 0 and 30 min of
exposure to 12.5mg/ml miltefosine and the RNA-seq results for the same 6 genes in the WT and DsmiA strains after exposure to 3mg/ml during 30 min. (C)
MEME-ChIP analysis of the 500-bp region surrounding the peaks identified in the ChIP-seq analysis.
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Two binding motifs were predicted, 59-CGGAG(G or C)AA-39 (E value of 5e202), and
59-AACNGAATGA-39 (E value of 3.8e202).

Together, our data highlight the importance of SmiA for events involved with the mil-
tefosine resistance process in A. fumigatus and suggest that genes potentially modulated
by the SmiA binding have specific binding motifs for this protein. Several promoter
regions of genes that are bound by SmiA encode proteins involved in lipid metabolism.

SmiA is important for sphingolipid biosynthesis. Our previous results suggest that
myriocin, a sphingolipid inhibitor, impairs the antifungal activity of miltefosine (Fig. 1F).
Considering that the metabolism of lipids seems to be involved with miltefosine resist-
ance and the TF SmiA is linked to this process, we performed the SL profiling of both
wild-type and DsmiA strains exposed to miltefosine. Both strains were grown in VMM for
16 h and shifted to RPMI medium supplemented (or not) with 3mg/ml miltefosine for 4 h.
The main SL intermediates starting from the branching point of the pathway (dihydros-
phingosine [DHS]) were then measured through mass spectrometry analysis, and the
results were expressed as fold increase or decrease compared to the control not exposed
to miltefosine (Fig. 8A).

The deletion of smiA leads to an overall reduction of the analyzed SLs compared to
the SL levels in the wild-type strain under the same conditions (Fig. 8A). Interestingly, the
reduction in SL levels occurs in both acidic and neutral branches of the pathway, suggest-
ing the deletion of smiA affects the early steps of the SL biosynthetic process. The branch-
ing point of the SL pathway is DHS, the precursor of dihydroceramide (DHC; the first inter-
mediary of the neutral branch) and phytosphingosine (PHS; the first intermediary of the
acidic branch). However, DHS is also converted to dihydrosphingosine 1-phosphate (DHS-
1P), starting the metabolic pathway where the DHS-1P is converted to glycerolipid
through many enzymatic reactions (Fig. 8A). Upon miltefosine exposure, there is an
increase of DHS and a decrease in DHS-1P in the wild-type strain, while the opposite
is observed in the DsmiA mutant (Fig. 8A). PHS, ceramide (CER), hydroxyceramide
(OH-CER), phosphoceramide (P-CER), hydroxyphosphoceramide (OH-PCER), glucocer-
amide (GLC-CER), and inositolphosphoryl-ceramide (IPC) are increased when the
wild-type strain is exposed to miltefosine (Fig. 8A). In contrast, all these sphingolipids
were reduced in the DsmiA strain when exposed to miltefosine (Fig. 8A). We investi-
gated in our RNA-seq data set the expression levels of the genes that encode enzymes
involved in the different steps of the SL pathway (Fig. 8B). We observed 4 genes (Lcb2,
AFUA_1G11890; KsrA, AFUA_1G11150; LagA, AFUA_6G10460; and Sur2, AFUA_1G16850)
with reduced and 2 genes (AurA, AFUA_3G09960; MitA, AFUA_6G04680) with increased
expression when the wild type was exposed to miltefosine (Fig. 8B). Interestingly, only one
gene (Hfd1, AFUA_4G13500) is differentially expressed with reduced expression when the
DsmiA mutant is exposed to miltefosine (Fig. 8B). Taken together, our results suggest that
miltefosine antifungal activity against A. fumigatus interferes directly in the SL biosynthesis
pathway.

Azole-resistant clinical isolates of A. fumigatus are sensitive to miltefosine. To
verify if miltefosine is a good candidate for therapy against azole-resistant strains, we
tested if miltefosine could inhibit A. fumigatus growth of 19 clinical isolates (in addition to
CEA17 strain) with different levels of azole resistance by determining their MICs. We tested
9 azole-sensitive A. fumigatus strains (CEA17, CYP15-109, IF1S-F4, IFM59056, ISFT-021,
IFM61407, MO68507, MO54056, and IFM59056) and 10 azole-resistant isolates with differ-
ent resistance mechanisms, cultured from different sample sites from patients from
Portugal, Japan, Belgium, and Switzerland (69) (Table 2). The most common azole resist-
ance mechanisms include amino acid substitutions in the target Cyp51A protein and tan-
dem repeat sequence insertions at the cyp51A promoter (70). The cyp51A gene is not
mutated in the azole-resistant strains F16134, F14946, CYP15-117, CYP15-147, CYP15-75,
CYP15-93, CYP15-106, and CYP15-115 (cyp51A was not sequenced in the CYP-15-91 strain),
suggesting different mechanisms of azole resistance (69). In contrast, strains 1799392 and
20089320 have TR34 tandem repeats at the cyp51A promoter region and L98H amino acid
replacement at Cyp51A (71). All the azole-sensitive or -resistant clinical isolates have a MIC
of 4mg/ml miltefosine (Table 2). These results strongly indicate that miltefosine can inhibit
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FIG 8 Deletion of smiA leads to an overall reduction of sphingolipids biosynthesis in A. fumigatus. (A) The wild-
type and DsmiA strains were grown in liquid VMM for 16 h and transferred to RPMI medium supplemented (or
not) with 3mg/ml miltefosine for an additional 4 h, and the sphingolipids were extracted and measured by mass

