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Abstract
Background and Objectives
Purine-rich element-binding protein A (PURA) gene encodes Pur-α, a conserved protein essential for normal postnatal brain
development. Recently, a PURA syndrome characterized by intellectual disability, hypotonia, epilepsy, and dysmorphic features
was suggested. The aim of this study was to define and expand the phenotypic spectrum of PURA syndrome by collecting data,
including EEG, from a large cohort of affected patients.

Methods
Data on unpublished and published cases were collected through the PURA Syndrome Foundation and the literature. Data on
clinical, genetic, neuroimaging, and neurophysiologic features were obtained.

Results
A cohort of 142 patients was included. Characteristics of the PURA syndrome included neonatal hypotonia, feeding difficulties,
and respiratory distress. Sixty percent of the patients developed epilepsy with myoclonic, generalized tonic-clonic, focal seizures,
and/or epileptic spasms. EEG showed generalized, multifocal, or focal epileptic abnormalities. Lennox-Gastaut was the most
common epilepsy syndrome. Drug refractoriness was common: 33.3% achieved seizure freedom. We found 97 pathogenic
variants in PURA without any clear genotype-phenotype associations.

Discussion
The PURA syndrome presents with a developmental and epileptic encephalopathy with characteristics recognizable from
neonatal age, which should prompt genetic screening. Sixty percent have drug-resistant epilepsy with focal or generalized
seizures. We collected more than 90 pathogenic variants without observing overt genotype-phenotype associations.

Purine-rich element-binding protein A (PURA) gene, located on
chromosome 5q31, encodes a single-exon transcript that results
in a highly conserved 322 amino acid (AA) protein, Pur-α.1 Pur-α
is essential for normal postnatal brain development, as well as
proliferation of neuronal cells and synapse formation.2 Pur-α
knock-out mice display a severe phenotype with neurologic
dysfunction, including spontaneous seizures, tremor, and early
death.3 The Pur-α+/− mouse shows hypotonia, gait deficits, and
memory dysfunction, correlating with a loss of neurons in the
cerebellum and hippocampus.4

Initially defined as the 5q31.3 microdeletion syndrome, after the
discovery of point variants, the term PURA syndrome (OMIM
#616158) was acknowledged, and more than 70 patients with
pathogenic de novo variants in PURA have been published to
date.2,5-15 PURA phenotypes are heterogeneous and can include
moderate to severe intellectual disability (ID), hypotonia,
movement disorders, epilepsy, dysmorphic facial features, and
brain abnormalities.7,10 Most patients do not achieve in-
dependent walking and remain nonverbal.7 The neonatal period
is often complicated by respiratory insufficiency and feeding
difficulties because of pronounced hypotonia, and children often
have an exaggerated startle response.7

Epilepsy is reported in approximately half of the patients, with
seizure onset usually in infancy—early childhood, although the
age at onset has a wide range.7 Seizure types are often refractory
and are usually described as generalized tonic-clonic (GTC)
seizures, absence of seizures, epileptic spasms, and tonic seizures,
with the most commonly diagnosed epilepsy syndrome being
Lennox-Gastaut syndrome.7 Specific treatment recommenda-
tions are not currently available.

Genotype-phenotype correlations in PURA syndrome have
been inconsistent so far, and even within patients with iden-
tical variants, phenotype and severity can vary significantly.7

In this study, we report on 142 patients including 67 unpublished
cases aiming to expand and further define the phenotypic and
genotypic spectrum of the PURA syndrome, with particular fo-
cus on the epilepsy phenotype.

Methods
Patients
Patients were recruited from genetic and epilepsy clinics
worldwide.Most of the patients were referred through thePURA

Glossary
AA = amino acid; ASM = antiseizure medication;DEE = developmental and epileptic encephalopathy; ESES = electrical status
epilepticus during sleep; GTC = generalized tonic-clonic; ID = intellectual disability; KO = knockout; LEV = levetiracetam;
PTV = protein-truncating variant; PURA = purine-rich element-binding protein A; SUDEP = sudden unexpected death in
epilepsy; TPM = topiramate; VPA = valproate.
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Syndrome Foundation. Genetic variants were assessed for
pathogenicity according to the American College of Medical
Genetics and Genomics guidelines,16 including criteria such as
being nonsynonymous, splice-site altering, nonsense, or frame-
shift changes, predicted damaging by 1 or more prediction
software (Poly-Phen-2, SIFT, and MutationTaster), not seen in
controls in the GnomAD browser and occurring de novo.
Pathogenic and likely pathogenic variants were included. Dele-
tions were not included. Sanger sequencing was used to confirm
all variants and perform segregation analysis.

