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Chimeric antigen receptor (CAR) engineering for T cells and natural killer cells (NK) are
now under clinical evaluation for the treatment of hematologic cancers. Although
encouraging clinical results have been reported for hematologic diseases, pre-clinical
studies in solid tumors have failed to prove the same effectiveness. Thus, there is a
growing interest of the scientific community to find other immune cell candidate to
express CAR for the treatment of solid tumors and other diseases. Mononuclear
phagocytes may be the most adapted group of cells with potential to overcome the
dense barrier imposed by solid tumors. In addition, intrinsic features of these cells, such
as migration, phagocytic capability, release of soluble factors and adaptive immunity
activation, could be further explored along with gene therapy approaches. Here, we
discuss the elements that constitute the tumor microenvironment, the features and
advantages of these cell subtypes and the latest studies using CAR-myeloid immune
cells in solid tumor models.
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INTRODUCTION

Themyeloid immune cell compartment is composed by distinct cell subtypes that present a variety of
functions once they have differentiated and maturated at the periphery. Within this compartment,
besides the other cell types, the mononuclear phagocyte cells include subsets of monocytes,
macrophages and dendritic cells (DC).

Monocytes are mostly found in the blood and macrophages are exclusively found in the tissues,
while DC subsets can be found both in circulation and tissues.

Many phenotypic characteristics of DC associated with the induction of various T-cell
response patterns have been described. It allows, for example, the association of the
conventional Dendritic Cell 1 (cDC1) phenotype with the induction of CD8+ cytotoxic T
lymphocytes (CTL) (Bachem et al., 2010), the conventional Dendritic Cell 2 (cDC2) phenotype
with that of various Th subtypes (Segura et al., 2005; Rojas et al., 2017) but also of Treg cells
(Watchmaker et al., 2014), while the plasmacytoid Dendritic Cell (pDC) phenotype has been
mostly associated with the production of type I interferon (Reizis et al., 2011). However, this is
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an incomplete picture which is quickly being filled outand
much still needs to be determined before one can predict the
in vivo response from any DC phenotype introduced in the
system.

Most recently, distinct groups have described other DC subset
such as inflammatory-DCs (Segura et al., 2013) and type 3 DC
(DC3) (Dutertre et al., 2019; Bourdely et al., 2020).

Several studies have highlighted the critical role of myeloid
immune cells during tumor growth and metastasis, as reviewed
by Engblom and collaborators (Engblom et al., 2016). Collective
findings have put evidence on the association of tumor-associated
macrophages (TAMs) with poor patients’ outcome for distinct
tumor types (Medrek et al., 2012; Ino et al., 2013; Reinartz et al.,
2014; Yang et al., 2018; Ramos et al., 2020; Guo et al., 2021). In
contrast, mature DC subsets are currently associated to good
prognosis, mostly due to their anti-tumoral role by stimulating
T cell responses (Ladányi et al., 2007; Goc et al., 2014; Truxova
et al., 2018). Also, an important role of type I IFNs has been
discussed as being critical for the innate and adaptive immunity
cross-talk (Demaria et al., 2019). Nucleic-acid-sensing cytosolic
receptors, such as cGAS-STING pathways, found in the tumor
microenvironment may trigger the production of type I IFNs that
promote activation of NK cells, which subsequently stimulate
DCs and T lymphocytes and anti-tumoral responses.

Numerous studies have reported the use of distinct strategies
to overcome the immunosuppressive tumor microenvironment
via the stimulation of myeloid immune cells (Chaib et al., 2020;
Neophytou et al., 2020). These approaches include: the
recruitment of a new wave of immune cells; the stimulation of
cells via agonists/ligands; cytokine-based treatments; blockage of
receptors by monoclonal antibodies and drug-mediated
reprogramming of cells.

Very recently, some reports have described the insertion of
chimeric antigen receptor (CAR) on macrophages (Klichinsky
et al., 2020; Morrissey et al., 2018; W. Zhang et al., 2019; Zhang L.
et al., 2020), an already known technology used for T cells (CAR-
T) and natural killer cells (CAR-NK). CAR-T and CAR-NK cell
therapies have achieved encouraging results in hematological
tumors (Waldman et al., 2020). There has been a rapid growth
of published data associated with CAR-T cells. Around 700 active
clinical trials can be found at ClinicalTrials.gov database using
CAR-T as a treatment modality. Most studies focus on
hematologic malignancies, while 45 studies are related to solid
tumor treatment. The inherent cytotoxicity of natural killer (NK)
cells against tumors and their potential as an “off-the-shelf” cell
therapy product have encouraged several clinical trials using CAR
expressing NK cells to treat a number of malignant diseases (Xie
et al., 2020). There are currently 19 active CAR-NK registered
clinical trials, most of them targeting CD19+ hematological
malignancies.

The myeloid lineages, especially the mononuclear phagocyte
system, present an auspicious future, considering their
functional capacity, which includes phagocytosis, antigen
presentation, T cell co-stimulation, extracellular matrix
remodeling and infiltration into the tumor microenvironment
(Anderson et al., 2021; Chen et al., 2021). Despite technical
issues concerning transfection, gene delivery and stable

expression of CAR on myeloid immune cells (Dokka et al.,
2000; Stroh et al., 2010; Keller et al., 2018), preliminary in vitro
and pre-clinical results using CAR-Macrophages (CAR-Mac)
have shown exciting data. We discuss here some important
features of monocytes, DCs and macrophages for cancer therapy
and the newly reported studies engineering myeloid cells to
express CAR.

ONTOGENY OF MYELOID IMMUNE CELLS

The mononuclear phagocyte system was originally described as
bone marrow-derived myeloid cells that circulate in the blood
as monocytes and reside in tissues as macrophages in both the
steady state and inflammation (Furth and Cohn 1968). It is now
known that different progenitors can give rise to several cell
subsets with distinct phenotypes and particular biological
functions. Additionally, migration to tissues and the
differentiation of lineage-committed progenitors might be
influenced by the surrounding microenvironment such as
the inflammatory milieu (Serbina et al., 2008). Monocytes
respond to their environment by differentiating into a
variety of macrophages and DC-like cells to mount specific
functional programs (Taylor and Gordon 2003). The
generation and development of monocytes, macrophages and
DCs is driven by the association of specific cytokines and
growth factors with receptors expressed in hematopoietic
stem cell-derived precursors (Sasmono et al., 2003). The
bone marrow-derived progenitors are responsible for the
renewal of a substantial set of myeloid cells, although many
tissue-resident macrophages and DCs subsets (microglia and
Langerhans cells) seem to be able to self-renewal, and, thus,
independent of this developmental pathway (Ajami et al., 2007;
Merad and Manz 2009).