(Continued on next page)
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the growth of clinical isolates that have developed resistance to azoles through different
mechanisms.

We also observed that several A. nidulans, A. niger, and A. lentulus clinical and envi-
ronmental isolates have MICs of 4mg/ml, while an environmental isolate of A. flavus
has a MIC of 8mg/ml (Table S5 at https://doi.org/10.6084/m9.figshare.14762991.v4).

Miltefosine increases the survival of Galleria mellonella larvae infected with A.
fumigatus. On the basis of its essential role in sphingolipid biosynthesis, we asked
whether SmiA is important for A. fumigatus virulence. G. mellonella larvae (n= 10 for
each strain) were infected with the wild-type, smiA deletion, and complementation
strains, and survival was assessed over a time period of 10 days (Fig. 9A). The wild-type,
DsmiA, and DsmiA::smiA1 strains caused 90% to 100% mortality after 9 to 10 days post-
infection (p.i.) (P, 0.001) (Fig. 9A). These results indicate that SmiA is not a key regula-
tor of A. fumigatus pathogenesis in the G. mellonella model.

As a proof of principle of the in vivo antifungal activity of miltefosine, we tested its
ability to control or reduce the A. fumigatus infection in G. mellonella larvae (Fig. 9B and
C). First, we tested three different concentrations of miltefosine (40, 60, and 80mg/kg of
the body weight of the larva), aiming to verify the drug concentration that could cause
minimal damage to the larvae. These miltefosine concentrations caused about 40% mor-
tality after 10days (P, 0.001) (Fig. 9B). A. fumigatus infection of G. mellonella larvae com-
bined with 60 and 80mg of miltefosine/kg of larva resulted in about 50% survival of the
invertebrate host (P, 0.001) (Fig. 9C). These results indicate that miltefosine is able to
control 50% of the mortality caused by A. fumigatus infection in G. mellonella.

FIG 8 Legend (Continued)
spectrometry. Heat map labels surrounded by boxes with gray borders represent the intermediates of the SL
biosynthetic pathway. Heat maps surrounded by boxes with green borders represent the intermediates from the
neutral branching, while heat maps surrounded by boxes with yellow borders represent the intermediates from
the acidic branch of the SL biosynthetic pathway. Heat maps show the values obtained by the VMM/RPMI ratio.
Experiments were performed by using three independent biological experiments, and the results are averages of
them. Statistical analysis was performed using Student's t test (P, 0.05). (B) Diagram showing the different genes
involved in sphingolipid biosynthesis. Expression levels of genes encoding enzymes involved in the sphingolipids
biosynthesis were selected from the RNA-seq analysis. DHS, dihydrosphingosine; DHS-1P, dihydrosphingosine 1-
phosphate; DHC, dihydroceramide; Cer, ceramide; GlcCer, glucosylceramide; OH-Cer, hydroxy-ceramide; PHS,
phytosphingosine; PHS-1P, phytosphingosine 1-phosphate; PCer, phytoceramide; OH-PCer, hydroxy-phytoceramide; IPC,
inositolphosphoryl ceramide.