Clinical characteristics were assessed through a standardized phe-
notyping sheet and included data on neuroimaging and neuro-
physiology, as well as treatment response. Treatment response was
assessed by the referring clinician as seizure free (no seizure for >6
months at the time of the referral of the patient to the study),
seizure reduction, no effect or seizure aggravation. Seizures were
classified according to the latest proposals of the International
League Against Epilepsy commission on classification.17,18 EEG
data were collected by means of standard EEG recording or day-
time video-polygraphic recording, including wakefulness and sleep.
Longitudinal EEG evaluation over time was not performed be-
cause of lack of data.Whenever possible, original EEG studies were
evaluated by 2 neurologists with EEG expertise (E.G. and G.R.).

A PubMed search using the search term “PURA” was per-
formed to extract data on previously published patients. Last
search date: June 1, 2020.

Statistical Analysis
Clinical data were analyzed using Stata version 15.1 for Mac
(StataCorp, College Station, TX). For continuous unmatched
data, the Wilcoxon rank-sum (Mann-Whitney) was used.
Significance was tested using a 2-tailed test of proportions,
and significance was reached if p < 0.05. The do-file used to
perform the analysis is available on request.

Standard Protocol Approvals, Registrations,
and Patient Consents
The local ethical committees approved this study. All patients or
parents/legal guardians in case of minors signed informed consent.

Data Availability
Those eligible will be granted access to deidentified patient
data in excel format, as well as do-files to Stata on request.
Data will be stored for 6 months after publication. Those
eligible includes independent researcher wishing to perform
additional data analysis.

Results
Sixty-seven previously unpublished patients were included
along with 75 previously published patients—142 patients in
total. Age at inclusion ranged from 5 months to 48 years
(median 6 years). The total cohort is given in eTables 1 and 2
(links.lww.com/NXG/A448 and links.lww.com/NXG/A449).

Clinical Features

Neonatal Period
Data were available in 134 patients (94.4%); 114 of the 134
patients (85.2%) had congenital hypotonia and 72 of 134
(53.5%) had respiratory difficulties, the most common being
central sleep apneas, which required mechanical ventilation or
supplementary oxygen in 19 of the 72 patients (26.9%).
Feeding difficulty was another common issue seen in 109 of
the 134 patients (81.3%), and it required gastrointestinal tube
feeding in 42 of the 109 patients (38.5%). Other features of
the neonatal period included hypersomnolence (35/134,
26.1%), and hypothermia (15/134, 11.3%).

Childhood and Early Adulthood (<25 Years of Age)
Developmental milestones were delayed in all patients (analyzed
in previously unpublished patients only, Table 1). At the time of
inclusion, 47 patients achieved head control (70.1%), median
age 16 months. Forty-three patients were able to sit (56.6%),
median age 17.5 months. Thirty-four were able to walk with aid
(50.7%), and 25 were walking independently (37.3%), median
ages 5 and 3.5 years, respectively. Five patients regressed from
walking to being nonambulatory. Communication skills were
very limited in all the patients; 93.5% were nonverbal.

In childhood and early adulthood, hypotonia continued to be an
overt clinical feature affecting 107 of the 134 patients (79.9%)with
PURA syndrome. Movement disorders such as dyskinesia, hand
stereotypies, ataxia, and chorea-like movements were detected in
32 of the 134 patients (23.9%). A pathologic startle response was
present in 24 of 134 (17.9%). Additional common disorders were
strabismus (28, 20.9%), horizontal nystagmus not related to an-
tiseizure medication (ASM) (22, 16.4%), and cortical vision im-
pairment, 15 (11.2%). In 8 of the 50 patients (16.0%) without
epilepsy, episodes with twitching or with staring, not associated
with any EEG correlate, were considered of nonepileptic nature.