The first myeloid cells originate from hematopoietic
progenitors in the human yolk sac at 2 to 3 weeks post
conception (Ginhoux and Jung 2014; Epelman et al., 2014).
Primitive hematopoietic stem cells (HSCs) enter the
circulation and seed the fetal liver, giving rise to the first
population of granulocyte-monocyte progenitors (GMPs) and
blood monocytes (Hoeffel and Ginhoux 2015; Hoeffel et al.,
2015). Under inflammatory conditions, monocytes exit to the
blood and enter tissues, giving rise to subsets of macrophages and
to inflammatory DCs (Auffray et al., 2009). It is noteworthy that
monocytes do not give rise to cDCs and pDCs but are the main
contributors of monocyte-derived DCs (Mo-DCs) during
inflammation (Coillard and Segura 2019). Alternatively,
commitment to the human cDC lineage can occur in early
lympho-myeloid progenitors, from multipotent lymphoid
progenitors (MLPs) that can give rise to monocytes, pDCs and
cDCs (Helft et al., 2017; Doulatov et al., 2010) (Figure 1). Most
recently, distinct groups have described a third subset of DC (also
called DC3) (Dutertre et al., 2019; Bourdely et al., 2020). DC3
usually present a mixed phenotypic and functional status,
between that of monocytes and cDC2, and are differentiated
from a distinct pre-DC3 progenitor in a GM-CSF dependent-
fashion. The DC3 subset closely resembles the monocyte-derived
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dendritic cells, differentiated in vitro from blood monocytes, and
normally accumulate under inflammatory conditions.

Several studies have been conducted to unravel the origin of
the terminally differentiated cells of the mononuclear phagocyte
system. The analysis of cell surface markers to separate different
subpopulations of cells with myeloid origin has been shown to be
very limited, since there is significant phenotypic overlap in the
expression of cell surface markers among these cells
(Guermonprez et al., 2019). Characteristic monocyte surface
markers such as CD14, CD16, CD68, and CCR5 are shared
with macrophages, and the expression of general macrophage
specific surface markers (C1QC and VEGF) and tissue specific
markers (VCAM1 and PPARγ) are necessary for proper
discrimination between monocytes and macrophages (Ginhoux
and Jung 2014; Hoeffel and Ginhoux 2015).

Macrophage subsets could be further segregated into tissue-
resident and monocyte-derived cells. A great variety of tissue-

resident macrophages are distributed in the human body
presenting specialized functional features. Distinct studies have
reported PU.1, MYB, C-MAF, MAF-B, and ZEB2 ascore
transcriptional factors (TFs) shared by tissue-resident
macrophages regardless of the tissue imprinting cues (Blériot
et al., 2020). Under inflammatory conditions, intrinsic local
signals as cytokines, growth factors, metabolites and others
contribute for shaping the macrophage programing and
function, generating a much more complex range of phenotypes.

The current DC classification can be quite troublesome, and
there is still little consensus on the identification and naming of
DC populations (Villar and Segura 2020). Nevertheless, there is a
general consensus of classification of DCs into three main groups,
based on their cellular and molecular ontogeny (Guilliams et al.,
2014): 1) pDC; 2) conventional DC1 and DC2; and 3) DC3. The
expression of the CD123, CD304, and CD303 surface markers
defines pDCs, whereas CD141 and Clec9A are cDC1 specific

FIGURE 1 | Schematic overview of myeloid cells ontogeny. The first myeloid cells arise in the embryonic phase from yolk sac-derived primitive HSCs and expand in
the fetal liver, originating GMPs and blood monocytes. Tissue-resident macrophages are established before birth and are mostly repopulated by self-renewal. Within the
bonemarrow, CMPs give rise to GMPs andMDPs. MDPs are responsible for the contribution of many macrophages and DC subsets. MDPs differentiate intomonocytes
and CDPs, which in turn differentiate into pDC and pre-cDCs. Following exit from the BM, pre-cDCs enter peripheral organs and mature into cDC1, cDC2, and
cDC3. Alternatively, pDCs and cDCs may also originate from MLPs. Inflammatory cues contribute to monocyte migration to tissues, where they differentiate into
macrophages and Mo-DCs. HSC, hematopoeticstem-cell; GMP, granulocyte-monocyte progenitor; CMP, common myeloid progenitor; MDP, macrophage/DC
progenitor; MLP, myelo-lymphoid progenitor; CDP, common DC precursor; pre-cDC, precursor of classical DC; Mo-DC, monocyte-derived DC; cDC, classical DC;
pDC, plasmacytoid DC.
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markers, and expression of CD1c and CLEC10A seems to be
restricted to cDC2. DC3/Mo-DCs share the expression of CD1c
with cDC2, and CD14 with monocytes and macrophages,
although they present specific subset markers, such as CD226
and CD163.

Studies on mice and in vitro culture of human cells have
provided a better understanding of the developmental programs
that seem to be hard-wired in hematopoietic progenitor cells to
originate different myeloid cells (Epelman et al., 2014). These
studies involved the selection of specific gene expression
programs, including important TFs responsible for cell fate
choices (Auffray et al., 2009; Merad and Manz 2009). The
myeloid transcription factor PU.1 is required for the earliest
steps of myeloid lineage commitment in HSCs (Sarrazin et al.,
2009). This TF plays a role in myeloid lineage diversification,
particularly during fate choice of monocytes into macrophage or
DC (Bakri et al., 2005). The expression level of PU.1 in certain
progenitor stages dictates the fate of a specific myeloid progenitor.
Intermediate expression of PU.1 in GMPs favors differentiation to
macrophages instead of granulocytes (Laslo et al., 2006). The
ectopic expression of TFs Maf-B, c-Maf, Egr1, IRF8, IRF4, and
PU.1 in early progenitors can drivemonocyte/macrophage and DC
fates, and the given function of any factor depends on cooperating
or antagonistic TFs that are expressed at each specific progenitor
stage (Laslo et al., 2006). According to the current classification of
DCs based on ontogeny, a discussion is being raised whether
certain DC populations might only be considered as distinct
subsets if their developmental pathway is controlled by specific
TFs (Villar and Segura 2020). Plasmacytoid DCs develop from
progenitors that express the E2-2, ZEB2, IRF8, and IRF4 TFs.
Conventional DC1 arise from expression of IRF8 and BATF3,
while cCD2 progenitors express ZEB2, IRF4 and Notch2/KLF4
TFs. Monocyte-derived DCs generation depend on the expression
of theMAFB and KLF4 TFs (Collin and Bigley 2018; Guermonprez
et al., 2019). The DC3 subset developmental pathway is still a
matter of discussion, although recent studies have shed some light
on this ongoing debate. Cultures of purified monocytes or
monocyte-committed precursors with IRF8low expression were
able to differentiate into DC3, while IRF8high progenitors gave
rise to pDC and DC2 (Bourdely et al., 2020; Cytlak et al., 2020).
Besides TFs, epigenetic modification and micro-RNAs have been
described to be important determinants of lineage choice
(O’Connell et al., 2007; O’Connell et al., 2008).

Altogether, the possibility of generating various terminally
differentiated subsets of myeloid cells in vitro with cytokine and
growth factor cocktails can be harnessed in immunotherapy
approaches to develop novel cellular therapy products with
optimized biological functions (Salmon et al., 2016).

