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Abstract
Evolving evidence demonstrates that platelets have major roles in viral syndromes through 
previously unrecognized viral sensing and effector functions. Activated platelets and increased 
platelet-leukocyte aggregates are observed in clinical and experimental viral infections. The 
mechanisms and outcomes of platelet–leukocyte interactions depend on the interacting 
leukocyte as well as on the pathogen and pathological conditions. In this review, we discuss 
the mechanisms involved in platelet interactions with leukocytes and its functions during viral 
infections. We focus on the contributions of human platelet–leukocyte interactions to patho-
physiological and protective responses during viral infections of major global health relevance, 
including acquired immunodeficiency syndrome (AIDS), dengue hemorrhagic fever/dengue 
shock syndrome (DHF/DSS), influenza pneumonia, and COVID-19.
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Introduction

Besides hemostatic and prothrombotic activities, platelet activa-
tion by procoagulant or inflammatory agonists plays major roles 
in immunoregulation through platelet–leukocyte interactions 
[1,2]. Activated platelets interact with leukocytes including 
monocytes, neutrophils, dendritic cells, and lymphocytes, trigger-
ing intercellular signaling, and amplification of the synthesis of 
hemostatic and inflammatory mediators. Platelet–leukocyte inter-
actions occur in the circulating blood, at clots and thrombi, in the 
inflamed microcirculation endothelium as well as in the extravas-
cular milieu of the lung and other tissues [1,2]. These interactions 
involve regulated adhesion molecules that signal to leukocyte 
reprogramming at the intersection of coagulation and immunity. 
[2–4] Platelet P-selectin binding to leukocyte P-selectin glyco-
protein ligand (PSGL)-1 [4,5] and fibrinogen mutually binding to 
the platelet and leukocyte integrins αIIb/β3 and αM/β2 [6–8] are 
major molecular interactions in this process.

The interaction between platelets and neutrophils is well estab-
lished in the literature. Activated platelets induce the release of 
neutrophil extracellular traps (NET) [3] as in platelet stimulation 
through TLR7 in RNA virus infections [9,10]. NET extrusion 
after prothrombotic or inflammatory stimulation in vivo depends 
on P-selectin-PSGL-1 binding [11]. Furthermore, neutrophils 
secrete matrix metalloproteinase 9, myeloperoxidase, and display- 
activated Mac-1 (integrin αM/β2) upon interaction with platelets 
[10,12].

Platelets also interact with and modulate immune responses in 
monocytes. Thrombin-activated platelets induce PSGL1-mediated 
NF-κB translocation activating proinflammatory genes in mono-
cytes, including IL-1β, IL-8, TNF-α, CCL2/MCP-1, and COX-2 
[13–15]. Beyond P-selectin-mediated adhesion, MCP-1 secretion 
by monocytes depends on CCL5/RANTES from adhered plate-
lets, and COX-2 expression depends on IL-1β signaling [13,15]. 
These interactions have been reported in a number of inflamma-
tory and infectious conditions, including viral infections of major 
importance in public health such as dengue, HIV, and COVID-19 
[2,14,16–18].

Fewer studies have reported interactions between platelets and 
lymphocytes. Platelet–lymphocyte interactions participate in the 
main T cell polarization phenotypes such as Th1 [19] and Treg 
[20]. Importantly, platelets have the necessary machinery for 
antigen presentation, including immunoproteasome, 
β2-microglobulin, and all human leukocyte antigens (or major 
histocompatibility complex in mice) class I (HLA-I or MHC-I) 
subunits [21,22]. Platelets can present antigens to T cells through 
MHC-I, contributing to CD8+ T cell activation in malaria [23] 
and suppression in sepsis [24].