Other common characteristics included constipation (27/
134, 20.1%), scoliosis (26/134, 19.4%), hip dysplasia (21/
134, 15.7%), cardiac and large vessel abnormalities (15/134,

Table 1 Age of Achievement of Developmental
Milestones in the PURA Syndrome

Developmental
milestones

Achieved in n
patients (%)

Median age of
achievement (range)

Head control 47 (70.1%) 16 mo (8–24 mo)

Rolling over 44 (65.7%) 13.5 mo (6–18 mo)

Sitting 43 (56.6%) 17.5 mo (10 mo–3.5 y)

Crawling 37 (55.2%) 2.5 y (1.5–4 y)

Walking with
assistance

34 (50.7%) 5 y (2.5–10 y)

Walking 25 (37.3%) 3 y (1 y 4 mo–12 y)

Abbreviation: PURA = purine-rich element-binding protein A.
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11.2%), dysphagia (15/134, 11.20%), delayed puberty (13/
134, 9.7%), and small stature (12/134, 9.0%).

Adulthood (>25 Years of Age)
Nine patients were 25 years of age or older at the time of
inclusion. All 9 patients had hypotonia. Three were capable of
walking autonomously, 1 could walk with aid, and the re-
mainder were nonambulant. All, but one, were nonverbal. Six
had severe ID, while 3 had moderate ID.

Early Mortality
In our cohort, 4 patients were deceased: 1 (#39) died at the age
of 15 years because of sudden unexpected death in epilepsy
(SUDEP), whereas 1 (#40) died at the age of 3 years and 2 (#70
and #104) died in their twenties, in a state of severe general
compromise after a relentless deterioration of neurologic con-
ditions, ultimately because of respiratory distress.5,7 Of notice, 2
of the patients (#39 and #40) carry the same variant, i.e., c.812_
814del, p.(Phe271del). Two additional patients with this variant
have been published (#1088 and #1097); however, at the time of
publication, both patients were very young (<1 year), so the
disease course was still unknown. A summary of the clinical
features is available in Table 2.

Neuroimaging
Half (51.4%) of the patients showed changes in the MRIs.
Most commonly, these changes included delayed myelination
(38.5%) and volume loss (14.1%).

Dysmorphology
Ninety-two patients (64.8%) displayed dysmorphic features.
Facial photographs are shown in Figure 1. Subtle but recurrent
similarities were observed including a hypotonic face, high
anterior hairline, almond-shaped palpebral fissures, and full
cheeks. A flat nasal bridge with a wide and triangular nasal tip,
thickened nostrils, a well-defined philtrum, heavy eyebrows,
and periorbital fullness was present in a subset of individuals.

Epilepsy Phenotype
Eighty-four patients (59.2%) had epilepsy. The median age at sei-
zure onset was 3 years, ranging from the first day of life to 18 years.
Age at inclusion in the subgroup of patients with epilepsy was 9.6
years (vs 4.9 years in the subgroup without epilepsy, p = 0.0001).
Data on seizure types were available for 72 of the 84 patients
(85.7%). Heterogeneous seizure types were reported (Figure 1),
with the most common being myoclonic seizures (22.5%), GTC
seizures (21.3%), focal seizures (20.2%) with secondary general-
ization (15.7%), epileptic spasms (19.1%), and atonic (14.6%) and
tonic seizures (12.4%). Reflex seizures to auditory, visual, and so-
matosensory stimuli (such as touch, tooth brushing or hair
brushing, pain, associated with evacuation) were reported in 6
patients (7.9%) (#17, #20, #31, #35, #91, and #92, eTables 1 and 2,
links.lww.com/NXG/A448 and links.lww.com/NXG/A449).8,9

Reflex seizures were described as myoclonic or atonic seizures, or
“absence-like” episodes, and in some patients, they occurred for a
transitory period (#31). Overall, half (53.7%) of the patients pre-
sented with various seizure types in different combinations, in-
cluding either focal or generalized (such as absences, myoclonic,
andGTC) seizure types in the samepatient. Adiagnosis of Lennox-
Gastaut syndrome or West syndrome was made in 5 patients
(#79, #92, #97, #99, and #100) and 2 patients (#19 and #40),
respectively.5,7,8 We attempted to investigate whether early-onset
(<12 years) and later-onset (>12 years) epilepsies presented with
different phenotypes. These analyses were hampered by the un-
balanced distribution of the available information in the 2 groups
because seizure types and age at onset were reported in 64 patients
with onset before or at the age of 12 years and in 6 patients with
onset after the age of 12 years. Four of the 6 patients with epilepsy
onset after 12 years presentedwith focal, focal and secondaryGTC,
or GTC. Patients with onset before the age of 12 years presented
with heterogeneous seizure types in variable combinations.

