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Abstract
Colorectal cancer (CRC) represents the third most commonly diagnosed cancer
and the second leading cause of cancer death worldwide. The modern concept
of cancer biology indicates that cancer is formed of a small population of
cells called cancer stem cells (CSCs), which present both pluripotency and
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self-renewal properties. These cells are considered responsible for the pro-
gression of the disease, recurrence and tumor resistance. Interestingly, some
cell signaling pathways participate in CRC survival, proliferation, and self-
renewal properties, and most of them are dysregulated in CSCs, including the
Wingless (Wnt)/β-catenin, Notch, Hedgehog, nuclear factor kappa B (NF-κB),
Janus kinase/signal transducer and activator of transcription (JAK/STAT),
peroxisome proliferator-activated receptor (PPAR), phosphatidyl-inositol-3-
kinase/Akt/mechanistic target of rapamycin (PI3K/Akt/mTOR), and trans-
forming growth factor-β (TGF-β)/Smad pathways. In this review, we summarize
the strategies for eradicating CRC stem cells by modulating these dysregulated
pathways, which will contribute to the study of potential therapeutic schemes,
combining conventional drugs with CSC-targeting drugs, and allowing better
cure rates in anti-CRC therapy.
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1 BACKGROUND

Colorectal cancer (CRC) represents the third most com-
monly diagnosed cancer and the second leading cause of
cancer death worldwide, representing 1,900,000 new cases
and an estimated number of 935,000 deaths in 2020 [1].
Surgical resection is the preferred treatment for earlier-
stage CRC. Chemotherapy is indicated in patients at risk of
cancer recurrence, as an adjuvant treatment, or when the
patient has distant metastasis. A very important topic in
the treatment of CRC is the response rate of anti-neoplastic
drugs in patients with metastases [2–4].
5-Fluorouracil (5-FU) is still the recommended first-

line drug treatment for advanced CRC and has achieved
response rates of 10%-15%, which are improved to approx-
imately 40%-50% when combined with irinotecan and
oxaliplatin [3,5]. Second-line treatment for metastatic
CRC includes some targeted therapies. These include
inhibitors of vascular endothelial growth factor (VEGF),
which reduce tumor angiogenesis. Other drugs target
growth factor pathways such as epidermal growth factor
receptor (EGFR) and abnormal B-Raf proto-oncogene ser-
ine/threonine kinase (BRAF) [2,3]. The immune system
also plays an important role in regulating the develop-
ment of CRC. The immunological pathways that have been
studied include cytotoxic T-lymphocyte-associated anti-
gen 4 (CTLA4) and programmed cell death protein 1 (PD-
1) [6]. Drugs that promote the inhibition of CTLA4 pro-
duce a large increase in T helper cell-dependent immune
responses. Inhibition of the PD-1 pathway can enhance
the anti-tumor immune response since PD-1 is a cell

surface receptor that limits T cell activity [7]. Despite
advances in surgical and medical therapies, the mortality
from CRC has changed little in recent decades, indicat-
ing the need for research on other pathways in advanced
diseases [8].
The current concept of cancer biology indicates that

cancer is a heterogeneous disease derived from a small
subpopulation of undifferentiated cancer cells called can-
cer stem cells (CSCs) or tumor-initiating cells. CSCs are
defined as cells with three unique properties: the ability to
renew themselves indefinitely; the ability to recreate the
complete cancer cell repertoire of the original tumor; and
the expression of a distinct set of surface biomarkers [9].
Some pluripotent transcription factors, such as octamer-
binding transcription factor 4 (OCT4) [10], SRY-box tran-
scription factor 2 (SOX2) [11], nanog homeobox (NANOG)
[12], and MYC proto-oncogene, bHLH transcription fac-
tor (MYC) [13], have been associated with the regulation
of these CSC properties.
Self-renewal involves the ability of CSCs to maintain

their proportion through a combination of symmetric divi-
sion (which produces two daughter cells with CSC proper-
ties) and asymmetric division (which produces a daughter
cell with CSC properties and a daughter cell without CSC
properties) [14]. In addition to the symmetric/asymmetric
division theory, CSCs can differentiate into cells without
CSC properties, and these cells can dedifferentiate back
into CSCs through a bidirectional interconversion process
[15]. This indicates that, for a good clinical outcome, can-
cer cells with or without properties of CSCs must be erad-
icated.
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Although CSCs are self-renewable, they are relatively
quiescent. In fact, they have longer cell cycle times than
cancer cells without properties of CSCs due to the perma-
nence of CSCs in a phase of the cell cycle similar to G0
[16]. These unique properties of CSCs can explain the fail-
ure of many anti-neoplastic drugs, which affect cells that
divide rapidly, causing a reduction in the number of can-
cer cells, while CSCs divide slowly and are not sensitive to
most cytotoxic drugs [16,17].
An important feature of CSCs in culture is that they

are able to form multicellular spheroid structures when
grown in non-adherent conditionswithout serumand sup-
plemented with growth factors. These spheres are charac-
terized by a well-rounded morphology, ability to persist as
floating cultures, and small size [18]. Thus, spheroid cul-
tures are useful for enriching population cells that exhibit
characteristics of CSCs. Likewise, the secondary and ter-
tiary sphere formation method, in the absence of any
agent, is useful to verify the self-renewal capacity of cells
in multiple passages [19,20].
Several biomarkers have been identified in CRC stem

cells (CRC-SCs), including CD133 [21,22], CD44 [22,23],
CD166 [23], CD29 [24], CD24 [24], aldehyde dehydroge-
nase 1 (ALDH1) [25], CD26 [26], and epithelial cell adhe-
sionmolecule (EpCAM) [27]. On the other hand, although
these molecules are considered standard markers of CRC-
SCs, some of them are also found in stem cells from nor-
mal tissues and other types of cancerwith different degrees
of expression [28,29]. CSCs can be identified and sepa-
rated by combining specific biomarkers and separation
techniques to increase the sensitivity and specificity of
the assay. Normally, cells with positive/high expression of
these biomarkers are considered to have stemness proper-
ties.
CD133 was the first biomarker identified, and although

still contradictory, most clinical data support the hypoth-
esis that CD133 expression is associated with a poor prog-
nosis in CRC [30–33]. Curiously, the CD133 protein is not
lost in differentiating CRC-SCs, but its AC133 epitope is
[34]. Therefore, monoclonal antibodies against the AC133
epitope are most commonly used to appropriately iden-
tify CD133 in CRC-SCs. Interestingly, CRC CD133+ cells,
but not CD133– cells, have the ability to form solid tumors
in immunodeficient NOD/SCID mice [21]. In particular,
treatment with 5-FU initially decreases the tumor mass;
however, upon completion of treatment, enrichment of
CD133+ cells in residual tumors is found, contributing
to recurrence and decreasing progression-free survival in
patientswithCRC [35,36]. In addition, CD133 has also been
used as amarker for CSCs in different types of cancer, such
as brain [37], prostate [38], and liver cancers [39].
CD44 is also an important CRC-SC marker that is

a target of T-cell factor (TCF)/β-catenin-mediated tran-

scription [40]. In colorectal carcinogenesis in ApcMin/+
mice, CD44–/–ApcMin/+ mice had fewer intestinal adeno-
mas than CD44+/+ApcMin/+ mice [41]. Likewise, CD44
expression is also associated with a poor prognosis in CRC
[42]. Different CD44 isoforms have been identified that
are generated by alternative splicing of 10 variant exons
and are known as CD44 variant isoforms (CD44v) to differ
from CD44 standard isoforms (CD44s) [43]. Interestingly,
ApcMin/+ mice expressing only CD44v4-10 could promote
adenoma initiation, but not those expressing CD44s, indi-
cating CD44v as a potential treatment target in CRC [44].
Despite advances in cancer therapy, to date, there are no

clinically approved effective drugs targeting CRC-SCs. Cell
signaling pathways participate in CRC survival, prolifera-
tion, and self-renewal properties, andmost of themare dys-
regulated in CRC-SCs. From this perspective, understand-
ing the participation of the signaling pathways activated
in CRC-SCs is very promising, as their therapeutic targets
can contribute to the improvement of anti-CRC therapy.
In this review, the roles of the Wingless (Wnt)/β-catenin,
Notch, Hedgehog, nuclear factor kappa B (NF-κB), Janus
kinase/signal transducer and activator of transcription
(JAK/STAT), peroxisome proliferator-activated receptor
(PPAR), phosphatidyl-inositol-3-kinase/Akt/mechanistic
target of rapamycin (PI3K/Akt/mTOR), and transforming
growth factor-β (TGF-β)/Smad pathways in CRC-SCs were
discussed as drug targets to eradicate this cell subpopula-
tion.