Beyond expressing innate immune receptors that allow recog-
nition and responses to viruses [2,9,10,25], platelets also possess 
the cellular machinery for viral attachment, entry, and replication 
(Table 1) [16,26,27]. After interacting with viruses or being 
activated in the infection environment, platelets participate in 
the orchestration of innate and adaptive immunity through 
a variety of mechanisms from reprogramming the leukocytes to 
transferring viruses to target cells [16,28] (Figure 1 and Table 2). 
The main mechanisms of platelet activation in interactions with 
viruses are summarized in Table 1, and the mechanisms of plate-
let signaling to leukocytes and their effector responses in viral 
infections are summarized in Table 2. Platelets’ interaction with 
viruses and their participation in the pathogenesis of a diverse 
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variety of infections have been reviewed elsewhere [16,44,45]. 
This review will focus on the discussion of platelet–leukocyte 
interactions in four viral infections with global impact on human 
health: HIV, dengue, influenza, and COVID-19.

Platelet–leukocyte Interactions in HIV Infection

Human Immunodeficiency Virus (HIV) is a member of the 
Lentivirus genus of the Retroviridae family and is classified into 
two types, HIV-1, and −2, HIV-1 being the main agent of 
acquired immunodeficiency syndrome (AIDS). Usually, HIV-1 
enters the target T-cells through sequential interactions of the 
HIV-1 envelope glycoprotein 120 (GP120) with the cellular 
receptor CD4 and the co-receptors CCR5 or CXCR4[46]. HIV- 
infection leads to systemic T cell destruction and a decrease in 
cell-mediated immunity, opening the way for a wide range of 
opportunistic infections and cancers. Besides, HIV-1 can promote 
inflammation through infection and activation of other immune 
cells [47. Several combinations of antiretroviral therapy (ART) 
regimens emerged in the late 1990s, suppressing viral replication 
and changing HIV from a progressive and fatal illness into 
a chronic manageable disease [47]. However, even though sup-
pression of viral replication and absence of opportunistic infec-
tions are achieved through ART, people living with HIV still 
experience earlier mortality and increased incidence of noninfec-
tious comorbidities including cardiovascular diseases, neurocog-
nitive disorders, and non-AIDS cancers [48,49].

Beyond direct attachment to T-cells, HIV-1 can spread from 
antigen-presenting cells to target T-cells through intercellular 
transmission, so-called HIV-1 transinfection [50], in which den-
dritic cells internalize HIV-1 through DC-SIGN or other CLRs 
without membrane fusion, and store endosomal infective viral 
particles to be transferred to T-cells during antigen presentation 
[50,51]. Similarly, platelets interact with HIV-1 GP-120 leading 
to binding, engulfment, and internalization through DC-SIGN and 
CLEC2 [25,40]. Ultrastructural studies of platelets from an AIDS 
patient (high viremia and thrombocytopenia) or platelets infected 
in vitro have shown platelets engulfment and internalization of 

HIV-1 in endosome-like structures [40,52]. Chaipan et al have 
reported platelet capture of HIV-1 through DC-SIGN and 
CLEC2, preserving its infectivity and transferring it to T-cells 
in vitro (Figure 1B) [25]. Recently, platelet HIV-1 transinfection 
to T-cells and macrophages was evidenced in HIV-infected sub-
jects with poor immunological recovery after ART [28]. Platelet 
HIV-1 transinfection depends on platelet-T-cell aggregates forma-
tion through P-selectin [29] and platelet–macrophage interaction 
through integrin αIIb/β3 [28]. Even though platelets can present 
antigens to T-cells [23,24], the participation of HLA-I antigen 
presentation in platelet HIV-1 transinfection remains unknown.