EEG
EEG data were collected in 104 of the 142 patients (73.2%),
including in 67 of the 84 patients (79.8%)with epilepsy. Abnormal
EEGs, not further specified, were reported in 30 epileptic partici-
pants (44.7%), whereas in 3 (4.4%), the EEG was described as
unremarkable. In the remaining 37 patients, background slowing
was reported in 19 of 37 (51.3%), whereas epileptic abnormalities
were described as diffuse/generalized in 12 of the 37 patients
(32.4%),multifocal in 10 of the 37 patients (27%), and focal in 7 of

Table 2 Clinical Features of the Total PURA Cohort

Clinical features

Sex, female/male (%) 93/64 (59.2%/40.8%)

Age at inclusion, median (range) 6 y (5 mo–48 y)

Epilepsy (%) 84 (59.2%)

Age of epilepsy onset, median (range) 3 y (1 d–18 y)

Most common seizure types (%) Myoclonic (22.5%)
GTC (21.3%)
Focal (20.2%)

Neurologic features n (%)

Neonatal period

Hypotonia 121 (85.2%)

Feeding difficulties 115 (81.0%)

Respiratory distress 76 (53.5%)

Hypersomnolence 37 (26.1%)

Childhood to adulthood

Hypotonia 113 (79.6%)

Strabismus 30 (21.1%)

Nonepileptic episodes (twitching or staring) 23 (16.2%)

Pathologic startle response 25 (17.6%)

Movement disorder 34 (23.9%)

Dysmorphic features 92 (64.8%)

Death 4 (2.8%)

Abbreviation: PURA = purine-rich element-binding protein A.
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the 37 patients (18.9%), respectively. Four children (10.8%) pre-
sented with an excessive activation of the epileptic abnormalities
during sleep (resembling an electrical status epilepticus during
sleep [ESES] pattern), whereas hypsarrhythmia and burst sup-
pression were observed in 3 patients (8.1%) each (Figure 2).

EEG recordings were available also in 37 of the 57 patients
(64.9%) without epilepsy. It showed poorly organized/slowed
background activity in 8 of the 37 patients (21.6%), diffuse
spikes in 1 of 37 (2.7%), and focal spikes in 2 of 37 (5.4%); in
the remaining patients, it was diagnosed as abnormal not fur-
ther specified in 1 of 37 (2.7%) and unremarkable in 25 of 37
(67.5%). At the time of the patient collection, none of the
patient without epilepsy featuring a previously abnormal EEG
was reported to have presented with epilepsy in the follow-up.

Epilepsy Treatment
Treatment response was evaluated in the patients with epi-
lepsy from the previously unpublished cohort only (42 pa-
tients) because data were too sparse in the published patients.

Most of the patients (28/42, 66.7%) were still having seizures
despite appropriate treatment with ASM. Two patients were able
to taper offmonotherapy ASM (#36 and #41, age 18 years and 3

years 9 months) with sustained seizure freedom. Seizure freedom
was achieved with valproate (VPA) in 4 patients, topiramate
(TPM) in 3 patients, and levetiracetam (LEV) in 2 patients, either
as monotherapy or in combination with other drugs. Seizure
freedom was sustained for 3 to 8 years (median 3.8 years) at the
time of inclusion of these patients in the study. Seizure reduction
was observed with VPA in 8 patients, LEV in 5, TPM in 5, and
lamotrigine in 4 patients. Seizure worsening or side effects causing
cessation of drug use was seen with LEV in 3 patients, with VPA
and TPM in 2 patients each, and with lacosamide in 1 patient,
either as monotherapy or in combination with other drugs.

Six patients tried the ketogenic diet: 2 had a seizure reduction,
while the remaining 4 had no effect. Cannabidiol was tried only
in 2 patients, without any effect. Vagal nerve stimulation im-
plantation was tried in 3 patients and resulted in seizure free-
dom in 1 patient and reduced seizure frequency in 2 patients.