2 CELL SIGNALING PATHWAYS

2.1 Wnt signaling pathway

The canonical and non-canonical Wnt pathways have
been associated with the development and progression
of cancer. The canonical Wnt pathway acts by controlling
the level of β-catenin available to regulate gene expression
(Figure 1). In the absence of Wnt signaling, β-catenin does
not accumulate in the cytoplasm. A multimeric protein
complex composed of adenomatous polyposis coli (APC),
axin-1, glycogen synthase kinase-3 beta (GSK-3β) and
casein kinase 1α (CK1α) is responsible for the degradation
of β-catenin by ubiquitination and digestion, thereby
maintaining low levels of free β-catenin in the cytoplasm
and nucleus. On the other hand, in the presence of Wnt
ligands, the destruction complex function is interrupted,
since Wnt binds to the seven-pass transmembrane recep-
tor Frizzled (FZD) and single-pass low-density lipoprotein
receptor-related protein 5 or 6 (LRP5/6). The Wnt-FZD-
LRP5/6 trimeric complex recruits dishevelled (DVL),
resulting in dissociation of the β-catenin phosphorylation
complex, followed by events that stabilize and accumulate
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F IGURE 1 The Wnt/β-catenin signaling pathway. In the absence of Wnt signaling, β-catenin is bound to a multimeric protein complex
that contains APC, GSK-3β, axin-1 and CK1α, leading to proteasomal degradation of β-catenin. In the presence of Wnt signaling, the
destruction of the complex function is interrupted. Wnt binds to LRP5/6 and FZD and inhibits the activity of the multimeric protein complex,
which makes β-catenin enter the nucleus, with subsequent translocation to the nucleus, binds to TCF/LEF to form a complex, and then
recruits cofactors to initiate downstream gene expression. Abbreviations: APC, adenomatous polyposis coli; CK1α, casein kinase 1α; DVL,
dishevelled; EGCG, epigallocatechin gallate; FZD, seven-pass transmembrane receptor Frizzled; GSK-3β, glycogen synthase kinase-3 beta;
LEF; lymphoid enhancer factor; LGR5, leucine-rich repeat-containing G-protein-coupled receptor 5; LRP5/6, single-pass low-density
lipoprotein receptor-related protein 5 or 6; MYC, MYC proto-oncogene, bHLH transcription factor; RSPO, R-spondin; TCF, T-cell factor;
TNIK, TRAF2- and NCK-interacting kinase; Wnt, wingless

β-catenin in the cytoplasm with subsequent transloca-
tion to the nucleus. This event allows direct binding
to TCF/lymphoid enhancer factor (LEF) transcription
factors for activation of Wnt-responsive gene expression
and subsequent transcription of several target genes of
Wnt, such as AXIN2, SURVIVIN, ALDH, and cyclin D1
(CCND1) [45–47].
The canonical Wnt pathway (the Wnt/β-catenin sig-

naling pathway) is essential for the normal homeostasis
of intestinal stem cells, and aberrant activation or muta-
tion is responsible for the establishment of approximately
90% of intestinal cancers through the loss of APC, lead-
ing to increased β-catenin function. These events drive
tumor initiation and maintenance of CSCs, regulating the
capacity for self-renewal, interacting with the microen-
vironment and immune system and promoting tumor
invasion and metastasis [36,48,49]. Importantly, the CRC-
SC biomarkers leucine-rich repeat-containing G-protein-
coupled receptor 5 (LGR5) and CD44 were identified as
genes involved in Wnt signaling [50]. The Wnt pathway

is also crucial to support the tumor initiation potential of
CRC-SC precursors that occur in the transition from ulcer-
ative colitis to CRC [51].
Interestingly, Chen et al. [52] investigated the biologi-

cal function of microRNAs (miRNAs), small non-coding
RNAs that regulate gene expression, and miR-199a/b in
cisplatin-resistant CRC-SCs. The expression of miR-199a/b
in CRC tissues was associated with short patient survival.
Additionally, the overexpression ofmiR-199a/b contributes
to cisplatin resistance, upregulating ATP binding cassette
subfamily G member 2 (ABCG2), an important multidrug
resistance pump located downstream of theWnt/β-catenin
pathway. Blocking the Wnt/β-catenin pathway decreases
ABCG2 levels in ALDH1+ CRC-SCs. In addition, miR-92a
promotes the properties of CRC-SCs, increases the expres-
sion levels of stem cell markers CD133, SOX2, and OCT4,
and is upregulated by Wnt/β-catenin signaling activity via
downregulation of Krüppel-like factor 4 (KLF4), GSK-3β,
and dickkopf Wnt signaling pathway inhibitor 3 (DKK3),
negative regulators of Wnt/β-catenin signaling [53].
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The decreased expression of miR-148a, a tumor sup-
pressor, causes increased expression of CRC-SC mark-
ers through the Wnt/β-catenin signaling pathway, while
its hyperexpression increases cisplatin chemosensitivity,
reducing cell invasion and migration [54]. Additionally,
miR-30-5p expression is normally reduced in CRC cells
resistant to 5-FU and in CD133+ CRC cells. In contrast, its
overexpression significantly reduces cell viability and the
expression of stem cell markers CD133 and SOX2, since
miR-30-5p attenuates the expression of AXIN2 and MYC,
target genes ofWnt/β-catenin signaling [55]. Moreover, the
5-FU-resistant CRC HT-29 cell line showed increased Wnt
signaling and stemness properties [56].
Therefore, many aspects of how this pathway controls

the growth and proliferation of normal cells andCSCs have
been studied [51,57–59]. Moreover, new studies focusing
on the anti-cancer properties of molecules that eradicate
CRC-SCs via the Wnt pathway have been carried out and
are described below.

2.1.1 Natural products

Phenethyl isothiocyanate
Phenethyl isothiocyanate (PEITC) is a natural product
present in many cruciferous vegetables with anti-cancer
and chemopreventive activities in clinical trials and has
been associated with the induction of oxidative stress [60].
Interestingly, PEITC has also been reported to be able
to eliminate CSCs of different types of cancer, includ-
ing cervical [61,62], lung [63], ovarian [64], and breast
cancers [64,65]. Importantly, PEITC inhibited the proper-
ties of CRC-SCs through downregulation of the Wnt/β-
catenin pathway, inhibition of proliferation, and induction
of apoptosis in CRC DLD-1 and SW480 cell lines. PEITC
decreased the percentage of CD133+ cells by approximately
3–16-fold [66]. Activation of the Wnt/β-catenin pathway
with lithium chloride, an agonist of canonical Wnt signal-
ing, elevated CD133 expression and suppressed the effects
of PEITC on CRC-SCs [66]. PEITC also suppressed the
expression of pluripotency factors, including OCT4, SOX2,
and NANOG, in NCCIT cells, a pluripotent stem cell
line from mediastinal mixed germ cell tumors [67,68]. In
vitro self-renewal capacity and clonogenicity and in vivo
tumor growth and expression of pluripotency factors were
also observed to be reduced after treatment with PEITC
in an EpCAM-expressing CSC model derived from the
CRC HCT116 cell line [67,68]. These results support that
PEITC is a candidate to eradicate CRC-SCs targeting Wnt
signaling.

Sulforaphane
Sulforaphane is an isothiocyanate obtained from crucif-
erous vegetables with anti-cancer properties. Some stud-
ies indicate that it can act on CSCs [69–72]. Interestingly,
sulforaphane reduced pancreatic CSCs by blocking the
sonic hedgehog-GLI family zinc finger (GLI) [70] and NF-
κB pathways [71] and enhanced imatinib against CSCs
of chronic myelogenous leukemia by inhibiting Wnt/β-
catenin function [72]. In CRC, sulforaphane caused cell
cycle arrest and apoptosis in CRC HT-29 and Caco-2 cell
lines [73,74]. Recently, Chen et al. [75] demonstrated that
sulforaphane inhibited CRC-SC properties by suppress-
ing the transactivating p63 isoform α (TAp63α)/LGR5/β-
catenin axis in vitro and in vivo. In addition, activation
of the Wnt/β-catenin pathway leads to the expression of
LGR5, which is also a promoter of the Wnt/β-catenin
pathway when binding to R-spondin (RSPO), suggesting
that LGR5 may be used not only as a marker but also
as a target in CRC-SCs. LGR5 acts through TAp63α to
enhance Wnt signaling and the activation of β-catenin
targets, promoting the maintenance of stem cells. Sul-
foraphane treatment led to downregulation of CRC-SC
markers (CD133, CD44, NANOG, and OCT4), suppress-
ing the formation of colonies in a spheroid cell model
with CRC HCT116 and SW480 cell lines. Moreover, the
upregulation of TAp63α blocked the inhibitory effect of
sulforaphane. These data indicated that sulforaphane is
a useful drug to eliminate CRC-SCs by suppressing Wnt
signaling.

Salinomycin
Salinomycin, an anti-bacterial polyether isolated from
Streptomyces albus, selectively eliminated CD133+ cells
in CRC [76]. Salinomycin induced caspase activation,
increased DNA damage and caused disruption of the
Wnt/β-catenin/TCF complex and apoptosis of human
CRC-SCs, and decreased tumor growth and expression of
CSC-relatedWnt genes, including LGR5 [77,78]. Treatment
with salinomycin alone or in combination with the FOL-
FOX regimen (5-FU, folic acid plus oxaliplatin) was also
evaluated in primary CSCs of patients with hepatic metas-
tases of CRC or primary CRC [79]. Salinomycin exhib-
ited superior anti-CSC activity and tumor growth inhibi-
tion when compared to the FOLFOX protocol, and sali-
nomycin plus FOLFOX resulted in improvement of these
effects when compared to salinomycin alone. Salinomycin
increased the expression of LGR5 andmitigated the expres-
sion of ALDH1. Furthermore, salinomycin also caused
apoptosis related to decreased cellular ATP production
and the accumulation of dysfunctional mitochondria and
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reactive oxygen species [79]. Likewise, Singh et al. [80]
demonstrated that salinomycin improved cell death recep-
tors in CRC-SCs by inhibiting enhancer of zeste 2 poly-
comb repressive complex 2 subunit (EZH2), a histone-
lysine N-methyltransferase enzyme. Importantly, salino-
mycin has also been reported to target CSCs of various
types of cancer, including melanoma [81], osteosarcoma
[82], breast [83], liver [84], brain [85], ovarian [86], and oral
cancers [87]. Salinomycin specifically eliminated epithelial
CSCs [88].
Wang et al. [89] developed salinomycin nanocrystals

to improve their oral bioavailability/solubility and reduce
toxicity. Salinomycin nanocrystals exhibited greater cell
uptake efficiency, cytotoxicity and Wnt-inhibiting effects
three times better than regular salinomycin, indicating
that salinomycin nanocrystals have great potential for the
clinical treatment of CRC. The combination of SN38, the
active form of irinotecan, with salinomycin in nanoformu-
lations also diminished the adverse effects and enhanced
the treatment efficacy against CRC-SCs [90]. These results
suggest salinomycin as a drug capable of eliminating CRC-
SCs by targeting Wnt signaling and improving conven-
tional chemotherapeutic effects, including the FOLFOX
protocol.