HIV-1 replication is regulated by a complex network of cyto-
kines and chemokines [32]. Chemokines are critically involved in 
the control of HIV-1 replication due to the role of specific 
chemokine receptors, most notably CCR5 and CXCR4, as cell- 
surface co-receptors for HIV-1 entry. Consequently, the chemo-
kines that bind such receptors work as endogenous inhibitors of 
HIV-1 [32,34]. Holme et al. [53] demonstrated increased platelet 
activation with exhausted CCL5/RANTES secretion in AIDS 
patients, which were correlated with the onset of immune sup-
pression and increased inflammation, and was recovered after 
ART. We recently reported persistent platelet activation and 
exhaustive granule secretion in people living with HIV even 
after years of virological control through ART [54]. CCL5/ 
RANTES is known to modulate HIV-1 replication in mononuc-
lear phagocytes by binding CCR5 coreceptors [34]. PF4/CXCL4 
is another important chemokine released by platelets that possess 
relevant antiviral activity against HIV-1 [32,33]. Auerbach et al. 
[32] showed that recombinant human PF4/CXCL4 or native PF4/ 
CXCL4 dose-dependently inhibited the infection of T-cells and 
macrophages by different HIV-1 strains in vitro. This inhibition 
happened independently on the coreceptor used by the HIV-1 
variant, occurring through direct interaction of PF4/CXCL4 with 
GP120 [32]. Tsegaye et al. [33] demonstrated through co-culture 
experiments that platelets can inhibit HIV-1 spread in T-cells in 
a concentration- and activation status-dependent manner. They 
showed that exhausted platelets did not maintain the inhibitory 
capacity, while activated platelets supernatants could inhibit HIV- 
1 infection, and identified PF4/CXCL4 as the main viral- 
restrictive factor in platelet-T-cell co-cultures [33].

Platelet-monocyte aggregates are also increased in HIV- 
infected subjects, being associated with HIV-associated thrombo-
cytopenia and cognitive impairment [18,55,56]. Platelet-derived 
CD40L contributes to neuroinflammation by promoting blood- 
brain barrier permeability and platelet-monocyte aggregate for-
mation [18,30]. Analysis of postmortem brain tissue sections 
from HIV-associated encephalopathy show increased platelet- 
monocytes aggregates in vessel lumen or attached to the brain 
microvasculature, suggesting an association with HIV-induced 
neuroinflammation [18]. Mechanistically, the HIV-1 transactiva-
tor of transcription (Tat), a viral protein released in the extracel-
lular milieu, mediates platelet activation through β3 integrin and 
CCR3 increasing the translocation and secretion of CD40L and 
P-selectin [31]. Experimental Tat injection in mice shows leuko-
cyte adhesion, rolling, and transmigration through the blood– 
brain barrier depending on platelet-derived CD40L (Figure 1C) 
[30]. These data indicate a major role of platelet CD40L and 
platelet–leukocyte interaction with HIV-associated 
neuroinflammation.

Platelet–leukocyte Interactions in Dengue Pathogenesis

Dengue is an arboviral disease caused by Dengue virus (DENV) 
and transmitted by Aedes mosquitoes. Dengue infection may 
present different manifestations from asymptomatic infection to 
severe dengue syndromes [57]. Severe dengue is characterized by 

Table 1. Platelet interaction and responses to RNA viruses.

Virus/ 
PAMP Receptor Platelet response Ref.

HIV-1 DC-SIGN Binding, internalization and 
inactivation by α-granules proteins

[25,40]

HIV-1 DC-SIGN, 
CLEC-2

Binding, internalization and 
transinfection to T-cell

[25]

HIV-1 
Tat

integrin β3, 
CCR3

Platelet activation, P-selectin and CD- 
40 L translocation and release

[31]

DENV DC-SIGN, 
Heparan 
sulfate

Virus attachment, internalization and 
replication

[26]

DENV DS-SIGN Platelet activation, mitochondrial 
dysfunction and apoptosis

[41]

DENV CLEC2 Release of alpha- and dense-granules, 
shedding of extracellular vesicles

[37]

DENV 
NS1

TLR4 Platelet activation, secretion of stored 
cytokines, synthesis of IL-1β; platelet 
apoptosis and thrombocytopenia in 
mice

[27,42]

IAV TLR7 Platelet activation, C3 release, 
platelet-neutrophil aggregate 
formation

[10]

IAV- 
IgG

FcγRIIA P-selectin surface expression, integrin 
αIIb/β3 activation, extracellular 
vesicles release and 12-HETE 
synthesis

[43]
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increased vascular leakage, severe hemorrhage and organ failure 
[57]. Although the pathophysiological mechanisms of severe 
dengue are not fully elucidated, it involves a cytokine storm that 
leads to endothelial and cardiovascular dysfunction [58,59]. 
Thrombocytopenia is found in both mild and severe dengue, 
with lower platelet counts encountered in severe cases [58,60].