Genetics
Ninety-seven different variants were identified in 142 patients;
38 were previously unpublished. In all cases where inheritance
could be determined, variants occurred de novo. Missense
variants were present in 24.6% of the patients, a 3-AA in-frame
deletion was seen in 9.9%, while the remaining 65.5% carried

Figure 1 The Faces of the PURA Syndrome

Faces of patients with pathogenic PURA variants. Recurrent similarities include a myopathic face, high anterior hairline, almond-shaped palpebral fissures,
and full cheeks. A flat nasal bridge with a wide and triangular nasal tip, thickened nostrils, a well-defined philtrum, heavy eyebrows, and periorbital fullness
was seen in a subset of individuals. PURA = purine-rich element-binding protein A.
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protein-truncating variants (PTVs) such as in-frame deletions,
stop-, and frameshift variants.Missense variants and PTVswere
seen in patients with similar phenotypes and both with and
without epilepsy.

Nineteen variants were seen at the same position—most of
them detected only in 2 or 3 patients, but the p.(Leu54Alafs*)/
p.(Leu54Cysfs*) was seen in 6 patients, the p.(Val226Glyfs*)/
p.(Val226Serfs*) was seen in 4 patients, the p.(Phe233del) was

Figure 2 EEG Changes in the PURA Syndrome

(A) The interictal EEG is characterized
by slow background and multifocal
spike/sharp and slow waves pre-
dominant either in the frontal regions
(a, pt. #42) or in the posterior quad-
rants (b, pt. #30). The epileptiform ac-
tivity is accentuated during sleep; this
image (c, pt. #19) shows very frequent
multifocal spike/polyspikes and waves
and sharp and slow waves, in-
dependently in the right central, right
parietal, and left central regions or
diffuse. (B) The ictal EEG showed (a)
cluster of epileptic spasms (each ar-
row corresponds to a spasm) (pt. #30),
(b) a startle induced by acoustic stim-
ulus (pt. #19), and (c) brief tonic sei-
zures out of sleep with an EEG
correlation consisting of diffuse rapid
activity (3–6 seconds) followed by dif-
fuse delta activity and trains of spike
and slow waves in the posterior re-
gions (pt. #30). PURA = purine-rich el-
ement-binding protein A.
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seen in 14 patients, the p.(Arg245*)/p.(Arg245Pro) was seen
in 4 patients, and the p.(Phe271del) was also seen in 4 patients
(eTable 3, links.lww.com/NXG/A450). Patients both with and
without epilepsy were seen in several of these variants, even
within the same variant. See eTable 3 for a summary.

The variants were distributed throughout the gene: 33.1%
were located in the PUR-I repeat, 21.8% in the PUR-II repeat,
and 23.2% in the PUR-III repeat, whereas the remainder were
outside the PUR repeats (Figure 3). Five missense variants
were located outside the PUR repeats.2,5,7

Two patients had compound heterozygous variants (#62 and
#97); however, their clinical presentation did not vary from
the heterozygous variants,5 inheritance was either de novo or
unknown, and only 1 of the variants in each patient was de-
fined as pathogenic according to the American College of
Medical Genetics and Genomics guidelines.16

Discussion
With this comprehensive study of 142 patients, we provide an
outline of the phenotypic and genotypic spectrum of the PURA
syndrome and we significantly expand the current patient
population, suggesting that pathogenic variants in PURAmight
underlie ID and developmental and epileptic encephalopathy
(DEE), more often than previously thought.

This study was done retrospectively and through clinician
assessment of patients. When original EEG tracings were not
available for review, EEG evaluation was based on EEG re-
ports, discussing them, when necessary, with the referring
physician. Unfortunately, longitudinal EEG data were not
available; therefore, it has not been possible to evaluate the
EEG evolution during the course of the disease.

Some data points are missing in some patients, although
follow-up with clinicians was attempted. Patients were also

assessed only once for inclusion; thus, longitudinal clinical
data were not available in this study.

Most commonly, patients with PURA syndrome present with
neonatal hypotonia, complicated by feeding difficulties, often
requiring tube feeding, and respiratory distress.