Epigallocatechin gallate
Epigallocatechin gallate (EGCG), also known as
epigallocatechin-3-gallate, is one of the catechins found
in green tea. It has been widely studied as an anti-CSC
agent against different types of cancer, including lung [91],
bladder [92], pancreas [93], and breast cancers [94]. In
combinationwith cisplatin or oxaliplatin, EGCG increased
the therapeutic effect on human CRC cells [95]. Further-
more, EGCGwas also effective in suppressing CRC-SCs by
downregulating CD133, CD44, NANOG, OCT4, ALDH1,
and Notch1 expression, inhibiting the ability to form
spheres of CRC cells, and upregulating the expression of
GSK-3β, a negative regulator of Wnt/β-catenin [96,97]. In
addition, EGCG induced the sensitivity of CRC-SCs to
5-FU [97].
In a pilot study with 125 patients, green tea extract

reduced the recurrence of colorectal adenoma in approx-
imately 50% of patients [98]. Moreover, in a randomized
controlled clinical trial, 10 volunteers received 800 mg
EGCG, and 11 volunteers received the same amount of
EGCG plus Brazil nuts for 6 weeks. DNA methyltrans-
ferase (DNMT1) (DNA methylation is a molecular marker
in CRC) and NF-κB expression were decreased in rectal
biopsies of both groups [99]. In a clinical trial with 223
healthy Japanese individuals, Escherichia coli containing
polyketide synthase (tumorigenic bacteria for CRC) in the
gut microbiota was downregulated by ingestion of green
tea [100].

Taken together, these preclinical results support that
EGCG reduces the population of CRC-SCs and enhances
the effect of cisplatin and oxaliplatin. Furthermore, clinical
data suggest EGCG and/or green tea extract as a beneficial
strategy in CRC therapy/prevention.

Farnesyl dimethyl chromanol
Farnesyl dimethyl chromanol (FDMC), a chemical struc-
ture that is part of the tocopherol and tocotrienol
molecules (vitamin E), exhibits antioxidant properties
[101]. Recently, Husain et al. [102] demonstrated that
FDMC decreased the viability and self-renewal of CRC-
SCs by downregulating Wnt/β-catenin signaling in vitro
and in vivo. FDMC reduced spheroid and organoid for-
mation and downregulated the expression of the pluripo-
tent transcription factors NANOG, OCT4 and SOX2 in
CD24+/CD44+/LGR5+ CRC cells. Induction of DNA frag-
mentation, exposure to phosphatidylserine, cleaved cas-
pase 3 and cleaved PARP and reduced migration, invasion,
VEGF and NF-κB and Wnt signaling were also observed
in CRC-SCs treated with FDMC in vitro. In an ortho-
topic xenograft metastasis model, FDMC inhibited tumor
growth and liver metastasis and suppressed angiogene-
sis and NF-κB and β-catenin signaling. This indicates that
FDMC is effective in eradicating CRC-SCs.

4-Acetyl-antroquinonol B
4-Acetyl-antroquinonol B (4-AAQB), a mycelial from
Antrodia camphorate, has been reported as a cytotoxic
agent [103,104]. In CRC, 4-AAQB reduced migration, inva-
sion and clonogenicity inCRCDLD1 andHCT116 cell lines,
with less effect on the viability and proliferation of nor-
mal colon cells. Downregulation of N-cadherin, vimentin,
MYC and BcL-xL and upregulation of E-cadherin and
BAX proteins were found in 4-AAQB-treated CRC cells. 4-
AAQB also reduced the superoxide dismutase 2 (SOD2)-
mediated CSC phenotype by hsa-miR-324. In vivo, 4-
AAQB reduced tumor growth and enhanced the FOL-
FOX protocol by inhibiting SOD2 and increasing hsa-miR-
324-5p expression [103]. In addition, 4-AAQB also down-
regulated the LGR5/Wnt/β-catenin, JAK/STAT, and non-
transmembrane receptor tyrosine kinase signaling path-
ways and stemness-related factors in CRC cell lines. A
reduction in tumor size was also observed after 4-AAQB
treatment in CRC animal models [104]. These results sug-
gest that 4-AAQB is useful to reduce the stemness prop-
erties of CRC cells and may improve the effect of conven-
tional chemotherapeutics such as the FOLFOX protocol.

Diallyl trisulfide
Diallyl trisulfide (DATS) is a garlic-derived organosul-
fur compound with anti-tumor properties. Zhang et al.
[105] reported that DATS reduced the size and number of
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spheroid forms of theCRCSW480 andDLD-1 cell lines and
decreased the expression of CD133, CD44, ALDH1, OCT-4
and NANOG. The characteristics of cell death by apopto-
sis were found to be increased, including decreased Bcl-2
levels and increased BAX, caspase-3, -8 and -9. This effect
was associated with the suppression of the activity of the
Wnt/β-catenin pathway, observed by the increased expres-
sion of GSK-3β and decreased expression of β-catenin,
MYC and cyclin D1. Pretreatment of the culture with
lithium chloride blocked the effects of DATS. These results
indicate that DATS can inhibit proliferation and induce
apoptosis of CRC-SCs by suppressing Wnt signaling.

Zerumbone
Zerumbone, a sesquiterpene from Zingiber zerumbone,
has anti-tumor effects in various types of cancer. In the
CRCHCT-116 and SW-48 cell lines, zerumbone suppressed
epithelial-mesenchymal transition (EMT), as observed
by the increased expression of E-cadherin and reduced
expression of vimentin, ZEB1 and N-cadherin [106]. A
reduction in cell invasion, migration and spheroid for-
mation was also found, as well as in the expression of
CSC markers, including CD133, CD44, BMI1 and ALDH1.
Zerumbon also reduced β-catenin expression. Interest-
ingly, silencing of miR-200c inhibited these zerumbone
effects, indicating that the inhibition of the β-catenin path-
way throughmiR-200c may be a target of the anti-CRC-SC
properties of zerumbone [106].

2.1.2 Small synthetic molecules

Retinoids
Homeobox A5 (HOXA5), a regulator of gene expression,
morphogenesis, and differentiation, is downregulated in
CRC. It inhibits Wnt signaling to reinforce differentiation
through antagonists of APC downregulated 1 (APCDD1),
CXXC finger protein 4 (CXXC4), and NKD inhibitor of
Wnt signaling pathway 1 (NKD1) pathways [58]. All-trans
retinoic acid and 9-cis retinoic acid upregulated HOXA5
levels, leading to tumor regression in the ALDH1+ HT-
29 cell line. In this context, tumor regression via HOXA5
induction by retinoids suppressed Wnt signaling, leading
to the differentiation and elimination of CRC-SCs, pre-
venting tumor development, and inhibiting metastases
[58]. All-trans retinoic acid also eliminated CSCs of head
and neck cancer by inhibiting the Wnt/β-catenin pathway
[107].

JIB-04
JIB-04 is an epigenetic modulator that acts as a pan-
selective inhibitor of histone demethylases [108]. JIB-04
decreased the viability of HCT116 cells and reduced CD133

mRNA expression, CD133 protein expression levels, and
clonogenic potential, indicating that JIB-04 resulted in a
reduction in the CRC-SC population and self-renewal to
form colonies [109]. Beyond that, JIB-04 mitigated inva-
sion, migration, and growth/recurrence in an in vitro
model. The expression level of E-cadherin mRNA (an
epithelial marker) was increased, while those of vimentin
and N-cadherin (mesenchymal markers) were decreased
in cells treated with JIB-04. It also reduced the tumori-
genic activity of CRC-SCs in vivo. These data were asso-
ciated with increases in the expression of AXIN1 (axin-1)
and GSK3β, genes involved in the inhibition of β-catenin
signaling, and decreases in the expression of β-catenin tar-
get genes, includingALDH1 and SRY-box transcription fac-
tor 4 (SOX4) [109]. Importantly, JIB-04 had less effect on
the viability of normal cells [110]. These results suggest that
JIB-04 can be used to specifically target CRC-SCs.