Platelets from DENV-infected patients are highly activated and 
higher levels of platelet activation are associated with dengue 
severity [61]. Activated platelets have been shown to participate 
in inflammatory amplification in dengue by interacting with 
leukocytes and reprogramming the inflammatory mediator pro-
file, which is considered important players in dengue pathogen-
esis [14,61,62]. Studies from our group and others have 
demonstrated that activated platelets from patients with dengue 
or platelets infected with DENV in vitro secrete inflammatory 
chemokines, as PF4/CXCL4 and CCL5/RANTES, newly synthe-
sized cytokines, as IL-1β, and small molecules, as nitric oxide 
[14,61–63]. Such mediators are potentially involved in dengue- 
associated vasculopathy. We have previously shown that platelet 
NLRP3 inflammasome activation, IL-1β synthesis, and shedding 
in extracellular vesicles is associated with vascular leakage during 
dengue infection [62] (Figure 1D).

It has been demonstrated that platelets can internalize DENV 
through DC-SIGN and heparan sulfate proteoglycans [26]. 

Moreover, DENV-infected platelets sustain viral genome transla-
tion and replication [26,27,64]. However, DENV-infected plate-
lets are not capable of secreting new viral particles [27,64], 
implicating that platelets produce an abortive replication cycle. 
Despite the abortive infection, DENV engagement to DC-SIGN 
induces both platelet activation and apoptosis in vitro [41], which 
are also increased in platelets from patients [41,65]. Recently, we 
have reported that activation of DENV-infected platelets depends 
on viral genome translation with secretion of the viral nonstruc-
tural protein 1 (NS1), a TLR4 ligand [27]. These reports highlight 
that DENV activates platelets through receptor attachment and 
viral internalization leading to an abortive replication cycle that 
triggers platelet thromboinflammatory responses by generating 
viral PAMPs, such as NS1, and engaging innate immune recep-
tors, such as TLR4. Aside from DC-SIGN, it has been reported 
that DENV activates platelets through mechanisms involving 
CLEC2 [37], but whether interaction through CLEC2 leads to 
virus internalization and replication remains unknown.

DENV infection induces platelet P-selectin, CD40L, and 
HLA-I surface expression [41,61,66], which are all involved in 
platelet–leukocyte interactions. We have previously demonstrated 
that DENV infection increases the HLA-I surface expression on 
platelets depending on proteasome activity [61]. Although 
increased platelet-lymphocyte aggregation has been observed in 

Figure 1. Platelet–leukocyte interactions in viral diseases. (A) Platelets become activated after interaction with RNA viruses through diverse 
mechanisms from virus attachment to surface receptors, viral particle internalization, viral genome translation and replication, generation of pathogen- 
associated molecular patterns (PAMPs) that are recognized by pattern recognition receptors (PRRs) and generation of inflammatory mediators and 
agonists. (B) Infected platelets may store infective viral particles or positive-sense viral RNA and transfer them to target cells, as shown for HIV-1. (C) 
Platelet-leukocyte and platelet-endothelial cell interactions facilitate leukocyte transmigration to target tissues, as the lungs in influenza pneumonia and 
the central nervous system (CNS) in HIV-associated encephalopathy. (D) activated platelets secrete inflammatory mediators and reprogram leukocyte 
responses, amplifying inflammation and contributing to vasculopathy in dengue. (E) Platelets induce TF expression in monocytes and TF-positive NET 
release in neutrophils, contributing to a procoagulant phenotype in COVID-19. Pulmonary microvascular thrombosis with platelet-neutrophil occlusive 
thrombi is observed in COVID-19 and influenza pneumonia, even though more frequent in COVID-19. PF4, platelet factor 4; RANTES, regulated on 
activation normal T-cell expressed and secreted; IL, interleukin; NO, nitric oxide; PGE2, prostaglandin E2; NET, neutrophil extracellular traps; TF, 
tissue factor. See the text for details and references.
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patients with dengue [67], new studies are still necessary to 
investigate whether DENV-infected platelets can present DENV 
antigens to lymphocytes, contributing to DENV-specific T cell 
activation or suppression or to platelet destruction and 
thrombocytopenia.