The respiratory distress can be as severe as to cause respiratory
insufficiency, requiring frequent recurrent pulmonary aspira-
tion and often demanding mechanical ventilation because of
the increased risk of central apnea, similar to the picture
reported in patients with 5q31 microdeletions encompassing
the PURA gene, who also feature a marked hypotonia at birth.8

Hypersomnolence and hypothermia further demonstrate the
severity of the PURA syndrome. There were no significant
differences between patients with and without neonatal hy-
potonia at inclusion, neither in the phenotypic appearances
nor in the genetics. The hypotonia persists through childhood
and adulthood, although in some patients, it gradually im-
proves and motor skills continue to develop, eventually
resulting in the acquisition of autonomous walking. This may
reflect the steady increase of Pur-α during development, as
seen in the mice.3,19 The median age at inclusion was 6 years;
thus, the estimated numbers are to be considered minimum
values. In patients able to ambulate, gait is often ataxic; this
finding can correlate with the fact that PURA expression peaks
in the postnatal period, when interneuronal connections are
being established, especially in the cerebellum.3 Gait distur-
bances were also found in the heterozygous mouse.4

Nonepileptic paroxysmal motor manifestations and pathologic
startles were reported in a significant proportion of patients, both
with and without epilepsy. In recent years, the occurrence of
nonepileptic movement disorders in participants with DEE has
been increasingly recognized.20,21 Indeed, hyperkinetic move-
ment manifestations, such as dystonia and choreoathetosis, are
now considered a common phenotypic feature in individuals

Figure 3 The PURA Gene

ThePURAgenewithpreviously unpublished variants.Missenseon top, protein-truncating variantsbelow.With epilepsy in red,without epilepsy inblue, and recurrent variant
inbold.PURrepeats indicatedbyyellowcoloring:PUR-Iposition42–106,PUR-IIposition120–182,andPUR-IIIposition197–252.PURA=purine-richelement-bindingproteinA.
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with FOXG1, GNAO1, SCN8A, CACNA1B, and STXBP1-re-
lated epilepsy-dyskinesia syndromes.22-26 Hand stereotypies are
commonly observed in children with autism or developmental
delay, irrespective of precise etiology,27 and “per se” they do not
confer any specificity to affected patients; however, the definition
of detailed accompanying phenotypes (such as hyperkinetic
movements or hand stereotypies) can be important to charac-
terize the disease spectrum and the early recognition of the
PURA-related DEE, ultimately prompting referral of the patients
for genetic testing.

A pathologic startle was observed in approximately 18% of our
patients. At variance with our patients, the Pur-α+/− mouse
shows a trend toward a reduced startle response to acoustic
stimuli, a finding considered unexpected by the authors of the
study4 that requires to be further investigated, while the
mouse also displayed occasional seizures on handling.3 Ex-
aggerated startle attacks, described as sudden tonic postures
with raising of bent arms over the head, flexion of the neck and
trunk, in response to touch or sound stimuli, not associated
with epileptic changes in the EEG,28 have been reported in
38% of a cohort of children presenting with an encephalop-
athy associated with KCNQ2 pathogenic variants.29 Our
findings of a pathologic startle, previously unreported, might
add to the constellation of clinical features that could con-
tribute to an early diagnosis of PURA-related DEE.

In older patients, scoliosis is common because of truncal hy-
potonia. Other features include impaired intestinal motility
(reflux and constipation most commonly), visual distur-
bances, and in a few patients hearing deficits as well. The
underlying mechanisms for these features are unknown.

In our study cohort, 3 patients died because of respiratory
failure and 1 because of SUDEP.5,7,30 PURA knockout (KO)
mice do not survive beyond 28 postnatal days3; however, an
increased death rate is not observed in the heterozygous mice
(PURA+/−).

3 Thus, we can speculate that if the human phe-
notype is comparable with the heterozygous mouse, the
mortality seen in our cohort might be an expression of the
increased mortality associated with severe developmental
disorders and epilepsy in general and not linked directly to
PURA. On the contrary, if the mortality rate observed here is
indeed related to PURA-related DEE, it is lower than that
reported in Dravet syndrome (15.84/1,000 person-years),31

whereas it is comparable with the mortality seen in other
DEEs, such as SCN8A-related DEE (mortality 5.3%), which
also shows similar causes of death.32 Lack of longitudinal
follow-up in this study is a limitation in the assessment of the
mortality. Further studies, in particular investigating the nat-
ural history of the PURA-related DEE, might be helpful to
solve this issue and to establish the mortality rate of this DEE.