TABLE 2MIC of A. fumigatus clinical isolates in the presence of different antifungal drugs

Strains

MIC (mg/ml)

Itraconazole Posaconazole Voriconazole Amphotericin B Miltefosine
CEA17 2 2 1 0.5 4
F16134 .8 .8 4 0.25 4
F14946 .8 8 8 0.25 4
CYP15-117 .8 2 2 0.5 4
CYP15-147 .8 2 8 1 4
20089320 .8 4 4 1 4
CYP15-75 8 4 8 0.5 4
CYP15-91 8 1 2 1 4
CYP15-93 8 1 2 0.5 4
CYP15-106 8 2 1 1 4
CYP15-115 8 0.5 0.5 0.25 4
17993925 8 2 4 1 4
CYP15-109 4 1 .8 0.5 4
IF1S-F4 4 1 1 0.5 4
IFM59056 4 1 0.125 0.5 4
ISFT-021 2 1 0.25 1 4
IFM61407 2 2 0.125 0.5 4
MO68507 1 1 0.25 0.5 4
MO54056 1 1 0.125 0.5 4
IFM59056 1 1 0.125 0.5 4
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DISCUSSION

In recent years, the incidence of fungal infections has grown dramatically, leading to
an increasing number of deaths worldwide (1, 2). The mortality rate is linked to a set of
conditions, such as host immune system integrity, availability of an effective antifungal
drug, and the occurrence of clinical resistant isolates (6, 7, 11, 21, 72). Invasive pulmonary
aspergillosis (IPA) is a disease caused by the opportunistic human pathogen A. fumigatus
and displays high levels of morbidity and mortality mainly in immunocompromised
patients (1, 17). Azoles are the main drug used to control IPA, but the azole-resistant A.
fumigatus isolates have increased significantly over the last decade (28, 33–38).

Given this scenario, there is an urgent need for new antifungal therapies applied to
control IPA and other fungal diseases. The development of new antifungal drugs raises
challenges, such as the high costs and the time required for development and licens-
ing of new compounds. To circumvent the slowness and cost of developing new drugs,
the screening of chemical libraries and repurposing of drugs that are already commer-
cialized for other purposes is a great opportunity to discover new antifungal com-
pounds (43, 45, 48, 52, 73–75). Here, we screened the growth of A. fumigatus in the
presence of compounds present in two drug libraries and identified 10 compounds,

FIG 9 Miltefosine contributes to reduce A. fumigatus virulence in G. mellonella wax moth. (A to C)
Survival curves of G. mellonella larvae (n= 10/strain) infected via injection with 106 conidia from wild-
type, DsmiA, and DsmiA::smiA1 strains. Larvae were monitored for a period of 10 days postinfection.
Log rank (Mantel-Cox) tests (***, P, 0.001) were used to compare all the treatments with the larvae
infected with the A. fumigatus wild-type control.
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among them five compounds already known as inhibitors of fungal growth, including
two azole derivatives (econazole nitrate and oxiconazole nitrate), fluvastatin, which inhib-
its ergosterol biosynthesis, and iodoquinol and miltefosine, drugs with an unknown
mechanism of action. To our knowledge, the other five identified compounds (mesorida-
zine, cisapride, indinavir sulfate, enalaprilat, and vincristine sulfate) are novel as antifungal
agents and have not been reported before. We investigated a possible mechanism of
action for miltefosine, a chemical belonging to the alkylphosphocholine class. Miltefosine
is mainly localized in the mitochondria and has a MIC of 4mg/ml under in vitro conditions,
and we demonstrated that miltefosine is able to inhibit, to the same extent, A. fumigatus
growth of several clinical isolates, including highly azole-resistant strains. Miltefosine was
a drug initially used as an antineoplastic drug (76) and for treatment against trypanoso-
matids (77), and it is the first drug approved for oral treatment of leishmaniasis (58).
However, the mechanism of action of miltefosine is not fully understood and not neces-
sarily the same in different organisms, and the specific target of miltefosine has not been
identified yet. Recent studies in trypanosomatids have suggested that miltefosine acts by
(i) altering the correct functionality of the sterol and sphingolipid metabolism (58, 59); (ii)
inhibiting the phosphatidylcholine synthesis (78) and membrane remodeling due to the
phospholipase action, contributing to changing membrane physical properties (79); (iii)
inhibiting cytochrome c oxidase (80); (iv) activating the plasma membrane Ca12 channel
opened by the sphingolipid sphingosine; and (v) destabilizing the intracellular Ca12 ho-
meostasis (59). On the other hand, the resistance phenotype to miltefosine in trypanoso-
matids has been linked to genes belonging to lipid metabolism (81).

Concerning its antifungal behavior, miltefosine has been demonstrated to be effective
against different fungal species (82–93); however, its mode of action remains to be clari-
fied. Recent studies have suggested that miltefosine triggers its antifungal effects by
destabilizing cell membranes and inducing apoptosis (53, 84, 87, 92, 94). Accordingly,
Spadari and colleagues demonstrated that for Cryptococcus spp., miltefosine affects the
plasma membrane permeability due to its interaction with ergosterol and/or phospholi-
pids, increasing the production of reactive oxygen species and DNA fragmentation, which
culminates in fungal death by apoptosis (87). In addition, in C. krusei, the mode of action
of miltefosine is also supposed to be related to the binding of the drug to ergosterol in
the cell membrane, leading to cell apoptosis (92).