Increased platelet-monocyte aggregates formation in dengue 
patients’ blood has been demonstrated, especially in patients with 
thrombocytopenia and vascular leak [14,67]. Ex vivo aggregates 
formed by platelets from dengue patients and monocytes from 
healthy volunteers induce the secretion of IL-1β, IL-8, and IL-10 
[14]. In addition, the combined signaling of platelet adhesion plus 
MIF from infected platelets drives lipid droplets biogenesis and 
PGE2 synthesis in monocytes [36]. Mechanistic experiments have 
shown that the reprogramming of the monocytes depended on 
P-selectin-mediated adhesion and recognition of phosphatidylser-
ine on apoptotic platelets, which induced IL-10 secretion [14]. 
Consistently, apoptotic platelets from patients or in vitro infection 
are phagocytosed when co-cultured with monocytes depending on 
phosphatidylserine recognition [35]. Altogether, these findings 
suggest that platelet-monocyte aggregation and phagocytosis 
may contribute to thrombocytopenia and immunoregulation in 
dengue (Figure 1D).

Regarding platelet–neutrophil interaction, platelets activated 
by DENV through CLEC2 release extracellular vesicles that act 
upon neutrophil CLEC5 and TLR2, inducing NET extrusion [37]. 
In a platelet-neutrophil-endothelial cell co-culture infection 
model, CLEC5- and TLR2-dependent NETosis increased 
endothelial permeability in vitro [37]. These findings were con-
firmed in vivo by an infection of the STAT1−/- mice model, which 
presented reduced NET deposition in the spleen, lower vascular 
permeability, and increased survival of experimental infection 
when presenting CLEC5 co-deficiency [37]. Further improvement 
in NETosis, plasma leakage, and survival was achieved in 
STAT1−/-CLEC5−/- mice treated with anti-TLR2 antibodies [37]. 
Hence, CLEC5- and TLR2-mediated NETosis induced by 
CLEC2-dependent platelet extracellular vesicles play 
a pathogenic role in experimental DENV infection (Figure 1D).

Platelet–leukocyte Interactions in Influenza Pneumonia

Influenza is an air-born single-stranded RNA virus widely dis-
seminated around the world. The H1N1 influenza A virus (IAV), 
which reached pandemic proportions in 2009, causes exacerbated 
inflammation of the airways, pulmonary microvascular thrombo-
sis (Figure 1E) and may lead to respiratory failure and death [68]. 
Lately, many studies have demonstrated an important participa-
tion of platelets during influenza-mediated lung inflammation, 
with platelet activation in the lungs contributing to inflammatory 
infiltration (Figure 1C) [10,43,69]. Indeed, activated platelets and 
platelet-monocyte aggregates are observed in increased numbers 
in patients with the most severe form of H1N1 influenza [68]. 
Moreover, influenza vaccination also leads to increased platelet– 
monocyte interactions that have been associated with the expan-
sion of CD16+ pro-inflammatory pool of monocytes [35]. 
However, whether and how platelet–monocyte aggregates contri-
bute to the expansion of inflammatory monocytes in influenza or 
other infections in humans remains to be demonstrated.

Experimental models of influenza A infection in mice demon-
strated accumulation of platelets and platelet-leukocyte aggre-
gates in vascular and extravascular compartments in the lung. 
Through the use of different strategies to inhibit platelet activa-
tion and platelet-leukocyte aggregation, a role for platelets and 
platelet-leukocyte aggregates in fueling the dysregulation of 
inflammation and promoting the pathogenesis of influenza virus 
infections has been established [35].

Platelets may also participate in protective immune response in 
influenza through PF4-mediated neutrophil recruitment to the 
lungs [38]. Experimentally infected PF4-deficient mice present 
increased weight loss and mortality, which was associated with 
defective innate immune response, lower levels of neutrophil 
infiltration in the lungs, and increased viral loads in the bronch-
oalveolar wash [38]. Therefore, platelet activation in the lungs 
participates either in pathological or protective immune responses 
to influenza pneumonia by orchestrating leukocyte infiltration 
(Figure 1C).

