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Abstract
COVID-19, a disease caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) betacoronavirus, affects 
children in a different way than it does in adults, with milder 
symptoms. However, several cases of neurological symp-
toms with neuroinflammatory syndromes, such as the mul-
tisystem inflammatory syndrome (MIS-C), following mild 
cases, have been reported. As with other viral infections, 
such as rubella, influenza, and cytomegalovirus, SARS-CoV-2 
induces a surge of proinflammatory cytokines that affect mi-
croglial function, which can be harmful to brain develop-
ment. Along with the viral induction of neuroinflammation, 
other noninfectious conditions may interact to produce ad-
ditional inflammation, such as the nutritional imbalance of 

fatty acids and polyunsaturated fatty acids and alcohol con-
sumption during pregnancy. Additionally, transient thyro-
toxicosis induced by SARS-CoV-2 with secondary autoim-
mune hypothyroidism has been reported, which could go 
undetected during pregnancy. Together, those factors may 
pose additional risk factors for SARS-CoV-2 infection impact-
ing mechanisms of neural development such as synaptic 
pruning and neural circuitry formation. The present review 
discusses those conditions in the perspective of the under-
standing of risk factors that should be considered and the 
possible emergence of neurodevelopmental disorders in 
COVID-19-infected children. © 2021 S. Karger AG, Basel

Introduction

COVID-19 is a disease caused by the severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2) virus 
that belongs to the same betacoronavirus strain of SARS-
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CoV and MERS-CoV viruses, and their similarities may 
be helpful for a better understanding of this new disease 
and the implications on brain inflammation [1]. In addi-
tion to the most common symptoms, neurological mani-
festations in response to SARS-CoV-2 infection include 
headache, anosmia, disturbances of consciousness, infec-
tious encephalopathies, and neuroinflammatory syn-
dromes, such as the acute demyelinating encephalomyeli-
tis [2]. A study with biomarkers also provided evidence of 
neuronal injury and glial activation in patients with CO-
VID-19 [3], strongly suggesting that SARS-CoV-2 has a 
neurotropic activity. Furthermore, it has been shown that 
SARS-CoV-2 is able to infect human neural progenitor 
cells [4]. Like SARS-CoV, SARS-CoV-2 uses the ACE2 
receptor, human angiotensin converter 2, for cellular in-
vasion, binding to it through its spike (S) protein [5]. In 
the central nervous system (CNS), glial cells and neurons 
express this receptor [6]. It is not yet known for sure 
which pathway SARS-CoV-2 uses to reach the nervous 
system, but two pathways already known as routes of en-
try for other viruses are considered: the hematogenic 
pathway, in which the virus could infect leukocytes and 
blood-brain barrier (BBB) cells, or alternatively, the virus 
could infect peripheral neurons reaching the brain 
through axonal transport [7].

SARS-CoV-2 Infections in Children
Although children are less susceptible to severe CO-

VID-19, a remaining question that is under debate is 
related to the long-term impact of mild or subclinical 
SARS-CoV-2 infection in the developing brain, where 
complex neural networks are undergoing an intense re-
modeling process modulated by neural activity and im-
munological components of the CNS, such as microglia, 
cytokines, chemokines, the complement system, and pe-
ripheral immune cells (reviewed in [8]), that results in 
synaptic pruning and formation of functional neural 
circuitry [9]. Indeed, in pathological conditions, several 
cytokines and maternal leukocytes cross the placenta 
and can be harmful to fetal development [10]. In addi-
tion, ACE2 is also well distributed in the placenta [11], 
which suggests a possible SARS-CoV-2 route of fetal in-
fection by means of vertical transmission [12]. Current-
ly, there are a few case reports that demonstrate in utero 
infection [13, 14], and placental viremia was demon-
strated by RT-PCR and the presence of inflammatory 
cells in cerebrospinal fluid, together with neurological 
manifestations, consistent with those described in adult 
patients [14]. Furthermore, during maternal infection, 
fetal microglia can be directly activated by viruses or can 

be indirectly activated by cytokines and microchimeric 
maternal cells [10].