IC-2
IC-2, a derivative of ICG-001 (aWntmodulator), efficiently
represses Wnt/β-catenin signaling [111]. Interestingly, IC-
2 reduced the transcriptional activity of Wnt/β-catenin in
CRC cells more effectively than 5-FU. IC-2 reduced the
expression levels of CSC marker proteins, such as CD44,
CD133, OCT3/4, NANOG, and LGR5. Then, CD44high and
CD44low DLD-1 cells were isolated by cell sorting, and
CD44high sphere numbers were selectively reduced by IC-
2, indicating that IC-2 preferentially suppresses CRC-SCs.
Nevertheless, IC-2 did not affect viability at concentrations
below 10 μmol/L. IC-2 also improved the cytotoxic effect
of 5-FU, suggesting that IC-2 sensitizes CRC cells to 5-FU
through the suppression of CRC-SCs [111]. Interestingly,
IC-2 has also been reported as an anti-CSC agent against
liver [112] and oral cancers [113].

NCB-0846
NCB-0846 is the first TRAF2- and NCK-interacting kinase
(TNIK) inhibitor available orally with high activity against
Wnt signaling by binding to TNIK, an essential activator of
Wnt target genes. The anti-tumor and anti-CRC-SC activi-
ties of NCB-0846 were demonstrated [57,114]. Pharmaceu-
tical companies have developed other TNIK inhibitors that
are in clinical trials, including ON108600 (OnconovaTher-
apeutics, Newtown, PA, USA), which was efficient in act-
ing on CSCs [115]. Mebendazole, an anthelmintic agent,
has also been identified as a selective TNIK inhibitor [116].
The combination of mebendazole and sulindac, a non-
steroidal anti-inflammatory agent, reduced tumor initia-
tion in CRC in a preclinical model [117].

36-077
36-077, an inhibitor of phosphatidylinositol 3-kinase cat-
alytic subunit type 3 (PIK3C3), was synthetized by Kumar
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et al. [118] as a potent autophagy inhibitor. In particu-
lar, 36-077 improved the efficacy of 5-FU in CRC Caco-
2 and HCT116 cell lines grown in monolayers. Treatment
of Caco-2 cells growing in spheroids or colon tumor-
oids derived from ApcMin/+ mice with 5-FU plus 36-077
also reduced spheroid growth more than 5-FU or 36-077
alone. This effect was associated with the inhibition of the
CSCpopulation throughGSK-3β/Wnt/β-catenin signaling.
These data indicate that 36-077 can inhibit CRC-SCs by
suppressing Wnt/β-catenin signaling and enhances 5-FU
treatment.

CBB1003
CBB1003, a lysine-specific demethylase 1 (LSD1) inhibitor,
has anti-tumor properties. Treatment with CBB1003 in
HCT116 cells inhibited proliferation and colony formation
and decreased the levels of the CSC marker LGR5 [119].
Moreover, the overexpression of LGR5 reduced cell death
caused by CBB1003. Inactivation of β-catenin/TCF sig-
naling was observed after treatment with CBB1003. The
expression of LSD1, LGR5, β-catenin and MYC was found
to be lower in adjacent normal tissues than in CRC tis-
sues as well as in CRC cell lines [119]. These data indicate
LSD1 as a target to affect CRC-SCs, inhibiting Wnt signal-
ing. CBB1003 may be a useful anti-CRC-SC drug, acting by
inhibiting LSD1.

Rimonabant
Rimonabant is an antagonist/inverse agonist of cannabi-
noid receptor 1 that can induce β-catenin degradation in
CRC cell lines. The target genes Wnt/β-catenin, cyclin
D1, MYC and cyclooxygenase-2 were reduced after treat-
ment with rimonabant [120]. Non-canonical Wnt signal-
ing was activated in CRC cells treated with rimonabant,
as observed by the induction of Wnt5A and activation of
calcium/calmodulin-dependent protein kinase II. Rimon-
abant also inhibited tumor growth and β-catenin trans-
fer to cell nuclei in mice xenografted with HCT116 cells
[120]. Fiore et al. [121] reported that rimonabant reduced
primary CRC-SCs in culture through downregulation of
β-catenin without affecting healthy colon epithelial cells.
These results suggest rimonabant as an effective drug to
eliminate CRC-SCs.

FH535
FH535 is a dual inhibitor of β-catenin/TCF/LEF andPPARs
with anti-tumor action [122]. It reduced the migration and
invasion of SW480 cells and downregulated the expression
of matrix metalloproteinases 7 and 9, vimentin, and snail.
FH535 also inhibited the expression of the CSC markers
CD24, CD44 and CD133 in HT29 cells by inhibiting the
Wnt/β-catenin pathway. FH535 also reduced tumor growth
in mice xenografted with HT-29 [123]. This suggests that

FH535 is able to eradicate CRC-SCs by targeting Wnt sig-
naling.

2.1.3 Monoclonal antibody

HZ8CV2
Progastrin is overexpressed and detectable in the super-
natant of CRC cell lines and patient-derived CRC cells
and stimulates the survival of CSCs [124]. Downregula-
tion of progastrin decreases Wnt/β-catenin activity and
Wnt-induced tumorigenesis [125]. Prieur et al. [126] cre-
ated a humanized anti-progastrin monoclonal antibody
(HZ8CV2) that was effective against CRC with a KRAS
mutation. Treatment of SW480 cells with HZ8CV2 for 96
h decreased the expression of survivin, a key component
of the Wnt/β-catenin signaling pathway, by 40.7%. Beyond
that, combination chemotherapy with the HZ8CV2 anti-
body increased chemosensitivity and delayed recurrence.
HZ8CV2 in combination with 5-FU decreased 57.9% of
the CSC population in KRAS-mutated T84 cells. In the
xenograftmodel, the combination ofHZ8CV2with irinote-
can decreased the frequency of CSCs by 55.9% and 70.1% in
T84 and SW620 tumors, respectively, inhibiting the migra-
tory and invasive properties of these CRC cells. These data
corroborate that progastrin is a target to eliminate CRC-
SCs and that HZ8CV2 is an effective anti-progastrin mon-
oclonal antibody that inhibits CRC-SCs and improves 5-FU
and irinotecan treatments.
These data indicate that the Wnt/β-catenin signaling

pathway is a critical pathway to eradicate CRC-SCs. On
the other hand, crosstalk among pathways can lead to
resistance to single-pathway inhibitors and maintenance
of the CSC phenotype [127,128]. Therefore, multiple cellu-
lar pathwaysmust be targeted to effectively eradicate CRC-
SCs.

2.2 Notch signaling pathway

Notch signaling is involved in the regulation of cell
differentiation, proliferation, and tumorigenesis [129,130].
Notch is a transmembrane receptor activated by series
cleavage (Figure 2), and four different Notch receptors
(Notch1, Notch2, Notch3, and Notch4) are known. While
the non-canonical pathway works independently of Notch
receptors, the interaction between the ligands of the delta
family (DLL1, DLL2, DLL3 and DLL4) or jagged-4 family
(JAG1/JAG2) and the receptors occurs in canonical path-
way activation. Canonical Notch single-strand precursors
are cleaved by furin proteases in the Golgi complex to
form a large fragment containing the extracellular domain
and a small fragment containing transmembrane and
intracellular regions, which combine to form a mature
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F IGURE 2 The Notch signaling pathway. The Notch single-stranded pathways undergo proteolytic processing in the Golgi complex,
which is furin protease-mediated (S1 cleavage). The receptor is transported to the cell surface membrane. The extracellular domain of the
Notch receptor in the signaling cell binds to the Notch ligands (Delta and Jagged) expressed by the adjacent cell. This induces the second
proteolytic step by ADAM/TACE metalloproteases and γ-secretase, which releases the intracellular Notch domain that translocates to the
nucleus and then binds to the CSL transcription factor and activates the expression of Notch target genes. Abbreviations: ADAM, a disintegrin
and metallopeptidase; CSL, CBF1 suppressor of hairless LAG1; MYC, MYC proto-oncogene, bHLH transcription factor; SOX9, SRY-box
transcription factor 9; TACE, tumor necrosis factor-alpha converting enzyme

receptor. The results of this interaction expose the extra-
cellular metalloprotease site that becomes susceptible to
cleavage by a disintegrin and metallopeptidase/tumor
necrosis factor-alpha converting enzyme (ADAM/TACE)
transmembrane family to release the extracellular frag-
ment. The residual transmembrane Notch fragment acts
as a substrate for proteolysis by the γ-secretase complex,
resulting in the release of the intracellular domain of the
receptor that translocates to the nucleus and then binds to
the CBF1 suppressor of hairless LAG1 (CSL) transcription
factor and activates the expression of Notch target genes
[129–131].
The activation of Notch signaling was associated with

short survival, CSC phenotype, and EMT, resulting in
tumor progression in CRC [132]. Huang et al. [133] demon-
strated that the CRC cell line HCT116 was resistant to 5-FU
or oxaliplatin and that parental HCT116 cells cultured in
spheroids showed a greater number of CD133+ and CD44+
cells than parental HCT116 cells cultivated in monolayers.
These effects were associated with enhanced Notch signal-
ing. Moreover, inhibition of the Notch pathway reduced
the growth of HCT116 cells resistant to 5-FU or oxaliplatin
and parental HCT116 cells cultured in spheroids in in vitro
and in vivomodels. In this context, several compounds that
act on CRC-SCs by inhibiting the Notch signaling pathway
have been studied and point to promising strategies for the
treatment of CRC.