We observed that at the MIC, miltefosine displayed a fungicidal effect against A. fumi-
gatus, corroborating previous results presented for several fungal species, such as
Cryptococcus spp., Candida spp., and molds (83–88, 90–92, 95). Our studies showed that
miltefosine could decrease A. fumigatus mortality 50% in G. mellonella larvae. We then
decided to check if miltefosine could present any interaction with other antifungal drugs.
Azoles such as posaconazole and voriconazole, which act by inhibiting the ergosterol bio-
synthesis (96), amphotericin B, which sequesters ergosterol from the cell membrane (97),
and caspofungin, which targets the glucan synthase Fks1 and inhibits the synthesis of
b-(1,3)glucan (98), were included in our analysis, and none of them showed interaction
with miltefosine. Our results corroborated what was previously observed in Aspergillus
spp. where the interaction between these compounds with miltefosine was indifferent
for 32 from 33 isolates (85). In contrast to our results, miltefosine has been reported to
have synergy with posaconazole against Fusarium oxysporum and the mucormycetes
(99). In addition, a recent study with C. auris demonstrated that for 25% of the isolates
assessed, there was a synergic activity between miltefosine and amphotericin B, with an
FICI of 0.5 (92).

Sphingolipids are complex lipids composed of octadecacarbon alkaline blocks, syn-
thesized from nonsphingolipid precursors, and represent one of the most abundant lip-
ids in eukaryotic cell membranes (100, 101). In fungi, SLs are involved in central cellular
functions, such as growth, pathogenesis, cell death, and signal transduction (102–104).
SL biosynthesis starts in the endoplasmic reticulum, where the nonlipidic precursors ser-
ine and palmitoyl coenzyme A are condensed by the serine palmitoyltransferase enzyme
(SPT) into 3-keto dihydrosphingosine. The SPT is specifically targeted by myriocin, a
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sphingolipid inhibitor (60). The interaction assay between miltefosine and myriocin
showed that at high concentrations of both compounds, the FICI value was greater than
4.0, characterizing an antagonistic effect between these drugs (57). This indicates that
sphingolipid metabolism may be important to the antifungal effect of miltefosine, cor-
roborating previous results obtained for other fungal species and trypanosomatids (58,
59, 87, 92).

We were able to identify a completely novel A. fumigatus transcription factor, SmiA,
linked to miltefosine resistance in this pathogen. This information came from a large-
sale phenotypic screening of a collection of TF deletion mutants in the presence of mil-
tefosine. Although the deletion of six TFs somehow moderately impacted the growth
of the mutant in the presence of miltefosine, the DsmiA mutant is the most sensitive
mutant. SmiA is a novel and uncharacterized TF that codifies a putative Zn(II)Cys6 binu-
clear domain that translocates to the nucleus in the presence of miltefosine and seems
to be a key TF in the miltefosine response in A. fumigatus. Miltefosine at MIC com-
pletely abolished DsmiA mutant growth, and no additional phenotypes were observed
under other stress conditions, such as growth in the presence of subinhibitory concen-
trations of posaconazole, voriconazole, caspofungin, NaCl, Calcofluor white, sorbitol,
and CaCl2. The identification of the smiA gene as a putative major TF involved in A.
fumigatus response to miltefosine provided us with an opportunity to inquire into the
molecular mechanisms that are regulated by this gene.

The transcriptional profiling through RNA-seq assay with the wild-type strain in the
presence or absence of miltefosine indicated increased upregulation of genes involved
in lipids/fatty acid transport and metabolism. In contrast, the RNA-seq of the DsmiA
mutant exposed to miltefosine shows exactly the opposite behavior. Lipid and fatty
acid metabolism was the main category of downregulated genes, which strongly sug-
gests that this TF participates directly or indirectly in the induction of genes involved
in lipid metabolism, including genes involved in the biosynthesis of sphingolipids. The
identification of SmiA represents the first genetic element described and characterized
that plays a direct role in miltefosine response in fungi.

Our work provides opportunities for understanding the mechanism of action of mil-
tefosine through the characterization of the genes that are differentially expressed in
the DsmiA mutant. Further work will focus on the molecular characterization of these
differentially expressed genes.