Since the beginning of the COVID-19 outbreak, it has 
been noticed that children present the “subclinical infec-
tion” either asymptomatic or paucisymptomatic [15]. 
Children with subclinical symptoms are still potential vi-
ral transmitters, probably at lower rates than fully symp-
tomatic individuals, as it has been shown for the influ-
enza virus [16]. Furthermore, children and adolescents 
with COVID-19, usually asymptomatic, can develop a 
condition called multisystem inflammatory syndrome 
(MIS-C) with clinical and laboratory features that overlap 
those observed in Kawasaki disease and toxic shock syn-
drome [17]. Among the main symptoms related to the 
general inflammation in blood vessels throughout the 
body, Kawasaki syndrome can cause a severe acute en-
cephalopathy complication [18]. The generalized vascu-
lar impairment induced by the Kawasaki syndrome, like 
the complications that affect COVID-19-positive chil-
dren, can also potentially change the neurovascular unit 
function, compromising its role in brain development 
and contributing to the increased risk for late-onset neu-
rodevelopmental disorders. As observed in SARS-CoV-2 
infection, the severe forms of influenza H1N1 are also 
characterized by a cytokine storm and multiorgan failure 
due to vascular hyperpermeability. It has been suggested 
that damage to the BBB results from systemic effects of 
proinflammatory cytokines produced in the lungs [19].

An additional possible complication of maternal 
SARS-CoV-2 infection is related to the expression of 
ACE2 receptor in the thyroid, which has one of the high-
est levels of this receptor [20]. It has been described that 
SARS-CoV-2, like many other viral infections, may be 
linked to subacute thyroiditis (SAT) that, although self-
limited and usually an underdiagnosed condition, may 
result in autoimmune hypothyroidism later on [21]. The 
induction of hypothyroidism in pregnant women de-
serves special attention since congenital hypothyroidism 
is the main cause of nongenetic treatable mental retarda-
tion in children [22]. Thyroid hormones (TH) thyroxine 
(T4) and 3,5,30-tri-iodo-L-thyronine (T3) are essential 
for normal brain development [23] and their deficiency 
is associated with a delay in the development of sensory, 
motor, and cognitive skills [24], reflecting the involve-
ment of TH in several processes, such as neurogenesis, 
cell differentiation, migration, synaptogenesis, and my-
elination, and brain mechanisms of synaptic plasticity 
[25]. Furthermore, TH can influence microglial develop-
ment and function since it has been demonstrated that 
hypothyroidism may change microglial morphology to a 
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proinflammatory phenotype [26] and microglial function 
[27]. Thus, hypothyroidism secondary to a viral induc-
tion of SAT might be highly harmful to brain develop-
ment.

Neuroinflammation and Microglial Dysfunction 
Affect Brain Development and Plasticity
The presence of ACE2 receptor in microglia [28] rais-

es the possibility of direct microglia activation by SARS-
CoV-2, which could increase the risk for late-onset neu-
rodevelopmental diseases as demonstrated for other viral 
infections [8]. Viruses such as ZIKV, cytomegalovirus, 
and rubella are classically described as a great risk for 
brain development due to their potential to cross the pla-
cental barrier and/or BBB and reach the CNS [29]. In the 
ZIKV infection, along with lesions to progenitor cells, the 
induction of neuroinflammation was observed, disrupt-
ing the physiological role of microglia during brain devel-
opment [30]. The same was observed with other RNA 
viruses, such as cytomegalovirus [31], suggesting that in-
flammation induced by viral infection would be more 
harmful to neurodevelopment than the direct cytopathic 
effect of the virus on infected cells.

At the end of the gestational period and during early 
postnatal development, homeostatic microglia has an ac-
tive physiological role in synaptic pruning and neural net-
work formation [32], being very reactive to the microen-
vironmental context. An abnormal microglial perfor-
mance on synaptic remodeling and stabilization during 
critical periods of development may result in the emer-
gence of inappropriate neural networks, which increase 
the risk for neurodevelopmental and psychiatric disor-
ders [33]. Therefore, prenatal or perinatal infections can 
cause a detour upon microglial physiological functions 
representing an important environmental risk factor for 
the late onset of diseases such as schizophrenia, autistic 
spectrum disorder (ASD), and attention-deficit/hyperac-
tivity disorder (ADHD) (reviewed in [8]).

Viral infections that affect the brain induce phagocyt-
ic microglia that act in pathogens and cellular debris elim-
ination [34]. Microglia can also promote neurogenesis 
and induce neurotoxicity through the release of oxidants, 
which in turn can activate an inflammasome [35]. The 
triggering receptor expressed on myeloid cells 2 seems to 
be essential for microglia-mediated synaptic pruning 
during brain development [9]. In a model of murine 
coronavirus, it has been shown that microglia-related 
triggering receptor expressed on myeloid cells 2 and 
DAP12 were among the most highly expressed genes 
[36]. Together, those studies suggest that microglial func-

tion is modulated by viral infections during development 
and can be implicated in long-term complications in CO-
VID-19-infected children.