ROLE OF MONOCYTES, MACROPHAGES
AND DENDRITIC CELLS IN CANCER
The Tumor Microenvironment and its
Chemoattractive millieu
Macrophages are critical cells that participate of tissue
homeostasis and regulation and may represent up to 50% of

total immune cells that infiltrate solid tumors (Ramos et al.,
2020). The great majority of TAMs are derived from blood
monocytes due to the chemo attractive milieu from the tumor
microenvironment, constituted by a large spectrum of soluble
factors that includes M-CSF, CCL2, CCL3, CCL4, CCL5, CCL8,
SDF1, VEGF, MIP-1, and MIF (Panni et al., 2013). The
chemokine CCL2 was extensively studied and reported as one
of the key factors inducing the accumulation of circulating
monocytes within tumors (Kitamura et al., 2015; Cassetta and
Pollard 2018). Due to the mostly suppressive activity of TAMs, a
series of reports have proposed strategies to block the CCL2-
CCR2 axis aiming to avoid monocyte trafficking and
accumulation into the tumor tissues. These studies revealed a
significant impact on tumor growth and metastasis in pre-clinical
settings (Qian et al., 2011; Macanas-Pirard et al., 2017; Nywening
et al., 2018), but clinical trials failed to demonstrate similar
efficacy (Fetterly et al., 2013; Pienta et al., 2013). Importantly,
the restoration of the CCL2-CCR2 axis after blockage promotes
new waves of monocyte recruitment and accumulation, inducing
an acceleration of tumor growth on mice (Bonapace et al., 2014).
In addition, no effect was noted on established tissue-resident
macrophages in the tumor microenvironment after CCL2-CCR2
blockage (Zhu et al., 2017). Other molecules have been identified
as promoting monocyte recruitment to tumor sites. The
inhibition of CCL5-CCR5 interaction has been shown to have
an impact on tumor growth and metastasis (Cambien et al., 2011;
Ban et al., 2017). In fact, some studies have described CCL5 as a
critical chemokine present in the tumormicroenvironment that is
able to promote the recruitment of DC to the tumor mass
(Böttcher et al., 2018; Cueto et al., 2021). Once accumulated in
the tissue, intratumoral DCs will, in turn, produce important
levels of CXCL9 and CXCL10, critical chemokines that attract
T cells within tumors (Spranger et al., 2017). This sequence of
events may generate the stimulation of anti-tumor T cell
responses and tumor control.

Targeting CXCR4, a receptor for CXCL12 molecule, has also
been demonstrated to have an impact on monocyte recruitment
in a colorectal tumor mouse model (Jung et al., 2017). More
recently, two studies highlighted new signaling pathways able to
induce monocyte/macrophage attraction and accumulation on
tumors. Zhang and others showed that IFN-γ affects CXCL8-
CXCR2 signaling and consequently reduced TAM trafficking
within the tumor microenvironment (Zhang M. et al., 2020,
8). Takahashi et al. used in vitro assays to reveal the role of
soluble-VCAM-1molecule produced by pancreatic cancer cells in
the chemo attraction of murine macrophages (Takahashi et al.,
2020). Thus, a mixture of soluble factors may drive the migration
of myeloid immune cells into the tumor microenvironment. The
effective manipulation of the chemo attractive signals along with
proper macrophage differentiation may promote the infiltration
and accumulation of subpopulations of these cells capable of
controlling the tumor.

Monocytes
Humanmonocytes represent around 10% ofmononuclear cells in
peripheral blood. For decades, many authors have used flow
cytometry to further describe these cells into three major subsets
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with distinct proportions: classical monocytes CD14highCD16neg

(around 90% of total monocytes), intermediate monocytes
CD14highCD16+ (around 2% of total monocytes) and
inflammatory monocytes CD14lowCD16high (around 8% of
total monocytes) (Passlick et al., 1989; Ziegler-Heitbrock et al.,
2010; Wong et al., 2012). Microarray mRNA analysis of FACS-
sorted monocytes revealed unique transcriptional gene profiles
for each of these subsets (Wong et al., 2011). Among newly
described markers, authors revealed, both at mRNA and at
protein levels, that classical monocytes express higher levels of
CD1d, CD99, CD9 and CD36; intermediate monocytes showed
higher levels of CLEC10A and GFRa2; and inflammatory
monocytes showed elevated expression of CD294, P2RX1, and
SIGLEC10. Additional studies using pseudo-time scRNAseq
analysis have confirmed that both non-classical monocytes
subsets may originate from classical monocytes, in mice and
humans (Mildner et al., 2017; Villani et al., 2017). Of note, the
CD163 scavenger receptor, which has been extensively used to
describe macrophages subsets (Ruffell and Coussens 2015; Ramos
et al., 2020), is also expressed by monocytes and newly described
DC subsets (Villani et al., 2017) and is significantly more
expressed in both classical and intermediate monocytes, in
comparison to inflammatory monocytes. More recently, single-
cell approaches have re-oriented the description of monocyte
subsets by revealing new markers and functional features of these
cells. Two new markers, CD88 and CD89, were described as
specifically expressed by human classical monocytes,
discriminating these cells from other immune cell subsets
(Dutertre et al., 2019; Bourdely et al., 2020). These new
findings are of great interest, considering that the
characterization of monocytes in tissues is still challenging,
since many of their surface markers are shared with
macrophages (e.g., CD14, CD68, and CD163).

Hematopoietic stem cells give rise to progenitors that will
progressively generate monocyte-committed progenitors and,
subsequently, monocytes. Importantly, elevated counts of
blood monocytes were described in cancer patients and
tumor-bearing mice (Cortez-Retamozo et al., 2012; Sanford
et al., 2013; Trovato et al., 2019), where increased numbers of
blood monocytes were associated to worse prognoses (Lee, 2012;
Shigeta et al., 2016; Hayashi et al., 2017; Feng et al., 2018). This
phenomenon is further supported by the elevated serum levels of
CCL2, a critical cytokine for monocyte mobilization from bone
marrow (Monti et al., 2003; Dehqanzada et al., 2007; Sanford
et al., 2013). Coherently, additional factors were found increased
in cancer patients’ serum, including the classical growth factors:
G-CSF, GM-CSF, and M-CSF (Scholl et al., 1996; Wu et al., 2014;
Ribechini and Hutchinson 2017). Notably, M-CSF is critical
during monocyte development, promoting survival and
proliferation of myeloid progenitors towards monocytic cell
lineages (Rieger et al., 2009). Moreover, blood monocytes
under high concentrations of M-CSF may acquire an anti-
inflammatory profile, giving rise to potential suppressive
mature macrophages (Menetrier-Caux et al., 1998; Jaguin
et al., 2013; Ramos et al., 2020).

There are emerging data indicating that tumor-derived factors
can affect monocyte differentiation remotely, altering bone

marrow progenitors. A series of studies have uncovered an
altered transcriptomic profile of circulating monocytes in both
cancer patients (Chittezhath et al., 2014; Cassetta et al., 2019; Kiss
et al., 2020; Ramos et al., 2020) and mouse tumor models
(Torroella-Kouri et al., 2013; Stone et al., 2014) when
compared to tumor-free individuals. One important
consequence of this phenomenon is the biased differentiation
programming found in patients’ monocytes when compared to
healthy donors, which gives rise to dysfunctional DC and
macrophages (Ramos et al., 2012; Ramos et al., 2020), thus
impacting adaptive anti-tumoral responses.

Due to their elevated degree of plasticity and sensitivity,
monocytes can rapidly migrate and respond to inflammation
in tissues. However, tumor-derived factors can also influence
their process of differentiation by modulating their phenotype,
differentiation and functions at tumor sites and systemically.
Harnessing the great plasticity of monocytes and the precise
definition of their differentiation pathways, it would be possible
to recruit specifically functional cells, representing a great gain for
the development of new therapies for cancer.