MATERIALS ANDMETHODS
Media, strains, and phenotypic characterization. The Aspergillus spp. used in this work are listed

in Table S5 at https://doi.org/10.6084/m9.figshare.14762991.v4. All Aspergillus strains were grown in ei-
ther solid minimal medium (MM; 1% [wt/vol] glucose, 50ml of a 20� salt solution, trace elements, 2%
[wt/vol] agar, pH 6.5) or solid complete medium (YAG; 2% [wt/vol] glucose, 0.5%[wt/vol] yeast extract,
trace elements, 2% [wt/vol] agar) at 37°C. The composition of the trace elements and nitrate salts is
described by Käfer (105). For RNA-seq, ChIP-seq, and lipidomics, conidia were germinated in RPMI 1640
media and transferred to liquid Vogel’s minimal medium (VMM). For phenotypic characterization, plates
containing solid MM were centrally inoculated with 105 spores of each strain in the presence or absence
of various concentrations of miltefosine (0 to 8 mg/ml). After 120 h of incubation at 37°C, radial growth
was measured. All plates were grown in triplicate, and averages 6 standard deviations (SD) of the data
are plotted. All strains used in this work are listed in Table S6 at https://doi.org/10.6084/m9.figshare
.14762991.v4.

Library drug screenings. Two different drug libraries were screened for antifungal activity against
A. fumigatus CEA17 strain, the Pathogen Box (https://www.mmv.org/mmv-open/pathogen-box) and the
National Institutes of Health (NIH) clinical collection (NCC) (https://pubchem.ncbi.nlm.nih.gov/source/
NIH%20Clinical%20Collection). The Pathogen Box (https://www.mmv.org/) is a collection of 400 diverse,
drug-like molecules with already-described activity against different pathogens responsible for impor-
tant neglected diseases, such as malaria, tuberculosis, toxoplasmosis, and others. The NCC library is com-
posed of a small-molecule repository of 727 compounds, which are part of the screening library for the
NIH Roadmap Molecular Libraries Screening Centers Network (MLSCN), corresponding to a collection of
chemically diverse compounds that have been in phase I to III clinical trials (45).

For the primary screening, the drugs were diluted from 0.78 to 25 mM in 200 ml of MOPS [3-(N-mor-
pholino) propanesulfonic acid)-buffered RPMI 1640 (Life Technologies), pH 7, in 96-well plates. In each
well, a total of 1� 104 conidia of A. fumigatus wild-type strain was inoculated. Plates were incubated for
48 h at 37°C without shaking. Wells containing only medium and dimethyl sulfoxide (DMSO) were used
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as controls. Fungal growth inhibition was determined visually as a no-growth endpoint, and those com-
pounds were selected for further studies. All experiments were done in triplicate.

Fungicidal or fungistatic activity of the selected compounds was also assessed. Briefly, a total of
1� 104 conidia of A. fumigatus wild-type strain was inoculated in 96-wells plates, each well containing
200 ml of MOPS-buffered RMPI 1640 medium plus the lowest concentration of each compound that pro-
moted fungal growth inhibition in the primary screening. Plates were incubated for 48 h at 37°C without
shaking. Following, 100 conidia were plated in solid complete medium and incubated at 37°C for
another 36 h. Wells containing only medium and DMSO were used as controls. The number of viable colo-
nies was determined by CFU number compared to the negative control (no drug), which had 100% survival.
Results are expressed as means and standard deviations (SD) from three independent experiments.

MIC. The miltefosine drug used for MIC assays was purchased from Sigma-Aldrich and solubilized in
ethanol. The MIC was determined based on the M38-A2 protocol of the Clinical and Laboratory Standards
Institute (106).

Briefly, the assay was performed in 96-well plates containing 200 ml of MOPS-buffered RPMI 1640
medium, pH 7.0, supplemented with miltefosine (0 to 8 mg/ml] and 1� 104 conidia of A. fumigatus per
well. Plates were incubated at 37°C without shaking for 48 h. Wells containing only medium and ethanol
were used as a control. The MIC was defined as the lowest concentration of miltefosine that visually
inhibited 100% of fungal growth. All experiments were done in triplicate.

Assays for checking antifungal activity of drug combinations.We checked the interaction of milte-
fosine with several drugs, including antifungals and lipid inhibitor, using a checkerboard microdilution
method. The drug concentrations ranged from 0.001 to 8.0mg/ml for miltefosine, 0.03 to 2.0mg/ml for posa-
conazole, 0.0007 to 0.5mg/ml for voriconazole, 4.0 to 256.0mg/ml for caspofungin, 0.06 to 4.0mg/ml for
amphotericin B, and 2.0 to 128mg/ml for myriocin. The plates were incubated at 37°C during 48 h. The MIC
endpoint was 100% growth inhibition. The interaction was quantitatively evaluated by determining the frac-
tional inhibitory concentration index (FICI): FICI = (MIC miltefosine in combination/MIC miltefosine) 1 (MIC
clinical drug in combination/MIC clinical drug). The FICI was calculated for all possible combinations of differ-
ent concentrations (107). Interaction curves were also constructed. The interaction between these drugs was
classified as synergic at FICI of#0.5, indifferent at 0.5, FICI# 4.0, and antagonistic at FICI of.4.0 (57).