2.2.1 Natural products

Honokiol
Honokiol, a naturally active biphenolic compound from
Magnolia species used in traditional Chinese medicine,
has anti-tumor properties against various types of can-
cer [134]. Honokiol is a potent inhibitor of melanoma
stem cells that suppresses Notch signaling [135]. It also
inhibits tumor progression and stem cells in glioma [136],
breast cancer [137], and oral carcinoma cells [138]. In CRC,
the combination of honokiol with ionizing radiation (IR)
inhibited the levels of expression of CSC proteins, such
as doublecortin-like kinase-1 (DCLK1), SRY-box transcrip-
tion factor 9 (SOX9), CD133, CD44, Notch signaling-related
proteins, and proteins of the γ-secretase complex in vitro,
using HCT116 and SW480 cell lines, and in xenograft tis-
sues using theHCT116 cell line [139]. Honokiol also slowed
the growth of the tumor xenograft, inhibited proliferation,
and promoted apoptosis. Furthermore, ectopic expression
of the Notch intracellular domain partially rescues the
honokiol effect, indicating that this compound is an anti-
CRC-SC agent targeting Notch signaling [139].
Honokiol also suppressed the Hippo signaling path-

way in CRC cells [140]. In this pathway, YAP1 is translo-
cated to the nucleus to induce gene expression, which is
inhibited by phosphorylation at Ser127. Honokiol inhibited
YAP1 phosphorylation and caused apoptosis in HCT116
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and SW480 cells. Inhibition of the expression of the CSC
marker DCLK1 was also observed. In addition, honokiol
prevented colitis-associated cancer growth in a mouse
model using azoxymethane and dextran sulfate sodium
[140].

Cucurbitacins
Cucurbitacin-B (C-B) and cucurbitacin-I (C-I) are phyto-
chemicals present in various fruits and vegetables, such
as bitter melon [141]. C-B and C-I inhibited cell prolifer-
ation and induced cell cycle arrest and apoptosis in CRC
HCT116 and SW480 cell lines by downregulating ADAM9,
which participates in the cleavage of the Notch receptor
at the extracellular domain [142]. In addition, C-B and
C-I reduced the spheroid and colony formation of CRC
cells and inhibited the expression of the CRC-SC markers
CD44, DCLK1, and LGR5. C-B and C-I also reduced tumor
growth in mice xenografted with HCT116, as such reduced
the expression of CSC markers and Notch signaling com-
ponents in tumor tissues [142]. Together, these data sug-
gest that cucurbitacins inhibit CRC, including CRC-SCs,
by downregulating the Notch signaling pathway. Addi-
tionally, C-B was also able to eliminate liver [143] and
gastric CSCs [144]. C-I also eliminated CSCs of the lung
[145], brain [146], and head and neck [147] by blocking the
JAK2/STAT3 signaling pathway.

Evodiamine
Evodiamine, a derivative of the traditional herbalmedicine
Evodia rutaecarpa, has an antiproliferative effect in the
CRC LoVo cell line, leading to the induction of caspase-
dependent apoptosis and S-phase arrest [148,149]. The sur-
viving cells after treatment with evodiamine were plated
using serial dilutions and under conditions for the enrich-
ment of CSCs by spheroids or implanted subcutaneously
in immunodeficient SCID mice [150]. The results showed
that evodiamine decreased the self-renewal of surviving
cells in vitro and in vivo. Beyond that, the expression of the
genes related to Wnt/β-catenin and Notch signaling was
suppressed by treatment with evodiamine, indicating the
elimination of CRC-SCs [150]. This indicates that evodi-
amine is an effective drug to eradicate CRC-SCs, suppress-
ing Wnt and Notch signaling.

Quercetin
Quercetin, a natural flavonoid, is a compound that
enhances radiosensitivity [151]. Quercetin plus IR elim-
inated CRC-SCs by inhibiting Notch1 signaling. Reduc-
tions in CSC markers (DCLK1, CD24, LGR5, CD29,
CD44, and CD133) were observed in in vitro and in
vivo studies. Quercetin plus IR suppressed the growth
of both primary and secondary colonospheres and inhib-
ited the Notch signaling pathway by downregulating γ-

secretase complex proteins, Jagged-1, and Notch target
genes hairy and enhancer of split-1 (HES1) and Hes-
related with YRPW motif-1 (HEY1)[151]. This indicates
that quercetin can induce radiosensitivity and eliminate
CRC-SCs.

Portulaca oleracea extract
Portulaca oleracea is a grassy plant with succulent leaves
and presents anti-tumor activities [152]. Portulaca oleracea
extract inhibited the proliferation of CSCs (CD133+ and
CD44+) by inducing apoptosis and downregulating the
expression of Notch1 and β-catenin in CRC-SCs [153]. This
indicates that Portulaca oleracea extract is a source of anti-
CRC-SC agents.

α-Mangostine
α-Mangostine is a natural xanthone from Garcinia man-
gostana. It has antioxidant, anti-microbial, anti-cancer
and anti-inflammatory properties [154]. α-Mangostine
encapsulated in poly(D,L-lactic-coglycolic acid) (PLGA)
nanoparticles inhibited self-renewal capacity, the expres-
sion of CSC markers, including CD133, CD44, Musashi,
and LGR5, and pluripotency maintenance factors, such
as OCT4, SOX2, KLF4, MYC, and NANOG. These effects
were associated with inhibition of Notch signaling, sup-
pression of the expression of Notch receptors (Notch1 and
Notch2), their ligands (Jagged 1 and DLL4), protein of the
γ-secretase complex (Nicastrin), and downstream target
(Hes-1) in CRC HT-29 and HCT116 cell lines [155]. These
results indicate α-mangostine as a drug with anti-CRC-SC
properties.

Pien Tze Huang formula
Pien Tze Huang is a traditional Chinese herbal formula
with anti-tumor properties. It inhibited CRC-CSs in the
SW480 cell line [156]. In addition, Pien Tze Huang formula
also decreased Notch1 and Hes1 expression in CRC-SCs
[156]. This indicates that Pien Tze Huang formula is able
to eliminate CRC-SCs by suppressing the Notch signaling
pathway.

2.2.2 Monoclonal Antibodies

Anti-DLL4 antibodies
Anti-human and anti-mouse DLL4 antibodies have been
developed as anti-tumor agents [157].Moreover, anti-DLL4
antibodies were effective against both KRAS wild-type
and mutant CRC cells. In combination with irinotecan,
anti-DLL4 antibodies also increased CRC growth inhi-
bition in a patient-derived xenograft model. They were
also found to reduce the CRC-SC population [158]. These
data indicate that these antibodies against the Notch
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F IGURE 3 The Hedgehog signaling pathway. In canonical HH signaling, HH ligands (SHH, IHH or DHH) bind to the PTCH
transmembrane receptor, which relieves the inhibition of the transmembrane protein SMO and induces the GLI family of transcription
factors (GLI1, GLI2, and GLI3) to enter the nucleus to regulate downstream gene transcription. Abbreviations: CDK, cyclin-dependent kinase;
DHH, desert hedgehog; HH, hedgehog; IHH, Indian hedgehog; MMP, matrix metalloproteinase; MYC, MYC proto-oncogene, bHLH
transcription factor; PTCH, patched; SHH, sonic hedgehog; SMO, smoothened; SNAI1, snail family transcriptional repressor 1

DDL4 ligand are effective in eradicating CRC-SCs and in
potentiating the effects of irinotecan. Notch signaling can
interact and influence a large number of cancer-relevant
pathways, includingWnt. Furthermore, crosstalk between
the Wnt and Hedgehog pathways can also determine the
general effect of Notch signaling [159,160]. In this context,
all cross-signaling networks in CSCs must be considered
in a context-dependent manner. Clinical trials with Notch
pathway inhibitors are still limited in the treatment of
CRC. As observed above, these targeted agents have
already been shown to be effective in preclinical studies
and should also be tested in combination with classical
chemotherapy drugs or other inhibitors of the signaling
pathway in clinical trials to better understand their role in
CRC therapy.

2.3 Hedgehog signaling pathway

TheHedgehog (HH) signaling pathway is related to embry-
onic development, self-renewal, migration, and stem cell
population maintenance. Hyperactivation of this pathway
is associated with CSCs, contributing to tumorigenesis and
tumor progression. Conserved HH transmits the signal
from the cell membrane to the nucleus [161,162]. Abnor-
mal dysfunction or activation of HH signaling has been
implicated in the pathogenesis of several cancers, includ-
ing CRC [163].

HH signaling can be classified as canonical or non-
canonical. In canonical HH signaling, HH ligands (sonic
HH, IndianHH, or desert HH) bind to the patched (PTCH)
transmembrane receptor, which leads to the release of
smoothened (SMO) and consequent activation of a down-
stream cascade [161,164]. This event culminates in the acti-
vation of the GLI family of transcription factors (GLI1,
GLI2, and GLI3), which is responsible for the regulation
of several target genes. In the absence of ligands, the PTCH
receptor inhibits SMO, deactivating the pathway (Figure 3)
[161,164]. Non-canonical HH signaling refers to all cellular
and tissue responses to any of the HH isoforms that are
independent of transcriptional changes mediated by GLI
activation [165].
The crosstalk between Wnt and HH signaling has been

shown to be important in the development and progression
of CRC. Some studies report that GLI-dependent canonical
HH signaling is a negative regulator of Wnt signaling in
normal intestine and intestinal cancers [166,167]. On the
other hand, non-canonical HH signaling in CSCs acts as a
positive regulator of Wnt signaling to regulate the survival
of CRC-SCs [168]. HH signaling in CRC-SCs is autocrine
and sonic Hedgehog- and PTCH1-dependent [168].
In primary cultures and CRC cell lines, HH signaling

is critical for in vitro cell proliferation and survival, since
CRC-SCs require active HH signaling for self-renewal and
expansion in advanced cancers [169]. HH signaling is also
necessary for the growth of CRC xenografts, recurrence,
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and induction of EMT necessary for metastases [169]. In
contrast, arsenic trioxide, an anti-leukemic drug known to
inhibit the HH signaling pathway by targeting GLI1 [170],
increased CRC-SCs from patient samples [171].