Macrophages
The function and phenotype of macrophages in the tumor
microenvironment have been extensively described in the last
decades (Ruffell and Coussens 2015). Most of the reports have
associated the features of macrophages to an oversimplified
bipolar model M1 (pro-inflammatory) x M2 (anti-
inflammatory) (Lacey et al., 2012; Jaguin et al., 2013). Pro-
inflammatory M1-macrophages have been mostly associated to
anti-tumoral responses, while M2-macrophages have shown pro-
angiogenic and immunosuppressive capabilities (Pollard 2004).
Based on this model, many studies have used M1 or M2-like
markers to describe TAMs in distinct human tumor types. Most
of the markers used included CD68, CD14, CD163, and CD206
(Steidl et al., 2010; Ruffell and Coussens 2015). CD68 and CD14
molecules are expressed by monocytes, macrophages and some
DC subsets, regardless of their functional status. CD163 and
CD206 markers currently correspond to an
M2 immunosuppressive-like macrophages status, and are
associated to poor patient prognosis for several solid and
hematologic tumors, such as: breast (Medrek et al., 2012;
Ramos et al., 2020), ovarian (Reinartz et al., 2014), pancreatic
(Ino et al., 2013) and acute myeloid leukemia (Yang et al., 2018;
Guo et al., 2021). In the recent years, with new technologies using
large-scale single-cell approaches, the bipolar model of
macrophage differentiation–M1 versus M2-macrophages–has
been gradually replaced by a multidimensional landscape
(Chevrier et al., 2017; Lavin et al., 2017; Azizi et al., 2018).
Three new markers have emerged from recent studies using
single-cell approaches redefining macrophage features on
tumors: APOE (Apolipoprotein E), TREM2 (Triggering
receptor expressed on myeloid cells 2) and FOLR2 (Folate
receptor 2). APOE has been associated to a new pan-
macrophage marker, distinguishing these cells from blood
monocytes (Lavin et al., 2017; Azizi et al., 2018). TREM2 was
described as expressed on suppressive monocyte-derived
macrophages that are accumulated on tumor sites
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(Katzenelenbogen et al., 2020; Molgora et al., 2020; Ardighieri
et al., 2021). FOLR2 molecule is expressed on tissue-resident
macrophages in a variety of tissues and was also found on stromal
areas from human tumors (Sharma et al., 2020; Ramos et al.,
2021).

Considering that macrophages are one of the most frequent
immune infiltrating cells in solid tumors, a crescent number of
reports have described anti-tumor strategies that target the
immunosuppressive functions of TAMs (Liu and Wang 2020).
These new “omics-studies” have uncovered distinct subsets of
TAM and tissue-resident macrophages presenting a complex
functional programming that offer new targets for molecular
targeting and new perspectives for clinical interventions.

Dendritic Cells
Dendritic cells constitute a very heterogenous group of innate
cells with specialized functions that are distributed in a wide
variety of tissues. DC subsets are conserved across diverse human
tumors and tissues (Gerhard et al., 2021). In contrast to other
APCs, such as macrophages, B cells and monocytes, DC have a
unique ability to migrate, transport and present tumor-antigens
to naïve T cell in the lymphoid organs (Mildner and Jung 2014;
Ruhland et al., 2020), being critical for the initiation of adaptive
immune responses. A great range of tumors are devoid of DC
infiltration (Broz et al., 2014), and it may explain the failure of
anti-tumor T cell immunity in tumor control (Spranger et al.,
2017).

Studies focused on DC biology in cancer have associated the
presence of these cells with good patient outcome for distinct
tumor types (Malietzis et al., 2015; Truxova et al., 2018; Melaiu
et al., 2020). Not only the presence of DCs but their activation
status and tissue spatial localization have highlighted the
functional impact of these cells in patients. Ruffel and
collaborators (Ruffell et al., 2012) have shown a decrease in
frequency of tumor-infiltrating DCs in tumor areas when
compared to normal adjacent tissues. Besides that, tumor-
infiltrating DCs were described as dysfunctional and immature
(Bell et al., 1999; Gervais et al., 2005; Dieu-Nosjean et al., 2008),
and may participate in the tumor angiogenesis (Fainaru et al.,
2008). In fact, DCs were also described as immature in tumor bed,
in contrast to activated DCs found in tumor periphery (Treilleux
et al., 2004; Baleeiro et al., 2008). A study by Goc and
collaborators (Goc et al., 2014) correlated a lower risk of death
in lung cancer patients with the presence of mature DCs and Th1-
like lymphocytes in peritumoral tertiary lymphoid structures
(TLS). Many studies have explored the tumor-induced
mechanisms responsible for the blockage of DC maturation
and antigen presentation for T cells. Thomachot and others
(Thomachot et al., 2004) showed that products derived from
human breast carcinoma cell lines were able to block the in vitro
maturation of DC derived from CD34+ progenitors. The
accumulation of some metabolites such as fatty acid and lactic
acid also impair the antigen processing and presentation as well as
the production of pro-inflammatory cytokines by DC (Herber
et al., 2010; Cao et al., 2014; Caronni et al., 2018). In addition, a
variety of cytokines were reported as critical for dampening DC
functionality. The vascular endothelial growth factor (VEGF) is

highly expressed in the tumor microenvironment from distinct
tumor types and inhibit the activity of FMS-like tyrosine kinase 3
ligand (FLT3L), a critical factor for DC development and
maturation (Gabrilovich et al., 1996). IL-6 and IL-10 are
known to play a critical role in the blockage of DC functions
by promoting STAT3 activation, which may impede IL-12
production and promote IL-10 amplification (Diao et al., 2011;
Tang et al., 2015). Farren and others (Farren et al., 2014)
suggested that tumor-derived factors sustained STAT3 up-
regulation on myeloid cells progenitors avoiding the activation
of ERK and NF-kB signaling, which may limit the monocyte
capacity to be differentiated into DCs. Furthermore, TGF-β
present in the tumor microenvironment has been reported as
critical to suppress DCmaturation and inhibit their production of
pro-inflammatory cytokines such as IL-12 and TNF-α,
hampering the activation of T cells (Belladonna et al., 2008;
Flavell et al., 2010). Importantly, tumor factors may also affect
myeloid APCs at circulation, since defective subpopulations of
DCs were described in the blood of cancer patients (Satthaporn
et al., 2004).

Recent reports using transgenic mice models and single-cell
approaches have further detailed the intrinsic features of the
distinct DC subsets in the oncology field. Both mouse and human
cDC1 were described as highly efficient for cross-presentation in
the tumor context by stimulating CD8+ T cells responses
(Jongbloed et al., 2010; Wculek et al., 2019). Additional studies
have described that type I interferon may enhance anti-tumor
properties of cDC1 cross-presentation and CD8+ T cell
stimulation (Diamond et al., 2011; Fuertes et al., 2011). The
cDC2 subset constitute the most heterogenous population of
conventional DCs presenting a wide diversity of phenotypes
(Villani et al., 2017; Dutertre et al., 2019). These cells can
produce a large spectrum of cytokines and are involved in the
induction of diverse CD4+ T helper subsets in both inflammatory
and cancer contexts (Binnewies et al., 2019; Bosteels et al., 2020).
The recently described DC3 is still under deep characterization. A
study by Bourdely and others (Bourdely et al., 2020) have
described the DC3 subset as effective for the priming of
CD8+CD103+ tissue-resident memory T cells via the
production of TGF-beta. In agreement, presence of DC3 are
also associated to the accumulation of CD8+ T tissue-resident
memory cells in human breast cancer tissues. Dutertre and
collaborators (Dutertre et al., 2019) also reported that DC3 are
capable to expand CD4+ T helper cells in vitro. Of note,
CD14+CD163+ DC3 subset were strong inducers of
CD4+IL17A+ Th17-likecells when compared to cDC2 subtype,
suggesting their role in inflammatory responses.