Construction of A. fumigatus mutants. To generate the SmiA-3�HA mutant, a 2.9-kb fragment
encompassing the smiA open reading frame (ORF) and the 59untranslated region (UTR), along with the
1-kb 39UTR DNA sequence, were PCR amplified from CEA17 genomic DNA (gDNA) with primer pairs P1/
P2 and P4/P5, respectively. The 0.8-kb linker-3�HA-trpC fragment was amplified from the pOB430 plas-
mid with primers P10/P11, and the prtA gene was amplified from the plasmid pPTRI with primers P8/P9.

The SmiA-GFP strain was constructed by the amplification of a 2.9-kb fragment encompassing the smiA
ORF and the 59UTR region, along with the 1-kb 39UTR DNA sequence, by PCR from CEA17 gDNA with primer
pairs P1/P3 and P4/P5, respectively. The linker-GFP-trpC fragment was amplified from the pOB435 plasmid
with primers P10/P11, and the prtA gene was amplified from the plasmid pPTRI with primers P8/P9.

The DsmiA strain was complemented, generating the DsmiA::smiA1 lineage. Specifically, the fragments
containing the 59UTR plus the smiA gene, along with the 1-kb 39UTR DNA sequence, were PCR amplified
from CEA17 gDNA with primer pairs P1/P7 and P4/P5, respectively. In addition, these fragments were fused
to the ptrA gene, which was previously PCR amplified from plasmid pPRTI (primers P8/P9).

All DNA cassettes (smiA1::prtA, smiA::GFP::prtA, and smiA::3�HA::prtA) were constructed by in vivo
homologous recombination by using S. cerevisiae (108). Briefly, the set of fragments of each of the con-
structions, along with the plasmid pRS426 digested with BamHI/EcoRI, were transformed into the S. cere-
visiae SC9721 strain. Whole cassettes of smiA1::prtA, smiA::GFP::prtA and smiA::3�HA::prtA were trans-
formed into the DsmiA strain. Candidates were selected by resistance to pyrithiamine and further
verified via Western blotting, reversal of miltefosine sensitivity phenotype, and/or protein functionality.

Primers used in this work are listed in the Table S6 at https://doi.org/10.6084/m9.figshare.14762991.v4.
Additionally, the mutant strains constructed in the current work were performed into the background of the
DsmiA strain. Positive candidates were selected in the presence of pyrithiamine, purified through three
rounds of growth on plates, submitted to gDNA extraction, and confirmed by PCR.

Protein extraction and immunoblot analysis. A total of 1� 106 conidia/ml of each strain was ino-
culated in 50ml of Vogel’s medium and grown at 37°C for 16 h under agitation. Mycelia were then
washed with RPMI 1640 medium and incubated in RPMI 1640 containing 12.5mg/ml miltefosine at 37°C
for 0, 4, and 8 h at 37°C with shaking. For protein extraction, mycelia were ground into liquid nitrogen
and resuspended in 0.5ml of lysis buffer (10% [vol/vol] glycerol, 50mM Tris-HCl pH 7.5, 1% [vol/vol]
Triton X-100, 150mM NaCl, 0.1% [wt/vol] SDS, 5mM EDTA, 50mM sodium fluoride, 5mM sodium pyro-
phosphate, 50mM glycerophosphate, 5mM sodium orthovanadate, 1mM phenylmethylsulfonyl fluoride
[PMSF], and 1� complete mini protease inhibitor [Roche Applied Science]). Extracts were centrifuged at
16,000 � g for 20min at 4°C. The supernatants were collected, and the protein concentrations were
determined using the Bradford assay (Bio-Rad). Next, 30mg of total protein extract from each sample
was resolved in 10% (wt/vol) SDS-PAGE and transferred to a nitrocellulose membrane for a Western blot
assay. Monoclonal anti-HA antibody (Sigma-Aldrich) was used to confirm SmiA-3�HA expression. In
addition, anti-a-actin antibody was used to normalize protein loading. The primary antibodies were
detected using a horseradish peroxidase (HRP)-conjugated secondary antibody raised in mouse (Sigma-
Aldrich). Chemiluminescent detection was achieved using an ECL Prime Western blotting detection kit
(GE Healthcare). To detect these signals on blotted membranes, the ECL Prime Western blotting detec-
tion system (GE Healthcare, Little Chalfont, UK) and LAS1000 (Fujifilm, Tokyo, Japan) were used.