2.3.1 Natural product

Cyclopamine
Cyclopamine, a naturally occurring alkaloid, is a classic
inhibitor of the HH signaling pathway through the inhibi-
tion of SMO [172]. HCT-116 cells grown in serum-free non-
adherent spheroids were treated with cyclopamine and
showed reduced mRNA levels of CSC markers and genes
related to HH signaling, including PTCH1, SMO, and GLI1
[173].
Zhou et al. [174], using bioinformatics analysis, selected

a series of non-coding RNAs related to stemness in
CRC-SCs and identified long non-coding RNAs (lncRNA-
cCSC1) that are highly expressed in CRC and CRC-SCs and
indicated a poor prognosis. After characterization, they
observed that the depletion of lncRNA-cCSC1 levels was
proportional to the increased sensitivity of CRC cells to 5-
FU and to the inhibition of CRC-SCs’ self-renewal capacity
via the HH pathway. The overexpression of lncRNA-cCSC1
increased the protein levels of factors related to stemness,
such as CD133, CD44, and NANOG, and effector proteins
of the HH signaling pathway, SMO and GLI1. In contrast,
the use of cyclopamine caused a reduction in the levels
of biomarkers related to stemness. These data indicate the
potential action of the anti-SMOdrug cyclopamine in elim-
inating CRC-SCs.

2.3.2 Small synthetic molecule

Vismodegib
Vismodegib (also known as GDC-0449) is a potent, orally
bioavailable, specific SMO receptor antagonist. It is used
to treat basal cell skin cancer in clinical practice approved
by the United States-Food and Drug Administration [175].
Although still controversial, vismodegib has been reported
as a drug able to inhibit CRC-SCs, since Wu et al. [176]
showed that vismodegib inhibited cell proliferation and
triggered apoptotic cell death with downregulation of Bcl-
2 in CRC cells. In addition, it reduced the expression of the
CRC-SC markers CD44 and ALDH by approximately 70%.
On the other hand, Chen et al. [177] demonstrated that

vismodegib did not activate apoptosis in human CRC
cells. Moreover, in a clinical trial of 199 patients with
CRC treated with the FOLFOX or FOLFIRI (5-FU, leucov-
orin plus irinotecan) protocol combined with vismodegib,
no benefit associated with the combination was observed
[178].

Although some negative results have been found with
HH signaling inhibitors, new inhibitors must be evalu-
ated in CRC-SCs, especially compounds capable of inhibit-
ing non-canonical HH signaling. These new data can help
understand the potential of HH signaling inhibitors in
CRC therapy.

2.4 NF-κB signaling pathway

NF-κB is a transcription factor that plays a crucial regula-
tory role in the innate immune system and in the inflam-
matory response. NF-κB signaling occurs canonically or
non-canonically. In the canonical pathway, an inhibitor of
NF-κB (IκB) prevents the translocation of the p65/p50 and
c-Rel/p50 dimers to the cell nucleus [179,180]. The ubiquiti-
nation of IκB and its subsequent degradation release these
proteins to be translocated to the cell nucleus, leading to
the activation of the target genes. In the non-canonical
pathway, NF-κB-inducing kinase (NIK) induces the ubiq-
uitination of p100 and its subsequent processing by pro-
teasomes in p52. Then, RelB/p52 is translocated to the cell
nucleus to activate the target genes (Figure 4) [179,180].
Several studies have shown that the NF-κB pathway is

largely associated with the biology of cancer and is upreg-
ulated in most hematological malignancies and solid can-
cers [181,182]. The NF-κB pathway can be activated in the
loss of tumor suppressor genes, such as tumor protein
p53 (TP53), von Hippel-Lindau tumor suppressor (VHL),
and phosphatase and tensin homolog (PTEN), and by the
expression of some oncogenes, such as the rat sarcoma
virus (RAS) family and BCR activator of RhoGEF and
GTPase (BCR)/ABL proto-oncogene 1, non-receptor tyro-
sine kinase (ABL). Moreover, when NF-κB is inhibited in
cancer cells, apoptosis is increased, corroborating the pro-
survival and anti-apoptotic role of NF-κB in cancer cells
[182–185].
The activity of NF-κB subunits arises from a prolonged

chronic inflammatory microenvironment or from various
oncogenic mutations [186]. In the tumor microenviron-
ment, vascular disorganization causes tissue damage due
to hypoxia, and inflammatory pathways are activated with
increased NF-κB activity [187]. Increased NF-κB activity
promotes the tumorigenicmicroenvironment ofCRC [187].
The NF-κB pathway participates in several processes in

CRC-SCs, such as stimulation of cell proliferation, pre-
vention of apoptosis, EMT, angiogenesis, invasiveness,
and metastasis [186]. The activation of NF-κB can regu-
late the maintenance of CRC-SCs by reducing the expres-
sion of miR-195-5p and miR-497-5p [188]. The elevation
of miR-195-5p and miR-497-5p levels by a specific mimic
inhibited the effects of NF-κB on CRC-SCs in vitro and
in vivo. Minichromosome maintenance complex compo-
nent 2 (MCM2) has been identified as the target gene for
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F IGURE 4 The NF-κB signaling pathway. In the canonical pathway, the inhibitory protein IκB inhibits the translocation of the p65/p50
and c-Rel/p50 dimers to the cell nucleus. The ubiquitination of IκB and its subsequent degradation release these proteins to be translocated to
the cell nucleus, leading to the activation of the target genes. In the non-canonical pathway, NIK induces the ubiquitination of p100 and its
subsequent processing by proteasomes in p52. Then, RelB/p52 is translocated to the cell nucleus to activate the target genes. Abbreviations:
ABL, ABL proto-oncogene 1, non-receptor tyrosine kinase; BAFF, B cell-activating factor; BCR, BCR activator of RhoGEF and GTPase;
BMP-2, bone morphogenetic protein-2; CCL19, C-C motif chemokine ligand 19; CIAP1, cellular inhibitor of apoptosis protein 1; ICAM1,
intercellular adhesion molecule 1; IKK, inhibitor of NF-κB kinase; IκB, inhibitor of NF-κB; Kras, Kirsten rat sarcoma viral oncogene homolog;
LPS, lipopolysaccharide; LTβR, lymphotoxin beta receptor; MMP9, matrix metalloproteinase 9; MYC, MYC proto-oncogene, bHLH
transcription factor; NF-κB, nuclear factor kappa B; NIK, NF-κB-inducing kinase; RANK, receptor activator of NF-κB; TERT, telomerase
reverse transcriptase; TNF, tumor necrosis factor

miR-195-5p and miR-497-5p in CRC-SC culture. Overex-
pression of MCM2 restored the stem cell profile of CRC
cells in the presence of miR-195-5p and miR-497-5p, sug-
gesting that miR-195-5p and miR-497-5p may impair CRC-
SCs by inhibiting MCM2 transcription [188].
Even with only a few data on the role of NF-κB in

CRC-SCs, these data suggest promising potential for NF-
κB inhibitors in CRC therapy.

2.5 JAK/STAT signaling pathway

JAK/STAT signaling is a fundamental signaling pathway
for the development of various types of cancer and is
directly involved in growth, progression, and metastasis
and indirectly involved in immune surveillance modula-
tion [189]. Activation of this cell signaling occurs when the
JAK protein is recruited and activated by cytokine recep-
tors. Subsequently, JAK catalyzes the tyrosine phosphory-
lation of the receptor, allowing the recruitment of STAT
proteins. After phosphorylation of STAT, its dimers are
translocated to the cell nucleus to bind to DNA, resulting
in the transcription of target genes (Figure 5) [190,191].
Activation of JAK/STAT signaling in cancer cells can

occur by several mechanisms, the best known being

mutations in STAT3 or glycoprotein 130 (GP130, also
known as IL6-beta), which promote activation indepen-
dent of the STAT3 ligand in liver cancers, and the elevated
expression of cytokines such as IL-6 [192]. In CSCs, this
pathway induces increased tumorigenic capacity, metas-
tasis, and chemoresistance in cancer via increased EMT
[193].
High STAT3 activity was found in CRC-SCs and

tumor-infiltrating lymphocytes but not in non-cancerous
colon epithelia [194]. In addition, a relationship was
observed between the JAK/STAT pathway and the tumor
microenvironment. CRC-derived cells lost STAT3 activ-
ity in culture; however, when these CRC cells were
implanted in mice, STAT3 activity was restored. Further-
more, blocking STAT3 activation in CRC-derived xenograft
tumors reduced tumor development, corroborating the
results that STAT3 participates directly in CRC growth
[194].