The plasmacytoid DC subset has been extensively characterized
in the tumor field. These cells were associated to a poor patients’
prognosis in distinct types of cancer (Wculek et al., 2020). In fact,
various reports have described a tolerogenic profile of tumor-
infiltrating pDCs. Breast cancer infiltrating pDCs have shown an
impaired capability to secrete IFN-α (Sisirak et al., 2012), which
may be partially explained by the higher concentrations of TGF-β
and TNF-α found in the tumor microenvironment (Sisirak et al.,
2013). Similarly, the dysfunctional pDCs profiling was described
for other tumor types including ovarian (Labidi-Galy et al., 2011)
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and melanoma (Camisaschi et al., 2014). Other studies also
uncovered the pDC role in the induction of suppressive CD4+
regulatory T cells in breast cancer patients, suggesting the
mechanisms that explain their pro-tumorigenic profile (Faget
et al., 2012; Sisirak et al., 2012).

Another critical DC subset described in many inflammatory
conditions, including cancer, is the monocyte-derived DC. These
cells can be found in the tissues from both mice and humans and
emerge via the recruitment of CCR2+ monocytes from the blood
(Schlitzer et al., 2015). In vivo, is still challenging to exactly define
Mo-DCs phenotype and function due to their high plasticity and its
profiling that overlaps with other DC subsets and macrophages
(Collin and Bigley 2018). Many reports have described strategies for
the manipulation of Mo-DCs due to the possibility of Mo-DC
in vitro differentiation from blood monocytes (Sallusto and
Lanzavecchia 1994) or CD34+ progenitors (Caux et al., 1996). It
has allowed researchers to develop clinical protocols using Mo-DC
based-vaccines to treat distinct diseases, including cancer (Barbuto
et al., 2004; Neves et al., 2005). Mo-DCs plasticity can be also
explored by treatingmonocytes with soluble factors, cytokines, TLR-
L and other compounds to drive their cellular functions towards the
stimulation of a variety of T helper responses and/or CD8+ T cell
activation (Harris 2011; Goudot et al., 2017). In vivo, Mo-DC has
been associated to an anti-tumor function. Kuhn and collaborators
(Kuhn et al., 2015) reported that the blockage ofMo-DC recruitment
and differentiation in tumor sites impede the stimulation of anti-
tumor immunity inmicemodels. In addition,Mo-DCs isolated from
cancer patients are capable to cross-present tumor antigens and
activate cytotoxic CD8+ T cells ex vivo (Tang-Huau et al., 2018).

Altogether, DCs critically participate in the initiation and
expansion of anti-tumor adaptive immune responses with
specialized functions and intrinsic roles for each subset.
Despite all the uncertainty, however, DC continues as a
central piece in tumor immunotherapy. From one side, the
effectiveness of other immunotherapeutic modalities highlights
the immune system’s effector mechanisms potential in cancer
therapy and DCs remain the best-known cells to initiate the
immune responses that would recruit such mechanisms.

Another fact that should be considered when looking at DC in
the context of immunotherapy is, from one side, the heterogeneity
and plasticity of the immune response and, from the other, our still
incomplete knowledge of its role in each disease. Although
improving the scenario is still uncertain. However, the use of a
cell, itself heterogeneous and plastic, and that is hardly constrained
by ourmanipulations, leaves the door open to “unexpected” results,
which might become those that actually point to the “right” way to
achieve success. The comprehensive use of these cells by exploring
their skills and improving their clinical application alone or in
combination with other therapies may represent a great gain for
cancer patients’ treatment.

CHIMERIC ANTIGEN RECEPTOR ON
T CELLS AND NATURAL KILLER CELLS

The development of T cells expressing CAR date from the first
studies performed in the 80’s by Gross and collaborators

(Gross et al., 1989). This strategy was further optimized in
the subsequent years by the comprehension of the critical
mechanisms for CAR-T cell activation, expansion and in vivo
survival (Krause et al., 1998; Maher et al., 2002; Brentjens et al.,
2003). The first trials using genetically engineered T cells
highlighted its safety and its impact on cancer patients’
survival (Morgan et al., 2006; Kochenderfer et al., 2010),
paving the way for the subsequent clinical applications.
Since 2017, the Food and Drug Administration department
(FDA, United States) has approved five products of CAR-T for
refractory non-Hodgkin B cell lymphoma, acute lymphocytic
leukemia and multiple myeloma (Maude et al., 2018; Park
et al., 2018; Munshi et al., 2021). Lately, clinical trials using
CAR-T cells have been really encouraging with studies
reporting residual disease-negative complete responses for
about 70% of patients with distinct hematological
malignancies (Ortíz-Maldonado et al., 2021). More recently,
studies have also focused on the improvement of the
manufacturing process of CAR-T cells by aiming to
diminish the time for production and costs, while
ameliorating the quality and the life-spam of the cells in
vivo. The creation of the 4th generation (Chmielewski and
Abken 2020) and bispecific CAR-T cells (Shah et al., 2020;
Fousek et al., 2021) are examples of such improvements to be
applied in the clinics.

Another recent strategy was the manufacture of NK cells
expressing CAR. Many advantages were considered in the use of
these cells to treat malignances, including: its intrinsic ability to
eliminate cells with down regulated HLA expression, its
application in allogenic scenarios and a lower potential of
toxicity, which will reduce side-effects and costs with
patients’ conditioning (Moretta et al., 2011; Simonetta et al.,
2017; Xie et al., 2020; Albinger et al., 2021). Pre-clinical reports
have demonstrated that CAR-NKs generated from both
peripheral blood and umbilical cord blood have effective
capabilities to eliminate CD19+ target tumor cells in vitro
(Herrera et al., 2019). In the clinical settings, trials using
cord blood-derived CAR-NK for patients with B-cell
malignancies showed very enthusiastic results, by reporting
clinical responses in around 70% of treated individuals and
CAR-NK persistence at the periphery for around 1 year (Liu
et al., 2020).

Despite great success of CAR-T and CAR-NK treatment for
hematological cancers, first clinical trials using CAR-T cells for
solid tumors have reported disappointing results (Kershaw et al.,
2006; Lamers et al., 2011; Thistlethwaite et al., 2017). Most clinical
trials using CAR-NK for solid tumors are still ongoing and no
conclusive results were presented so far. Many authors have
extensively discussed the possible limitations for the success of
CAR-T and CAR-NK in solid tumors (Hanahan and Coussens
2012; Li et al., 2018; Marofi et al., 2021). Main cited reasons
include but are not limited to: the high mutational burden
generating a diversity of tumor antigens, the dense
extracellular matrix that may promote T cell exclusion, the
absence of chemo-attractive factors for T cells, the limited in
vivo persistence of CAR-T cells and the immunosuppressive
microenvironment.
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CHIMERIC ANTIGEN RECEPTOR ON
MYELOID IMMUNE CELLS

The low efficacy of CAR-T cell therapies for solid tumors may be,
probably, explained by the inability of these cells to effectively
infiltrate the tumor mass. Among the main reasons for this failure
are the lack of classical T-attractive chemokines (e.g., CXCL9 and
CXCL10), the dense tumor microenvironment matrix and the
higher tumor-antigen heterogeneity, as compared to hematologic
tumors. To overcome these difficulties, recent studies have
suggested the use of CAR-engineered monocytes/macrophages
for the elimination of solid tumors. Still, few reports have
described CAR-Mac functionalities, but this emerging topic
has called the attention of the scientific community. We
summarize below the key works recently published using
CAR-Mac technologies highlighting their particularities
(Figure 2).