MRIs were normal in half of the patients, whereas the other
half showed demyelination or loss of brain volume. In 1 pa-
tient (#54), follow-up MRI showed a normalization of mye-
lination over time; therefore, we could speculate that

myelination in patients with PURA syndrome is not absent
but delayed. Further follow-upMRI data in additional patients
will clarify this issue. Experimental studies in KO mouse have
provided conflicting results, showing in some reports de-
creased signals from myelin and white matter tracts both in
the subcortical white matter and in the cortex compared with
wild-type littermates and reduced neuron density both in the
cortex and in the cerebellum.3 Other studies in KO mice
showed an enlarged brain size associated with a phenotype
showing ataxia and continuous tremor.33 The finding of a
megalocephalic brain has been interpreted as resulting from a
prolongation of neuronal precursor cell proliferation during
postnatal development, an explanation that further supports
the role of Purα in postnatal brain development.3

In a computational analysis of photographs of 34 PURA syn-
drome individuals, it was found that affected patients shared a
similar gestalt, including a hypotonic face and high anterior
hairline.7 In addition to those features, we expand the facial
gestalt to include a flat nasal bridge with a widened and triangular
nasal tip, thickened nostrils, a well-defined philtrum, heavy
eyebrows, and periorbital fullness, present in a subset of indi-
viduals. Many syndromes have recognizable facial features that
are highly informative to clinical geneticists.34-36 Although PURA
is not an easily recognizable syndrome, a detailed description of
dysmorphic features and an understanding of how the features
change over time can help clinicians identify further cases.

In total, 59.2% of the patients analyzed in this study have
epilepsy, with age at onset ranging from the first day of life to
18 years. In the heterozygous mouse model, seizures/epilepsy
are constant features in all animals.3 Most of the patients
presented with a combination of seizure types that could be
both focal and generalized in the same patient. Our results
show that the most common seizure types are myoclonic,
GTC, and focal with secondary generalization. A not negli-
gible group of patients presented with reflex seizures whose
semiology includes myoclonic, atonic, and “absence-like”
manifestations. Various stimulus types (including visual, au-
ditory, sensory, and painful stimulations), were reported as
effective in triggering seizures. In some patients, a reflex
mechanisms was observed only for a transitory period;
therefore, we cannot exclude that the occurrence of reflex
seizures in patients with PURA syndrome might be under-
estimated, particularly in patients with severe ID, high seizure
frequency, co-occurrence of nonepileptic paroxysmal motor
disorders, and limited monitoring.

The EEG also showed a mixture of focal/multifocal and
generalized epileptic abnormalities. Of interest, an excessive
activation of EEG epileptic discharges during sleep, re-
sembling an ESES EEG pattern, was reported in 4 children;
whether this sleep activation was associated with further
cognitive/behavioral deterioration as in ESES syndrome was
not possible to demonstrate because of the severity of the
baseline cognitive status. Our findings suggest that PURA
might add to the growing list of DEE-associated genes that
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can present during the course of the disease with an ESES-like
EEG pattern.37,38 Hypsarrhythmia and burst suppression
were rarely observed. A syndromic classification that consid-
ered both the clinical and EEG features was possible only in 6
patients, with 4 of them presenting a clinical picture com-
patible with a Lennox-Gastaut syndrome and the other 2 with
West syndrome. The remaining patients with epilepsy could
be broadly diagnosed as presenting with a DEE, in most cases
with a severe course.