Real-time PCR analysis. Total cellular RNA was extracted using TRIzol reagent (Invitrogen, Life
Technologies, Camarillo, CA, USA). Further, RNA was submitted to DNA digestion with RQ1 RNase-free
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DNase (Promega, Fitchburg, WI, USA) according to the manufacturer’s instructions. The cDNA synthesis
was performed by the ImProm-II reverse transcription system (Promega) and oligo(dT). The real-time
PCR was performed using the ABI 7500 Fast real-time PCR system (Applied Biosystems, Foster City, CA,
USA) and the SYBR green PCR master mix kit (Applied Biosystems) according to the manufacturer’s
instructions. Analyses were carried out using three independent biological replicates. The mRNA quan-
tity relative fold change data was calculated using standard curves (109) and normalized by the expres-
sion levels of the housekeeping b-tubulin gene. Primer sequences used in this study are listed in Table
S6 at https://doi.org/10.6084/m9.figshare.14762991.v4.

RNA purification and preparation for RNA-seq. A total of 106 spores/ml of A. fumigatus WT and
DsmiA strains were inoculated in 50ml of Vogel’s medium and grown at 37°C for 16 h under agitation.
The suspensions were centrifuged and washed with phosphate-buffered saline (PBS). Mycelia were sus-
pended in VMM containing glucose supplemented with 3mg/ml miltefosine, or in the absence of any
drug, and incubated at 37°C for an additional 30min. Total RNA was extracted by the TRIzol method.
Subsequently, 10mg of total RNA was subjected to RNA purification using DNase I (New England Biolabs
Inc.), and the quality was checked on 2% agarose gel and verified using an Agilent Bioanalyzer 2100
(Agilent Technologies). RNAs selected for further analysis had a minimum RNA integrity number (RIN)
value of 8.0. One microgram of purified RNAs was used for library preparation using an Illumina
NEBNext Ultra directional RNA library prep kit according to the manufacturer’s protocol and sequenced
using the Illumina HiSeq2500 platform at the Genomics and Single-Cell Analysis Core facility at the
University of Macau. The expression levels were calculated in reads per kilobase per million and for the
differential expression analysis a log2 fold change of 21 # log2FC$ 1 was applied to capture a mini-
mum of 2 times perturbation on the expression levels, with a P value of ,0.005 and a false discovery
rate (FDR) lower than 0.05.

Chromatin preparation. A similar experimental design used for the RNA-seq was used for the ChIP-
seq experiments. After growth, the cultures were added to 1% formaldehyde for 20 min with gentle
shaking at room temperature, and then a final concentration of 0.5 M glycine was added for further
incubation for 10 min. The mycelia were collected by filtering and washed with cold water. The cross-
linked mycelia were frozen in liquid nitrogen and frozen dried for 2 h before lysis. The cell lysis was proc-
essed 6 times beating for 3 min with an ;100-ml volume of silica beads using a Bullet Blender (Next
Advance) with 3 min of cooling between each cycle. Chromatins were extracted as described previously
(110) and sonicated using the Qsonica Q800R at 100% amplitude with 10-s on and 15-s off cycles for a
total sonication time of 30 min. Chromatin concentration and size (100 to 500 bp) were checked on 2%
agarose gel, and the prepared chromatins were stored at280°C until use.

Chromatin immunoprecipitation and sequencing library preparation. Immunoprecipitation was
carried out using anti-HA antibody as described previously (111). Immunoprecipitated materials were
purified using a Qiagen PCR cleanup kit, and multiplexed sequencing libraries were prepared as
described previously (111) using a NEBNext Ultra II DNA library prep kit for Illumina according to the
manufacturer’s protocol. Libraries were checked and quantified using DNA high-sensitivity bioanalyzer
assay, mixed in equal molar ratios, and sequenced using the Illumina HiSeq2500 platform at the
Genomics and Single-Cell Analysis Core facility at the University of Macau.

Data mapping and bioinformatics analysis. Raw sequencing reads of ChIP-seq experiments were
quality checked using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and aligned
to the Af293 reference genome (genome version s03-m05-r06) using Bowtie2 (version 2.2.9) (112). For
peak calling, MACS2 was applied. To determine the presence of conserved miA DNA binding motifs, we
carried out a MEME-ChIP analysis to search the 500-bp region surrounding the peaks identified in our
ChIP-seq data (http://meme-suite.org).