The study by Morrissey and collaborators (2018) (Morrissey
et al., 2018) used murine CAR-Mac constructs strategies to
enhance the phagocytosis of cancer cells. The authors’ strategy

consists in an extracellular single-chain antibody variable
fragment (ScFv) specific for CD19 or CD22 with the CD8
transmembrane domain linked to a cytoplasmatic domain able
to promote macrophage phagocytosis. By screening a library of
intracellular domains of engulfment receptors, the authors
selected the cytosolic domains from Megf10 and FcR-gamma,
achieving a robust engulfment of antigen-coated synthetic
particles. Macrophages expressing anti-CD19 or anti-CD22
CARs linked with the cytosolic domain Megf10 showed
superior abilities of phagocytosis of synthetic beads with up to
20 µm of size when compared to CAR-GFP controls. Authors
further demonstrated that the synapse of CAR-Mac cell-bead
interaction induced stimulation via phosphotyrosine expression
at comparative levels of CD3ζ signaling. Authors next tested the
phagocytic capabilities of J774A.1 CAR-Mac expressing Megf10
and FcRγ intracellular domains in co-culture with human Raji
B cell lines, cells that express CD19 endogenously. Elegant images
showed that CAR-Mac with both intracellular domains presented
a significant higher capability to promote trogocytosis or to engulf
tumor cells when compared to control CAR-Mac GFP+. This

FIGURE 2 | Panels (A) and (B) show the “classic”CAR-T and CAR-NK approaches, respectively, and its main features and advantages. Panel (C) shows an in vivo
approach for CAR-Mac production, in which a nanocomplex composed of mannose-conjugated PEI and DNA plasmids is intratumorally or intraperitonially administered
and internalized by local macrophages. Panel (D) shows the approaches so far tested for generating and applying CAR-Mac cells against solid tumors (Morrissey et al.,
2018; Zhang et al., 2019; Klichinsky et al., 2020; Zhang L. et al., 2020). Both murine and human macrophages were reprogrammed to target at least four tumor
markers (CD19, CD22, HER2, and Mesothelin). Human macrophages were obtained from peripheral blood monocytes and from iPS cells.
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effect was further improved when the authors engineered CAR-
Mac to increase the PI3K employment by fusing the CD19
cytoplasmatic domain, which is able to recruit the p85 subunit
of PI3K. Altogether, this study provides an attractive engineered
strategy to increase engulfment and elimination of tumor cells by
CAR-Mac.

Another interesting study reported by Zhang and others
(2019) (Zhang et al., 2019) described a murine anti-HER2
CAR-Mac Raw264.7 engineered with an intracellular signaling
domain of CD147 (CAR-147-Mac), able to trigger the expression
of matrix metalloproteinase (MMPs) after antigen recognition.
This strategy aims to remodel the tumor microenvironment
extracellular matrix, facilitating the infiltration of immune cells
or drugs. Authors showed that CAR-147-Mac were able to
produce significant high levels of mRNA for distinct MMPs
upon HER2 antigen binding in co-cultures with 4T1 cell lines
during 24 and 48 h. A more pronounced expression of MMP3,
MMP9, MMP10, and MMP13 was noted when compared to co-
cultures between 4T1 cell lines lacking HER2 antigen expression.
For in vivo assays, CAR-147-Mac were found in liver and tumors
of mice even after 7 days of intravenous infusion. No differences
were noted in total body weight of HER2+ 4T1 tumor-bearing
mice injected with both CAR-147-Mac or control CAR-Mac, but
significant reduction of the weight of the spleen and tumor mass
was noted in animals that received CAR-147-Mac. The infusion
of CAR-147-Mac significantly inhibited HER2+ 4T1 tumor
growth in mice along with an up-regulation of the anti-tumor
cytokines such as IL-12 and IFN-gamma, thus suggesting that this
strategy involves both local modulation and systemic anti-tumor
responses. In addition, CAR-147-Mac treatment promoted an
increase in T-cell infiltration and a reduction of GR1+ myeloid
cells into tumors. Added, no differences were found in the
infiltration of DCs, NKs, and TAMs as well as in markers of
activation for T cells (PD-1, CD44, CD62L, and CD107a) when
comparing tumor-bearing mice that received CAR-147-Mac or
control CAR-Mac. In agreement, authors used balb/c nude mice
model to demonstrate that no effect in tumor control was noted
after CAR-147-Mac infusion. By showing IHC images from
tumor sections authors reported a significant reduction in
tumor collagen deposition in mice treated by CAR-147-Mac.
Using a human in vitro 3D spheroid system by co-culturing THP
CAR-147-Mac with HER2+ MDA-MB-453 tumor cell line
authors showed an increased mRNA expression of various
MMPs allowing the infiltration and accumulation of T cells. In
conclusion, this study provided an interesting approach using
engineered macrophages able to modify the extracellular matrix,
allowing T cell infiltration in the tumor mass.

More recently, two additional studies reported strategies for
CAR-Mac manufacturing using human cells as primary
resources. Zhang and collaborators (Zhang L. et al., 2020)
focused on undifferentiated stem cells by developing a three-
step procedure: I) reprogramming human PBMCs towards an
induced pluripotent stem cell (iPSCs) using non-integrating
episomal vectors; II) engineering CAR expression on IPSCs by
lentiviral transduction; III) promoting macrophage
differentiation from CAR-iPSCs using a cocktail of growth
factors and cytokines including bFGF, VEGF, SCF, IGF-1, IL-

3, M-CSF, and GM-CSF to obtain a final cell product of CAR
induced macrophages (CAR-iMac). Authors firstly characterized
and validated CAR-iMac phenotype at both transcriptional and
protein levels. By flow cytometry iCAR-Mac closely resembled to
primarily differentiated macrophages by showing the expression
of typical proteins, such as CD11b, CD14, CD163, and CD68. At
the transcriptional level CAR-iMac displayed a distinct
programing from those undifferentiated IPS and clustered with
primary differentiated macrophages. In addition, CAR-iMac
present enrichment for genes related to GO pathways ofinnate
immunity, antigen processing and presentation and positive
regulation of cytokine production while expressing high levels
of characteristic macrophage genes such asAIF1, CSFR1, and
SPI1. Authors also implied scRNA-seq analysis and found that
CAR-iMac cells clustered with macrophages already described in
public datasets. Subsequently, authors aimed to validate
functional features of iCAR-Mac against two antigens, CD19
and mesothelin. Anti-CD19 CAR-iMac co-cultured with CD19+
K562 cells expressed higher levels of TNF, IL1A, IL1B, and IL-6
and displayed enrichment on pathways related to antigen process
and presentation and positive regulation of cytokine production
when compared to control CD19- K562 cells. Authors also
showed an increased phagocytosis of anti-CD19 CAR-iMac
when K562 target cells expressed CD19. Similar results were
obtained for in vitro assays using Meso+ OVCAR3 cells lines. For
in vivo assays, NSG mice were injected with luciferase-expressing
Meso+ HO8910 cell lines intraperitoneally, prior to anti-meso
CAR-iMac infusion. Data showed a significant reduction in
bioluminescent tumor cells when compared to PBS-treated
mice at days 4, 11, and 14 post-treatment. Considering that
pluripotent stem cells have a great expansion potential it could
be maintained as an unlimited source. Thus, the platform for
iPSC-derived engineered CAR-Mac emerges as a very promising
approach to be further explored for a variety of malignancies and
tumor antigens.