In total, 40.9% of patients in our cohort did not present with
epilepsy. However, because of the broad age range of epilepsy
onset (from the first day of life up to 18 years) and the age at
inclusion in this study, only 1 patient without epilepsy was
older than 18 years. Thus, we cannot exclude that a pro-
portion of nonepileptic patients will develop epilepsy later in
the course of their disease, in particular those nonepileptic
patients who already present epileptic abnormalities in their
EEG. This hypothesis may be supported by the statistical
significant difference in the age at inclusion in our study of the
subgroup of patients with epilepsy who were older than the
subgroup without epilepsy. The nonepileptic patient older than
18 years was retrieved in the literature, and he was a 19-year-old
man who presented with developmental delay since birth; he
was able to walk by the age of 4 years and to communicate with
a one-two word vocabulary.13 He had a normal MRI and
normal EEG (the last one at 14 years of age).13 He carried a de
novo recurrent missense variant, p.(Ile188Thr), as well as an
Xp22.31 duplication.13 In the literature, another patient with
the samemissense variant also had no seizure activity at the age
of 8 years,2 whereas a third patient with a frameshift variant at
the same position had GTCs with an unknown age at onset.5

Thus, at present, an estimation of the prevalence of epilepsy in
the PURA population is not reliable because most of the
reported patients are children, who could still present with
epilepsy at a later age. In line with this, pediatric epilepsy cohort
studies have not identified PURA as one of the more common
causes of epilepsy in infancy.39 However, in a recent study from
our center, we identified a pathogenic variant in PURA as the
underlying cause of epilepsy in 1% of adult patients.40

Our results show that 66.6% of the patients with PURA syn-
drome suffer from drug-refractory epilepsy. Although some
ASMs, such as VPA, LEV, and TPM, showed favorable results
in some patients, the same drugs were ineffective in other
patients, currently making treatment recommendations for
patients with PURA syndrome difficult. Further studies elu-
cidating the underlying pathophysiologic mechanisms in
PURA-related epilepsy will be crucial, including (heterozy-
gous) animal models to test possible novel drugs and to
identify possible precision medicine approaches.

In this study, we expand the genetic landscape of PURA by
including 38 new variants. In all patients where segregation
analysis was completed, the variants arose de novo. In addition,
most of the patients have variants that are loss of function per se,
such as frameshift or indel variants. This is supported by a pLoF

(predicted loss-of-function) score of 8.9 (pLi 0.94), suggesting
that the PURA gene is intolerant to loss of function variants
(gnomad.broadinstitute.org/). Thus, haploinsufficiency seems
to be the most likely functional defect underlying the disease.
Although missense variants have not been tested functionally,
the evidence that patients with missense variants display phe-
notypes similar to the patients with loss of function variants
points toward similar functional effects.

Most of the variants were located within the PUR repeats,
which underline the importance of these repeats for the
function of PURA.41 Some variants, both nonsense and mis-
sense, are still located outside the PUR repeats, suggesting
that these areas of the gene are also crucial for the correct
functioning of PURA.

Phenotypic variability was seen even within variants; where
the same variant was seen in patients with and without epi-
lepsy. This might reflect other factors, such as epigenetic
modulators, or it might be simply due to a difference in age of
the patients (see above).

Previously, a single patient with a variant in the C-terminal of the
protein was described with a milder phenotype compared with
other patients, which led the authors to suggest that it is unlikely
for variants in the far end of theC-terminal to affect protein folding
or nucleic acid binding.7 However, our results do not support this
hypothesis because also patients with variants in this part of the
gene (such as #42) seem to display an equally severe PURA
phenotype. There were also no apparent differences between
variants in the 59 and 39 end of the protein. No clear genotype-
phenotype associations emerged from the analysis of our cohort.

Our study further defines and expands the phenotypic and ge-
notypic spectrum of the PURA-related DEE. Some clinical
features, especially in the neonatal age, including hypotonia,
feeding, and respiratory difficulties, are characteristic and should
raise the suspicion of PURA, prompting genetic screening. In
our cohort, more than 60% of patients have epilepsy, charac-
terized by a very wide range of age at onset, from the neonatal
period up to early adulthood; therefore, it cannot be excluded
that a further fraction of patients, still in their childhood and not
presenting epilepsy yet, will develop epilepsy later in their dis-
ease course. The epilepsy featured a wide spectrum of seizure
types, including both focal, generalized seizures, and reflex
seizures, refractory to currently available ASMs in the great ma-
jority of patients. Finally, our study failed to identify genotype-
phenotype associations. Additional studies investigating the
functions of PURA and the pathophysiologic mechanism un-
derlying the PURA-related DEE are needed to guide the search
for more effective and possibly targeted treatments.
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Pitié-Salpêtrière hospital,
APHP, Sorbonne Université,
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Bourgogne-Franche
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