Microglial maturation can also be influenced by T 
lymphocytes, involved in different microglial functions 
in the early stages of development (Pascuito et al. [37], 
2020). Indeed, a population of T cells that act as “gate-
keepers” of the CNS located both in the cerebral paren-
chyma and in a specific niche such as the choroid plexus 
and meninges has already been associated with the main-
tenance of functional neuroplasticity in the healthy brain. 
These cells can also recruit peripheral immune cells 
through the composite interface with the choroid plexus, 
by the release of IFN-Ƴ [38], and promote plasticity 
through IL-4 release [39]. However, the “cytokine storm” 
mechanism of SARS-CoV-2 pathogeny can unbalance 
the normal cytokine-mediated cross-talk in the choroid 
plexus, once IFN-Ƴ, together with IL-6, is one of the main 
actors of COVID-19 proinflammatory response. Accord-
ingly, high levels of IL-6 and INF-Ƴ were also found in the 
CNS of K18-hACE2-transgenic mice infected by SARS-
CoV [40].

Dietary Modulation of Neuroinflammation
The role of nutrition as an environmental factor in the 

control of immune system development, homeostasis, 
and host resistance to infections is well documented [41]. 
Excessive consumption of processed foods, high in sugar 
and saturated fats, is one of the main triggers to the bur-
den of noncommunicable chronic diseases, such as obe-
sity and type 2 diabetes, which are highly increasing in the 
infant population. These lifestyle-related diseases charac-
terized by chronic low-grade inflammation due to the re-
cruitment and infiltration of macrophages in adipose tis-
sue, activation of inflammatory pathways, and dysregula-
tion of glucose signaling, generate an impaired redox 
signaling with increased production of proinflammatory 
cytokines [42]. The state of low-grade chronic inflamma-
tion that is characteristic of noncommunicable chronic 
diseases generates a greater risk for the development of 
hyperinflammation and worsening of SARS-CoV-2, and 
there is a growing body of evidence that highlight the im-
pact of immunonutrition in the prevention and/or man-
agement of inflammatory status, with a special focus on 
coronavirus cytokine storm [43, 44].

Furthermore, it has been shown that a dietary imbal-
ance between n-3 and n-6 polyunsaturated fatty acids 
(PUFAs) and an overall reduction in DHA content are 
frequently observed in modern western diets, which may 
result in abnormal development of brain neural circuits 
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(reviewed in [45]). A n-3/n-6 imbalance results in re-
duced conversion of n-3 fatty acids (FAs) to DHA, and it 
has been shown that deficits in DHA concentration dur-
ing early brain development may be associated with an 
increased risk of developing psychiatric disorders, such 
as schizophrenia, ASD, and ADHD [46, 47], which may 
be related to the influence of PUFAs on microglial activ-
ity [48]. Indeed, DHA is able to change microglial polar-
ization for the M2, anti-inflammatory phenotype [49] 
and DHA deficiency during pregnancy and lactation 
changes the microglial phenotype and motility in the 
brain, leading to a more reactive microglial profile [50]. 
Such events define the microglial activation, leading to 
the release of proinflammatory cytokines [51]. There-
fore, PUFA-derived proinflammatory signals may lead 

to severe disturbances in the microglial activity, specifi-
cally during critical periods of brain development, inter-
fering with synapse formation and maturation with re-
sulting deleterious effects on the development of fully 
functional neural networks [8]. Indeed, a proinflamma-
tory microglial profile was observed in omega-3/DHA 
nutritional restriction protocols during brain develop-
ment and has been associated with delayed synaptic 
elimination and abnormal plasticity in the rat visual sys-
tem [45, 52].

Specialized pro-resolution mediators (SPMs) derived 
from PUFAs could drive inflammatory resolution path-
ways and omega-3-derived SPMs, such as neuroprotec-
tins and maresins that protect the brain and retina from 
oxidative stress and viral infections during early brain de-
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Fig. 1. Infectious and noninfectious factors alter the microglial 
function and contribute to developmental brain disorders. In chil-
dren, SARS-CoV-2 produces either a cytokine storm and MIS-C 
or mild inflammation. Other environmental factors such as a low 
omega-3 intake may deplete DHA levels and contribute to a neu-
roinflammatory outcome. Also, maternal alcohol consumption 
may be associated with neuroinflammation and deficits in brain 