An elegant study by Klichinsky and others (Klichinsky et al.,
2020) reported the engineering of CAR-Mac from human
monocyte-derived macrophages applying the classical M1-like
in vitro protocol based on GM-CSF treatment. Moreover, the
authors established a new protocol for primary macrophage
transduction with high reproducibility (validated in more than
10 distinct monocyte donors) and efficiency (>75% of CAR-
positive cells) by using the chimeric adenoviral vector Ad5f35.
CAR-Mac manufactured with Ad5f35 adenovirus were able to
efficiently phagocyte tumor cells from both hematological and
solid tumor lines as well as control tumor growth in xenograft
mouse models when administered via intravenous or
intraperitoneal routes. Interestingly, CAR-Mac transfected with
Ad5f35 showed superior phagocytic capacity than control M1-
like macrophages and presented a stable pro-inflammatory
phenotype in the tumor microenvironment. CAR-Mac were
also found infiltrating distinct organs from tumor bearing-
mice and persisted for up to 62 days in tumor-free animals.
Surprisingly, the authors also reported efficient cross-
presentation promoted by CAR-Mac transfected with Ad5f35,
since in co-cultures with CAR-Mac pre-incubated with
NYESO1+ tumor cell lines in an HLA-A201+ restricted
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context, an increase in NYESO1+CD8+CD69+ activated T
lymphocytes and an up-regulation of IFN-gamma secretion
was detected. In addition, CAR-Mac were able to efficiently
recruit both resting and activated T cells in chemotaxis assays
and to induce activation of immature DCs via soluble factors.
Importantly, this study by Klichinsky and others (Klichinsky
et al., 2020) paved the way for the first phase-I clinical trial using
CAR-Mac launched in 2020 for a variety of HER2-overexpressing
solid tumors (NCT04660929). In this study, the authors estimate
the recruitment of patients with no available curative treatment
options that will be separated into two treatment groups. One
group will undergo intra subject dose escalation of IV
administrations of up to 500 million cells on D+0, up to 1.5
billion cells on D+3, and up to 3 billion cells on D+5. The other
group will receive a single dose of up to 5 billion cells on D+0. As
primary endpoints, the investigators will evaluate the safety and
tolerability of the infused product by estimating the frequency
and severity of adverse events (i.e., CRS) in the trial subjects
during a 14 months follow-up period. The feasibility of
manufacturing anti-HER2 CAR-Mac will also be assessed by
describing the percentage of products that pass the release
criteria. The Overall Response Rate (ORR), as well as the
Progression Free Survival (PFS) of subjects that receive at least
one dose of the product will be assessed as secondary endpoints
within a time frame of 24 months.

More recently, Kang and collaborators (Kang et al., 2021) have
described an in vivo approach for CAR-Mac reprograming using
mannose-conjugated polyethylenimine (MPEI) nanocomplex as
a gene delivery of plasmids for anti-ALK (anaplastic lymphoma
kinase) CAR and IFN-gamma. Based on the fact that TAMs with
anti-inflammatory properties may overexpress the mannose
receptor (CD206), authors took advantage of this system to
target macrophages in situ. They added in the plasmid
construction the IFN-c gene, a classical known cytokine able
to stimulate a pro-inflammatory phenotype (Ramos et al., 2020).
Both ALK-CAR and IFN-γ genes were cloned using the non-viral
transposon system of piggyBac, for stable and persistent CAR
expression. Using this systems authors proposed to target ALK
tumor-antigen as well as to reprogram TAMs to acquire pro-
inflammatory properties inducing adaptive immune T cell
responses. Authors firstly validated the manufacturing of
MPEI/pCAR-IFN-γ nanocomplexes indicating homogenous
sizes and a great stability in serum for up to 7 days. Also, no
cytotoxicity was noted in treated-bone marrow derived
macrophages (BMDM), whereas CAR and IFN-gamma
expression were validated in in vitro treated M2-BMDM. Of
note, the efficiency of transfection was about 14% in M2-BMDM
treated cells with a 20-fold increasing in IFN-gamma expression.
In terms of functional in vitro assays, authors reported an increase
of phagocytosis capability of M2-BMDM MPEI/pCAR-IFN-γ
treated cells for distinct ratios of BMDM: ALK+ target Neuro-
2a tumor cell. In addition, M2-BMDM presented a shift of
phenotype towards a M1-like profile once treated by MPEI/
IFN-γ or MPEI/pCAR-IFN-γ by showing a significantly down-
regulation of CD163, CD206, IL-10, and arginase-1
concomitantly with an up-regulation of CD80, CD86, and
TNF-alpha. Subsequently, authors tested the in vivo effects of

MPEI/pCAR-IFN-γ and variations of this construction in tumor
growth and tumor microenvironment modulation. Using a
Neuro-2a syngeneic tumor-bearing mice model, authors
reported a significant control of tumor growth in animals
receiving both MPEI/pCAR or MPEI/IFN-γ, but this anti-
tumoral effect was further increased under intratumoral
infusion of the MPEI/pCAR-IFN-γ full construct. By analyzing
the tumor microenvironment composition after MPEI/pCAR-
IFN-γ treatment, authors found a significant increase in CD8+
T cell infiltration and INOS expression along with a strongly
reduced expression of Arginase-1, TGF-beta, and IL10, indicating
local immune modulation effects. Alternatively, by injecting
MPEI/pCAR-IFN-γ intraperitoneally in tumor-bearing mice
authors showed presence of CAR+ immune cells in liver,
kidney and tumor mass as well as a significant effect on tumor
control, even considering it less pronounced than intratumoral
infusion. In conclusion, the transfection efficiency observed in
this study was lower than that of lentiviral transduction and
should be further improved. Importantly, in vivo infusion of
MPEI/pCAR-IFN-γ nanocomplex allows the transfection of a
variety of immune cells, including DCs and T lymphocytes,
possibly amplifying the anti-tumoral effects. Thus, this
nanocomplex strategy may overcome the high costs, the
exhaustive process for CAR-Mac manufacturing and avoid the
concerns of the use of viral vectors representing an important new
avenue for future strategies.