2.5.1 Natural products

Curcumin and GO-Y030
Curcumin is a polyphenol from Curcuma longa, and
GO-Y030 is a novel curcumin analog. ALDH+/CD133+
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F IGURE 5 The JAK/STAT signaling pathway. JAK/STAT signaling starts with the interaction of cytokines or growth factors with their
receptors, inducing the dimerization/oligomerization of these receptors and consequent activation. Activated JAKs autophosphorylate and
phosphorylate their associated receptors. Therefore, cytoplasmic STATs bind to phosphorylated receptors and undergo homodimerization or
heterodimerization after their phosphorylation, and they are able to translocate to the nucleus and activate the transcription of target genes.
Abbreviations: JAK, Janus kinase; MMP2, matrix metalloproteinase 2; MYC, MYC proto-oncogene, bHLH transcription factor; SOCS,
suppressors of cytokine signaling; STAT, signal transducer and activator of transcription; VEGF, vascular endothelial growth factor

subpopulations from CRC express high levels of phos-
phorylated STAT3, which enhances the proliferation and
survival of CRC-SC lines [195]. Interestingly, curcumin and
GO-Y030 inhibited STAT3 phosphorylation and induced
apoptosis, as observed by increased expression of cleaved
PARP and cleaved caspase-3 in CRC-SCs. In addition,
curcumin induced cell cycle arrest, inhibited cell viability,
decreased the ability to form spheroids, and suppressed
tumor growth in a xenograftmodel. The effects ofGO-Y030
weremore potent than those of curcumin [195]. These data
indicate curcumin and its analog GO-Y030 as drug candi-
dates to eliminate CRC-SCs by suppressing STAT3 activity.

2.5.2 Small synthetic molecule

Napabucasin
Napabucasin (also known as BBI608) is an orally admin-
istered STAT3 inhibitor with anti-cancer activity against
various types of cancer. It killed CRC-SC SW480 cells iso-
lated by Hoechst-33342 dye exclusion sorting [196]. In a
phase I clinical trial with four patients with metastatic
CRC, napabucasin (240 mg twice daily) plus FOLFIRI and
bevacizumab showed a safety profile in Japanese patients
with metastatic CRC [197]. All four patients had diarrhea,
two patients reported decreased appetite, and decreased
neutrophil counts were observed in three patients. Deaths

or serious adverse effects were not reported. A phase III
clinical trial with patients with advanced p-STAT3+ CRC
treated with napabucasin showed a significant survival
benefit compared to placebo (median overall survival of 5.1
vs. 3 months, hazard ratio = 0.41, P = 0.0025) [198].
These preclinical and clinical data indicate that napabu-

casin is a promising anti-CSC drug in CRC therapy. It is
the most advanced drug in development that targets cell
signaling pathways to eradicate CRC-SCs and the only
one with published results from phase III clinical trials.
Napabucasin may be the first anti-CRC drug approved for
clinical use targeting CSCs.

SC-43 and SC-78
SC-43 and SC-78, STAT3 inhibitors that stimulate Src
homology 2 domain-containing protein tyrosine phos-
phatase 1 (SHP-1) to inactivate STAT3, suppressed the acti-
vation of STAT3 in CRC HCT-116 and HT-29 cell lines
[199]. They also reduced the ability to form spheroids in an
assay with cells grown on non-adherent spheroids without
serum and supplemented with growth factors and to form
colonies in a soft agar colony formation assay. A decrease
in the CD133+/CD44+ subpopulation was also observed.
Moreover, they synergize with oxaliplatin and/or irinote-
can to inhibit sphere formation of these cells.
These data corroborate that STAT3 inhibitors may be

useful to improve anti-CRC therapy targeting CRC-SCs.
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F IGURE 6 The PPAR signaling pathway. This signaling pathway begins through the interaction of a ligand with a GPCR, which triggers
a series of signal conductions passed by AC, cAMP, and PKA until culminating in the activation and translocation of PPARα to the nucleus to
modulate the expression of target genes. Abbreviations: AC, adenylyl cyclase; ACBP, acyl-CoA-binding protein; APO-A5, apolipoprotein A5;
cAMP, cyclic adenosine monophosphate; CPT-2, carnitine palmitoyltransferase 2; GPCR, G protein-coupled receptor; MMP1, matrix
metalloproteinase 1; PGAR, PPAR gamma angiopoietin-related gene; PKA protein kinase A; PPAR, peroxisome proliferator-activated
receptor; RXR, retinoid X receptor

2.6 PPAR signaling pathway

PPARs are nuclear receptor proteins that, when activated,
act as transcription factors and play a critical role in
the regulation of some diseases, including cancer (Figure
6). This pathway is activated by the interaction of a lig-
and with a G protein-coupled receptor, which triggers a
series of signal conductions, including adenylyl cyclase
(AC), cyclic adenosine monophosphate (cAMP) and pro-
tein kinase A (PKA) proteins, until culminating in the acti-
vation and translocation of PPAR for the nucleus to modu-
late the expression of the target genes [200–202]. There are
three variants with different functions for these receptors:
PPARα, PPARδ, andPPARγ. In tumor development, PPARs
are involved in the regulation of cell proliferation, survival,
apoptosis, and tumor growth and can inhibit or promote
tumor development [200–202]. PPARs are also involved in
the initiation and regulation of CSC functions and in the
modulation of the EMT process [203]. They also regulate
lipid droplets, which are organelles that store neutral lipids
as an energy source in some CSCs [204].

2.6.1 Small synthetic molecule

GW6471
GW6471, a PPARα antagonist, interacts directly with
PPARα activation function 2 (AF2) and prevents it from

assuming an active conformation [204]. ACRC study using
SW620, HT-29, WiDr, and SW480 cell lines showed that
the PPARα pathway is active in CRC-SCs. Interestingly,
GW6471 reduced the expression of CSC markers (SOX2,
NANOG, and OCT4) and the ability of CRC cells to form
spheroids [204]. These results suggest that GW6471 is a
drug able to eliminate CRC-SCs. The relationship between
the PPAR pathway and CRC-SCs is consistent, although
more robust studies are needed to confirm the importance
of this pathway in CRC-SCs.

2.7 PI3K/Akt/mTOR signaling pathway

The PI3K/Akt/mTOR signaling pathway plays a key role
in the cell cycle, metabolism, quiescence, and prolif-
eration and is considered a master regulator of can-
cer [205–207]. The conversion of phosphatidylinositol
(3,4,5)-trisphosphate (PIP3) from phosphatidylinositol 4,5-
bisphosphate (PIP2) into the membrane begins after acti-
vation of the growth factor receptor protein tyrosine
kinase, providing coupling sites to signal proteins, such as
Akt. In the final activation of Akt, the mTORC2 complex
phosphorylates Akt at Ser473. Akt activates mTOR com-
plex 1 (mTORC1), improving the synthesis of target pro-
teins (Figure 7).
Some studies have shown the association between

the PI3K/Akt/mTOR signaling pathway and the biology
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F IGURE 7 The PI3K/Akt/mTOR signaling pathway. In the pathway cascade, after growth factors bind to their RTKs, the PI3K signaling
pathway is activated, converting PIP2 into PIP3 until Akt activation is reached. This process is downregulated by PTEN. Akt, in turn,
stimulates mTOR to phosphorylate target proteins to modulate gene expression. Abbreviations: EGFR, epidermal growth factor receptor;
ERBB2, erb-b2 receptor tyrosine kinase 2; GSK-3β, glycogen synthase kinase-3 beta; IGF-1R, insulin-like growth factor 1 receptor; mTOR,
mechanistic target of rapamycin; MYC, MYC proto-oncogene, bHLH transcription factor; PI3K, phosphatidyl-inositol-3-kinase; PIP2,
phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; PTEN, phosphatase and tensin homolog; RTKs,
receptor tyrosine kinases; S6K1, ribosomal protein S6 kinase 1; SOX2, SRY-box transcription factor 2

of CRC-SCs [208]. Chen et al. [209] demonstrated that
human CRC xenografts overexpressed various compo-
nents of the PI3K/Akt/mTORsignaling pathway, including
phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2,
a PI3K regulatory subunit), in CRC-SCs. Through a col-
lection of primary cell cultures growing on spheroids
obtained from 60 CRC specimens, Mangiapane et al. [210]
showed that the high expression of erb-b2 receptor tyrosine
kinase 2 (ERBB2) in CRC-SCs is associated with the activa-
tion of the PI3K/Akt pathway, promoting acetylation in the
regulatory elements of the ERBB2 gene. mTOR expression
was also related to poor prognosis in patients with stage II
CRC [211]. Moreover, a transcriptome of CRC-SC primary
cultures and their normal stem cell counterparts revealed
enrichment of genes central to PI3K/Akt and Wnt signal-
ing in CRC-SCs [212].