Although the mechanisms involved in platelet activation dur-
ing influenza have not been fully elucidated, platelets have been 
shown to sense and to respond to IAV and to agonists generated 
during the infection. Immune complexes formed by IAV with 
specific (H1N1) or cross-reactive (H3N2) IgG were able to acti-
vate platelets promoting degranulation, 12-HETE synthesis, and 
MVs release through FcγRIIA signaling [43]. In this model, 
a synergism between FcγRIIA and thrombin amplifies platelet 
responses in influenza [43]. A recent study has shown that the 
relationship between platelet TRL7, complement C3, and NET 
extrusion in influenza (Figure 1E) [10]. Analysis of platelets from 
influenza patients or platelets infected with IAV in vitro demon-
strated virus endocytosis by platelets and co-localization with 

Table 2. Platelet signaling to leukocyte in viral infections.

Disease
Interacting 
leukocyte

Platelet-leukocyte 
signaling Response Ref

HIV T-cells P-selectin HIV-1 
transinfection

[29]

Macrophages Integrin αIIb/β3 HIV-1 
transinfection

[28]

GR1+CCR2+ 

Leukocytes
CD40-L Adhesion, rolling 

and migration 
through the BBB

[30]

B-cells CD40-L Immunoglobulin 
class switch

[31]

T-cells PF4/CXCL4 
release

Blocking of HIV- 
1 GP-120, 
impairment of 
HIV-1 spreading

[32,33]

Monocytes 
and 
macrophages

RANTES/CCL5 
release

Suppression of 
HIV-1 replication

[34]

Dengue Monocytes P-selectin Secretion of IL- 
1β, IL-8 and IL- 
10

[14]

Monocytes Phosphatidylserine Platelet 
phagocytosis and 
IL-10 secretion

[14,35]

Monocytes Platelet adhesion 
plus MIF release

Lipid droplets 
biogenesis and  
PGE2 secretion

[36]

Neutrophils Extracellular 
vesicles 
engagement to 
CELC5 and TLR2

NET release and 
increased 
vascular 
permeability in 
mice

[37]

Influenza Neutrophils C3 release NET and 
myeloperoxidase 
release

[10]

Neutrophils PF4/CXCL4 
release

Recruitment to 
the lungs and 
viral clearance in 
mice

[38]

COVID- 
19

Monocytes P-selectin and 
integrin αIIb/β3

TF expression [17]

Neutrophils C5a and thrombin 
generation

TF expression 
and NET release

[39]
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TRL7 in endosomes [10]. In vitro experiments showed TRL7- 
dependent platelet C3 release which mediated NET and myelo-
peroxidase release by neutrophils [10]. C3 levels and NETosis 
were both increased in patients with influenza, and platelets were 
the main source of C3 in IAV-infected mice [10]. Accordingly, 
platelet depletion protected infected mice from NET extrusion in 
circulation.

Platelet–leukocyte Interactions in COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) 
is an emergent pathogen responsible for the coronavirus disease 
2019 (COVID-19) and the current pandemic. A state of hyper-
coagulability is a major pathological mechanism and cause of 
mortality in COVID-19 [70,71], and pulmonary and extrapulmon-
ary microvascular thrombosis have been proposed as a main 
mechanism of multiorgan impairment [72–74]. 
Histopathological analysis of COVID-19 deaths or nonhuman 
primate infection models have revealed lung thromboinflamma-
tory features including neutrophil and macrophage infiltration, 
NET-containing pulmonary microvascular thrombosis, and 
endothelial inflammation with platelet-fibrin deposition [72–76] 
(Figure 1E). Comparative autopsy studies revealed that these 
thromboinflammatory vascular occlusions were almost ten times 
more frequent in lungs from COVID-19 fatalities than those from 
individuals with influenza pneumonia [74,76,77].