LIMITATIONS OF CAR-MYELOID CELLS

We have summarized in Table 1 the main differences among
CAR-T, CAR-NK, and CAR-myeloid cells by highlighting the
process for manufacturing of these cells and their potential
applications. Two important obstacles of using myeloid cells in
CAR-based therapies are the inability of primary macrophages
and DCs to expand in vitro and the difficulty in delivering
exogenous genetic material (Keller et al., 2018). Viral and non-
viral delivery systems were tested in macrophages and DCs in the
past decades and both presented limitations. Professional
phagocytes present a powerful immune response against viral
DNA making it difficult to efficiently deliver a transgene through
viral vectors. On the other hand, the application of physical
transfection such as nucleoporation or nucleofection did not elicit
important immune responses but caused important changes in
gene expression profile and functional status of macrophages and
DCs (Harizaj et al., 2021). As a matter of comparison, the main
steps of CAR-T cell production involve the reprogramming and
expansion of T cells in order to obtain a high number of CAR+
cells before infusion. New studies have described the use of
artificial APCs to stimulate T cells. The distinct approaches
include cell lines modified to provide antigen-presentation and
co-stimulation (Couture et al., 2019; Schmidts et al., 2020) and
synthetic complexes of mesoporous silica microrods loaded with
soluble mitogenic compounds and T-cell ligands (Zhang D. K. Y.
et al., 2020). Recent studies have also described strategies to
stimulate NK cells based on cytokine cocktails, generating a
memory-like phenotype (Pahl et al., 2018). These cells present
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a long-lived profiling by expanding and producing IFN-gamma
some weeks post-infusion. Considering that macrophages and
DCs do not have the same potential of expansion as compared to
T or NK cells, the number of CAR-Mac or CAR-DCs available for
infusion would be significantly lower than in CAR-T or CAR-NK
applications, which may limit their use in large tumors or in
strategies using multiple doses.

Besides, the relatively short lifespan of CAR-Mac compared
to CAR-T cells and CAR-NKs is a topic of concern. As discussed
above, first studies are encouraging, but additional pre-clinical
tests are needed to evaluate the functional status, the persistence
of CAR-Mac in vivo, as well as the variation of cell number
needed for infusion. To assure that CAR-Mac will reach the
tumor mass in the shortest possible time after infusion, diverse

routes of injection should be further explored in tumors of
distinct origins since tissue arquiteture may vary considerably.
So far, few targets have been tested in the use of pre-clinical
CAR-Mac and clinical translation of CAR-myeloid cells and the
future of its application relies on the overcome of technical
obstacles.

CONCLUDING REMARKS

Myeloid immune cells engineered to express CAR opened a new
pathway to treat cancer that, apparently, bypasses the limitations
of CAR-T or CAR-NK cells. Additional advantages of myeloid
cells should be further explored and combined with CAR-

TABLE 1 | Comparison of key manufacturing steps for CAR-based cellular products (CAR-T, CAR-NK, and CAR-Myeloid cells) and its specific advantages and
disadvantages. PEI, Polyethylenimine; GM-CSF, Granulocyte-macrophage colony-stimulating factor; M-CSF, Macrophage colony-stimulating factor.

CAR-T cells CAR-NK cells CAR-myeloid cells (CAR-Mac,
CAR-DC)

1. Cell type and
selection

Positive selection of CD3+ and/or CD4+ or CD8+ cells Positive selection of CD56+
cells

Positive or negative selection of CD14+ cells

2. Activation/
differentiation

Beads/antibodies anti-CD3/CD28 Beads/antibodies anti-
CD335/CD2

Culture with GM-CSF, M-CSF, TNF-alpha, IFN-
gamma

Artificial APC cell lines Culture with IL-2, IL-15 and/or
IL-21

TLR-Ligands

3. Gene delivery

3.1 CAR viral
delivery

Retroviral vector Retroviral vector Adenoviral vector

Lentiviral vector Lentiviral vector Lentiviral vector

3.2 Non-Viral CAR
delivery

Nucleoporation Nucleoporation Nanocomplex (Mannose-associated PEI + DNA
plasmid)

Liposomes Liposomes Expression systems
Expression systems Expression systems PiggyBac
Sleeping Beauty; PiggyBac; mRNA Sleeping Beauty; PiggyBac;

mRNA
Nanoplasmids Nanoplasmids

4. Expansion Culture with IL-2, IL-7, IL-15 and/or IL-21 K562 feeder cells expressing
membrane bound IL-21

Primary human macrophages cannot be expanded
ex vivo

Culture with IL-12 and IL-15 THP-1 cell line spontaneously expands in vitro and
can be differentiated when cultured with PMA.Memory-like phenotype: IL-12,

IL-15, and IL-18

5. Final Product

5.1 Lifespan Long-term persistence after tumor remission Mid-term lifespan in vivo Short-term lifespan of myeloid cells in vivo (no
available data for CAR-Myeloid)

5.2 Advantages Efficient selection, activation and easy handling Applicable in allogenic
scenarios

Applicable in allogenic scenarios

Low toxicity Low toxicity in animal models
Can be obtained from multiple
sources

Potential application in solid tumors

CAR-DCs may present a migratory potential to
lymphoid organs

5.3
Disadvantages

Long-term cultures and/or high doses of IL-2 can induce
terminally differentiated/exhausted T cells or biased
expansion of regulatory CD4+ T cells

Few cells are obtained after
selection

Laborious transfection procedures

Cytokine release syndrome (CRS) and/or Immune effector
cell associated neurotoxicity syndrome (ICANS) may occur

Laborious expansion and
genetic modification

Difficult genetic reprogramming due to the
recognition of foreign genetic material

Long-term “on-target, off-tumor” effects (ex.: B cell aplasia
when targeting CD19)

No results from clinical trials so far
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engineering. In addition, the lack of response to a checkpoint
inhibitor would be better explained by the absence of a response
to be released from its inhibitors and, thus, DC and macrophages
associated to CAR expression would be ideal candidates to add to
checkpoint inhibition, a combination that is already under
investigation (Wilgenhof et al., 2016). We highlighted below
some key points to be considered in the use of CAR-
expressing myeloid cells for solid cancers:

I) Migratory ability: monocytes and DC subtypes have great
migratory skills towards a variety of inflamed and/or
lymphoid tissues. The manipulation of these features
needs to be further enhanced to drive these cells into
specific tissues or tumor mass in a more controlled way.

II) Plasticity potential: numerous protocols of differentiation
and activation may allow a better phenotypical and
functional fine-tuning adjustment of monocytes,
macrophages and DCs to be adapted for distinct tumor
contexts and tissues. The combined use of growth factors,
cytokines/chemokines, TLR-L and drugs may generate a
more effective and functional manufactured CAR-
myeloid cell.

III) Phagocytic skills: macrophages and DCs have unique
abilities of phagocytosis and clearance for a variety of
particles. The manufacturing of cells with an improved
engulfment ability to eliminate tumor cells may represent
a great gain in the control of malignances.

IV) Tissue remodeling: monocytes/macrophages could be
reprogrammed to release a series of enzymes, cathepsins,
MMPs and other modulatory factors not only to remodel the
tumor microenvironment matrix but also to attract, allow
the infiltration and stimulate T cells.

V) Stimulation of adaptive immunity: myeloid immune cells are
capable of efficiently present tumor antigens, provide co-
stimulatory signals and produce cytokines able to efficiently
stimulate lymphocyte activation and expansion.

There is an emergent need to evaluate CAR-myeloid immune
cells in distinct pre-clinical tumor types, considering intrinsic
tissue-related factors, matrix architecture and cellular
composition. Tumor growth and its intrinsic features deeply
vary among models and, possibly, additional adjusts should be
implemented in the manufacture of CAR-Mac. Importantly, the
use of myeloid cells expressing CAR could be further combined
with other clinical approaches able to disrupt the compact matrix
of solid tumors and may represent a great gain for patients’
outcome. These therapies include, but are not limited to,
chemotherapy, radiotherapy, oncolytic virus and/or
monoclonal agonistic antibodies.
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