Lipid analysis. A total of 106 spores/ml of A. fumigatus wild-type and DsmiA strains were inoculated
in 50ml of Vogel’s medium and grown at 37°C for 16 h under agitation. The suspensions were centri-
fuged and washed with PBS. Mycelia were suspended in VMM containing glucose supplemented with
3mg/ml miltefosine, or in the absence of any drug, and incubated at 37°C for an additional 4 h. Prior to
cell lysis, C17-sphingolipids were added to the samples (113, 114). Mandala extraction was carried out as
described previously (115), with a few modifications. To facilitate the disruption of mycelia, the samples
were vortexed and sonicated for 2min in the presence of 0.2 g of glass beads. The samples then were
submitted to Bligh and Dyer extraction (116). A quarter of each sample obtained from the Bligh and
Dyer Extraction was reserved for inorganic phosphate (Pi) determination, so the relative sphingolipid sig-
nal was normalized by the Pi abundance. The organic phase was transferred to a new tube and submit-
ted to alkaline hydrolysis of phospholipids (117). Finally, the organic phase was dried and used for mass
spectrometry analysis (114).

Statistical analysis. Grouped column plots with standard deviation error bars were used for repre-
sentations of data. For comparisons with data from wild-type or control conditions, we performed one-
tailed, paired t tests or one-way analysis of variance (ANOVA). All statistical analyses and graphics build-
ing were performed by using GraphPad Prism 5.00 (GraphPad Software).

Fluorescence microscopy. A total of 105 spores of each strain was inoculated on coverslips in 4ml
of MM for 16 h at 30°C. Coverslips with adherent germlings were left untreated or treated with miltefo-
sine for different periods of time, as indicated. Staining procedures included (i) 5min of incubation in a
solution with propidium iodide (PI; 0.05mg/ml; Sigma-Aldrich); (ii) 5min of incubation in a solution with
MitoTracker Deep Red FM dye (250 nM) (Invitrogen); and (iii) 10min of incubation in a solution contain-
ing Hoechst 33342 dye (20mg/ml; Molecular Probes, Eugene, OR, USA). Further, the coverslips were
rinsed with PBS (140mM NaCl, 2mM KCl, 10mM NaHPO4, 1.8mM KH2PO4, pH 7.4). Slides were visualized
on the Observer Z1 fluorescence microscope using a 100� oil immersion lens objective. Differential
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interference contrast (DIC) images and fluorescent images were captured with an AxioCam camera (Carl
Zeiss) and processed using AxioVision software (version 4.8). In each experiment, at least 50 germlings
were counted. For GFP and the fluorescent miltefosine analogue MT-11C-BDP, the wavelength excitation
was 450 to 490 nm, and the emission wavelength was 500 to 550 nm. For MitoTracker Deep Red FM, the
wavelength absorbance/emission was about 644/665 nm. For Hoechst (4,6-diamidino-2-phenylindole)
staining, the excitation wavelength was 365 nm and emission wavelength was 420 to 470 nm. For PI, the
wavelength excitation was 572/25 nm and emission wavelength was 629/62 nm.

Virulence analysis in Galleria mellonella model. The Galleria mellonella larvae were obtained by
breeding adult larvae (118) weighing 275 to 330mg. The larvae were kept in starvation in petri dishes at
37°C in the dark for 24 h prior to infection. The larvae used for the experiment were in the sixth stage of
development. For infection, fresh spores from each strain (mutants and wild type) were used. The spores
of each strain were counted using a hemocytometer. The stock concentration of spore suspensions used
for infection was 2� 108 conidia/ml, and from this stock, 5ml was used for larval infection (1� 106 coni-
dia/larva). The control group was composed of larvae inoculated with 5ml of PBS to observe any possi-
ble death caused by physical trauma. The inoculum was performed using a Hamilton syringe (7000.5KH),
and the conidia were inoculated into the lower left proleg of the larvae. After 30 min of the larvae being
infected, treatment with miltefosine (M5571; Sigma-Aldrich) was carried out. The drug was rehydrated in
distilled water as recommended by the manufacturer (84). The concentrations used for the treatments
were 40, 60, and 80mg/kg of larvae, and each larva was weighed individually and the volume was
adjusted to the preestablished concentrations. As a control for the treatments, we made three groups of
larvae in which concentrations of 40, 60, and 80mg/kg were injected. The treatments were also injected
into the lower right proleg of the larvae. After infection, the larvae were kept at 37°C in petri dishes in the
dark and scored daily. Larvae were considered dead due to lack of movement in response to touch. The via-
bility of the inoculum administered was determined by plating a serial dilution of the conidia in YAG me-
dium. The statistical significance of the comparative survival values was calculated using the log rank analy-
sis of Mantel-Cox and Gehan-Brestow-Wilcoxon by using the statistical analysis package Prism (119).

Data availability. The data sets generated for this study are available on request to the correspond-
ing author.
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