Severe COVID-19 is associated with platelet hyperactivity and 
increased platelet-monocyte, lymphocyte, and neutrophil aggre-
gates’ formation [17,78,79]. Increased platelet activation and pla-
telet-monocyte aggregates formation were present in severe 
COVID-19 patients, but not in patients with mild self-limiting 
COVID-19 syndrome and predict patients’ poor outcomes, 
including the requirement of mechanical ventilation and in- 
hospital mortality [17]. Increased platelet activation and plate-
let–monocyte interaction in severe COVID-19 support pathologic 
tissue factor (TF) expression in monocytes [17], the main trigger 
of coagulation and intravascular thrombosis [80]. Increased TF 
expression was observed on monocytes that were tethered with 
platelets in severe COVID-19 patients compared to monocytes 
alone in the same sample. Moreover, platelets from severe 
COVID-19 patients could induce TF expression ex vivo in mono-
cytes from healthy volunteers [17]. In addition, platelet activation 
and monocyte TF expression were positively correlated with 
plasma levels of D-dimers, supporting a role in COVID-19- 
associated hypercoagulability. Mechanistically, activated platelets 
from severe COVID-19 patients licensed monocyte TF expression 
through P-selectin-mediated adhesion and P-selectin and integrin 
αIIb/β3 signaling [17] (Figure 1E).

COVID-19 deaths show extensive areas of tissue microvascu-
lar thrombosis containing platelet-neutrophil complexes and 
NETosis [72,73] and intravascular and airway NETosis is asso-
ciated with increased hypercoagulability and mortality in severe 
COVID-19 patients [39,72,73]. Interaction with platelets from 
severe COVID-19 patients is sufficient to induce NET extrusion 
ex vivo [39,72]. Importantly, NETs generated in severe COVID- 
19 express TF [39], and platelets from severe COVID-19 patients 
trigger TF-positive NETs in control neutrophils [39]. Platelet 
activation and TF expression on platelet-monocyte and platelet- 
neutrophil aggregates were associated with COVID-19 severity 
and mortality [17,79]. Therefore, interaction with platelets is key 
for monocyte and neutrophil thromboinflammatory activities in 
COVID-19, including the induction of NETosis and TF 
[17,39,72], contributing to the state of hypercoagulability 
(Figure 1E).

The mechanisms underlying platelet activation in severe 
COVID-19 are not yet completely understood. Our group and 

others have shown that circulating inflammatory and/or procoa-
gulant mediators generated in severe COVID-19 activates plate-
lets [17,79,81]. Platelets from healthy volunteers exposed to 
plasma from severe COVID-19 patients become activated ex 
vivo [17,81]. Whole blood from healthy volunteers reconstituted 
with COVID-19 plasma displays platelet activation, platelet- 
leukocyte aggregate formation, and TF expression, which are all 
inhibited by the IL-6 receptor neutralizing antibody tocilizumab 
[79]. Therefore, proinflammatory and procoagulant factors gen-
erated in COVID-19 contribute to platelet activation platelet- 
leukocyte aggregate formation and hypercoagulability, indicating 
an interplay between coagulation and inflammation in severe 
COVID-19.

Conclusion

Emerging insights on platelet biology have highlighted platelets 
as dynamic cells playing substantial roles in the inflammatory and 
immune continuums. Through complex interactions with leuko-
cytes, platelets can reprogram the immune network orchestrating 
inflammatory and prothrombotic responses in a diversity of infec-
tious diseases, including those caused by viruses. 
Pathophysiological mechanisms involving platelet–leukocyte 
interactions have been reported in HIV infection, dengue, influ-
enza, and recently in COVID-19. Platelets interact with leuko-
cytes in different viral infections through mechanisms involving 
similar and distinct pathways and responses (Figure 1). Platelets 
signaling to leukocytes participate in major features of viral 
infections including inflammatory infiltration into target tissues, 
cytokine storm, hypercoagulability, and virus transfer or restric-
tion in target cells as described above. Even though these features 
are majorly described as contributing to injurious thromboinflam-
matory mechanisms in viral infections, they also participate in 
beneficial immune response and virological control. Increasing 
our understanding of the immunoregulatory functions of platelet– 
leukocyte interactions will certainly increase our knowledge of 
disease mechanisms triggered by viruses, improving clinical man-
agement and therapeutic options.
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