development. Together, those risk factors may pose a threat to 
brain development, which is sensible to microglial dysfunction. 
SARS-CoV-2 may also induce secondary hypothyroidism that 
may compromise brain development. SARS-CoV-2, severe acute 
respiratory syndrome coronavirus 2; MIS-C, multisystem inflam-
matory syndrome; NVU, neurovascular unit ;FASD, fetal alcohol 
spectrum disorder.
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velopment [53, 54]. Therefore, in the context of the SARS-
CoV-2 outbreak, it has been proposed that the supple-
mentation of n-3 PUFAs may be beneficial in reducing 
proinflammatory mediators such as TNF-α and IL-6, in 
addition to mediating membrane lipid rafts, where ACE2 
receptors are anchored, suggesting the role of omega-3 
PUFAs as possible therapeutic adjuvants during COV-
ID-19 infections [55]. Thus, it should be noted that the 
nutritional status of essential FAs should be carefully 
evaluated during the critical period of brain development 
in children up to the age of 7 years old in order to reduce 
the risk of multiple factors converging to a surge of pro-
inflammatory cytokines under pandemic conditions such 
as SARS-CoV-2.

Alcohol, Immune Response, Inflammation, and Brain 
Development
Fetal alcohol spectrum disorders comprise several pa-

thologies and adverse effects associated with alcohol in-
take by pregnant women [56]. Some of the neurocogni-
tive impairments observed in alcohol spectrum disorder 
are reduced memory or visuospatial capacity, low behav-
ioral self-control, rapid mood changes, impulsive behav-
ior, loss of adaptive functions such as language and com-
munication, poor social interaction, and difficulty in mo-
tor skills [57]. Alcohol can disrupt neural development 
through alterations in a series of events, such as neuro-
genesis, gliogenesis, myelinization, and impairment in 
functional neural circuitry development by use-depen-
dent synaptic plasticity [58]. Thus, the teratogenic effects 
of ethanol during pregnancy are considered as a risk fac-
tor for developmental brain abnormalities [59], and there 
is a close correlation between alcohol use during preg-
nancy and ADHD and ASD [60, 61].

Ethanol-induced brain malformations are often asso-
ciated with the activation of microglia through TLR4 [62] 
and the release of proinflammatory cytokines and che-
mokines [63]. TLR4 activation can induce inflammation 
by the MyD88-dependent signal pathway that interacts 
with NFkB [64]. Furthermore, maternal alcohol con-
sumption during pregnancy favors newborn infections 
[65], reducing the immune response to fight viral and 
bacterial infections [66] with impaired adaptive immu-
nity and altered B-cell responses resulting in increased 
severity of viral infections [67]. Curiously, it has been re-
cently reported that SARS-CoV-2 also interacts with TLR 
receptors inducing proinflammatory cytokines [68]. 
Thus, SARS-CoV-2 and alcohol consumption during 
pregnancy may interact in converging inflammatory 
pathways.

Conclusion

Since the beginning of the COVID-19 outbreak, chil-
dren have been considered less susceptible to complica-
tions, presenting, in most cases, subclinical manifesta-
tions and mild symptoms. Despite the reports of MIS-C 
syndrome, parents and pediatricians are not fully aware 
of possible long-term effects of inflammation on brain 
development and possible interactions between viral in-
fections and noninfectious conditions such as the nutri-
tional imbalance of FAs and PUFAs and alcohol con-
sumption during pregnancy. A SARS-CoV-2-induced 
transient thyroiditis which can lead to autoimmune hy-
pothyroidism has also been reported. All those condi-
tions have already been associated with pathological brain 
development. In the present review, we suggest that those 
conditions may interact to produce increased neuroin-
flammation, which may change the physiological role of 
microglia, impacting mechanisms of synaptic pruning 
and neural circuitry formation that takes place from the 
age of 2 until adolescence (Fig. 1). Thus, it should be not-
ed that autoimmune hypothyroidism, malnutrition, and 
maternal alcohol intake during pregnancy may be con-
sidered as risk factors in COVID-19-infected children, 
which could be more susceptible to neurodevelopmental 
disorders such as schizophrenia, autism, ADHD, and 
cognitive impairment. In this way, attention should be 
paid to possible interactions between risk factors, which 
may result in long-term abnormal brain development 
that may arise in the next few years. Thus, a close moni-
toring and early intervention of children exposed to 
SARS-CoV-2, or born to infected mothers and future 
studies that could detect additional risk factors would be 
highly recommended.
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