2.7.1 Natural products

Piplartine/piperlongumine
Piplartine, also known as piperlongumine, is an alka-
loid amide isolated from peppers (the Piperaceae family).
It presents multiple pharmacological activities, including
cytotoxicity and in vivo anti-tumor effects against differ-
ent types of cancers. The mechanism of action of piplar-
tine has been associated with its capacity to induce oxida-

tive stress by inhibiting the antioxidant system, including
depletion of glutathione [213–217]. In particular, piplartine
inhibited the Ras/PI3K/Akt/mTOR pathway and reduced
tumor cell growth in a dimethylhydrazine/dextran sulfate
sodium-induced colon carcinogenesis animal model [218].
Auranofin is a clinically approved synthetic drug for the

treatment of rheumatoid arthritis. Anticancer properties
have been reported for this gold molecule, where its main
mechanism of action is inhibition of cellular antioxidant
enzymes, such as thioredoxin reductase, causing oxida-
tive stress and cell death in cancer cells [219]. Auranofin
demonstrated selective capacity to improve the inhibition
of CT26 colon tumor growth in a mouse model of abdomi-
nal irradiation without enhancing radiation toxicity in the
normal intestine [220]. Auranofin also sensitized HCT116
and SW620 cells to 5Z-7-oxozeaenol, an inhibitor of TGF-
β-activated kinase 1 [221].
Moreover, Tanaka et al. [222] demonstrated that piplar-

tine plus auranofin decreased the expression level of the
CD44v9 surface marker and reduced CRC growth in a
patient-derived xenograft model. Piplartine also showed
lower cytotoxicity to fibroblast cells than cancer cells grow-
ing in spheroids. This indicates that piplartine plus aura-
nofin is able to eliminate CRC-SCs. Interestingly, piplar-
tine also inhibited stemness properties in leukemia [223]
and oral cancer [224] and had less effect on the viability of
normal cells [213, 214].
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Atractylenolide I
Atractylenolide I (ATL-1) is a plant-based compound found
in the rhizome of Atractylodes macrocephala used in tradi-
tional Chinese medicine. In a study using CRC COLO205
and HCT116 cell lines, ATL-1 treatment induced apoptosis,
inhibited invasion, downregulated the Akt/mTOR path-
way by reducing the phosphorylation of pathway-related
proteins, and reduced the stem cell phenotype [225]. In
an in vivo experiment, ATL-1 reduced tumor weight and
reduced CRC-SCs. This suggests that ATL-1 can inhibit
CRC-SCs in vitro and in vivo.

Rapamycin
Rapamycin, a macrolide from Streptomyces hygroscop-
icus, is clinically used due to its immunosuppressant
functions. It is a known mTOR inhibitor. Interestingly,
rapamycin treatment decreased the spheroid-forming abil-
ity andALDH1 activity inCRCCaco-2 and SW480 cell lines
[211]. These effectswere also observed in co-treatmentwith
5-FU and oxaliplatin. Importantly, 5-FU and oxaliplatin
generally increased the CRC-SC subpopulation, but co-
treatmentwith rapamycin reduced this cell subpopulation.
These data indicate that rapamycin can inhibit CRC-SCs
and potentiate the effect of 5-FU and oxaliplatin.

2.7.2 Small synthetic molecules

Dactolisib
Dactolisib (also known as BEZ235), a synthetic imida-
zoquinoline derivative, is a dual PI3K/mTOR inhibitor
that selectively inhibits PI3K class I (p110α, β, δ, and γ),
mTORC1, andmTORC2, inhibiting their catalytic activities
and cell signaling [226]. Dactolisib suppressed the prolifer-
ation of CRC-SCs and reduced the expression of CD133 and
LGR5 in HCT116 cells. In particular, insulin, a positive reg-
ulator of the PI3K/Akt/mTOR pathway, reduced the effect
of treatment with dactolisib. This result suggests that dac-
tolisib is a drug with the ability to eliminate CRC-SCs.

LY294002
LY294002, a synthetic compound developed based on
the flavonoid quercetin, acts as a PI3K inhibitor. Treat-
ment with LY294002 resulted in decreased proliferation,
spheroid formation, and self-renewal properties, together
with reduced Akt phosphorylation and cyclin D1 expres-
sion in CRC-SCs in vitro [209]. In an in vivo experiment,
LY294002 reduced tumorigenicity, increased the detection
of cleaved caspase 3, and increased the expression of the
inflammatory chemokine IL-8. These data indicate that
LY294002 is capable of eliminating CRC-SCs in preclinical
models.

Taselisib, miransertib, and buparlisib
Taselisib, an inhibitor of PI3K class I, selectively inhibits
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic
subunit alpha (PIK3CA) and its mutant forms in the
PI3K/Akt/mTOR pathway. Treatment of CRC-SCs from 60
samples from CRC patients with trastuzumab (an ERBB2
inhibitor), dabrafenib (a MEK inhibitor) or taselisib
induced in vitro cell death and regression of tumor
xenografts, including those with KRAS and PIK3CAmuta-
tions [210]. Furthermore, taselisib alone was also able to
kill CRC-SCs and inhibited the formation of liver metas-
tases in immunocompromised mice after injection of CRC
sphere cells. Buparlisib (also known as BKM120), another
PI3K inhibitor, and miransertib, an Akt inhibitor, also
reduced the viability of CD44v6+ cells in vitro [210].
In a phase Ib clinical trial in patients with KRAS wild-

type advanced CRC, buparlisib (60 mg given 5 out of 7
days per week) plus panitumumab (6mg/kg injected intra-
venously every 2 weeks) was recommended for a phase II
clinical trial [227].

Metformin
Metformin, an oral anti-diabetic drug, has also been
reported as a cytotoxic agent with the ability to reduce
the CSC population in different types of cancer [228–230].
In both flow cytometric analysis (CD44+/CD133+) and
tumor spheroid growth assays, CSCs decreased after treat-
ment with metformin in CRC HT-29 and DLD-1 cell lines
[231]. Augmentation of the phosphorylation of adeno-
sine monophosphate-activated protein kinase (AMPK)
and reduction of mTOR (p-S6) were also observed after
treatment with metformin. In a xenograft mouse model
using HT-29 cells, tumor growth and CSC populations
were decreased by metformin administration. Metformin
effects were prevented by mevalonate treatment [231].
Interestingly, metformin also reduced CSCs in patients
with colorectal and other gastrointestinal cancers in a pilot
clinical trial [232].
These preclinical and clinical results indicatemetformin

as a promising anti-CRC-SC drug, but more clinical data
are needed to use it in CRC therapy.

Torin 1, Torkinib and MK-2206
Torin 1, a selective inhibitor of mTOR, has anti-tumor
properties. Torin 1 was able to induce cell death in CRC-
SCs in vitro and in vivo without affecting the proliferation
of normal colon stem cells in vivo [233]. Torkinib (PP242)
is an ATP-competitive second-generation inhibitor of
mTOR. It reduced CRC-SCs in in vitro models when it was
used alone or in combination with 5-FU and oxaliplatin
[211]. MK-2206 is an allosteric Akt inhibitor. It inhibited
CRC-SCs, as observed by the reduction of the capacity to
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F IGURE 8 The TGF-β/Smad signaling
pathway. During activation, TGF-β ligands
bind to TGFBR2, which phosphorylates
TGFBR1. TGFBR1 then phosphorylates
receptor-regulated Smads (Smad2/3) that
bind to Smad4. This complex is translocated
to the cell nucleus and acts as a transcription
factor to regulate target gene expression.
Abbreviations: SNAI1, snail family
transcriptional repressor 1; TGFBR1, TGF-β
receptor type 1; TGFBR2, TGF-β receptor type
2; TGF-β, transforming growth factor-β;
TWIST1, twist family BHLH transcription
factor 1; ZEB1, zinc finger e-box binding
homeobox 1

form spheres in vitro and to initiate tumor formation in
vivo using the CRC SW480 cell line [212]. MK-2206 was
also effective in reducing patient-derived spheroid forma-
tion.
These data indicate the importance of the

PI3K/Akt/mTOR pathway in the control of CRC-SCs,
showing that this pathway may be a target for therapeutic
agents and can improve CRC therapy in the future.

2.8 TGF-β/Smad signaling pathway

The TGF-β/Smad signaling pathway plays an important
role in tissue maintenance and is dysregulated in various
cancers, including CRC [234,235]. TGF-β superfamily lig-
ands include TGF-β, activin A, and nodal. There are three
distinct subtypes of Smads: receptor-regulated Smads (R-
Smads, e.g., Smad2 and Smad3), common partner Smads
(Co-Smads, e.g., Smad4), and inhibitory Smads (I-Smads,
e.g., Smad7). Activation begins when TGF-β ligands bind
to TGF-β receptor type 2 (TGFBR2) and then phosphory-
late TGF-β receptor type 1 (TGFBR1). This type I receptor
phosphorylates R-Smads that bind Co-Smads. This com-
plex is translocated to the cell nucleus and acts as a tran-
scription factor to regulate target gene expression (Figure
8) [234–236].
In CRC, mutations in TGFBR2, affected by DNA repair

deficiency with microsatellite instability, increase the cell
survival rate. Furthermore, when Smad4 undergoes muta-
tions and loses its function, there is an increase in tumor
progression [237,238]. When Smad4 loss occurs together
with mutations in the APC gene in intestinal epithelial
cells, amalignant invasive phenotype arises inmousemod-

els. The absence of Smad4 is found in approximately 20%-
40% of CRC patients [239]. Although the loss of heterozy-
gosity on chromosome 18 may be the main cause of Smad4
loss in CRC, there are other post-transcriptional and post-
translational mechanisms that can contribute to its loss
or dysfunction, such as ubiquitylation, sumoylation, and
microRNA interference [240]. In addition, TGF-β signal-
ing also interacts with the Wnt pathway, where the loss
of Smad4 promotes β-catenin expression [241]. Therefore,
Wnt activation in the intestinal epithelium triggers the
acquisition of stem cell properties and leads to dedifferen-
tiation and rapid adenoma formation in the differentiated
intestinal epithelium of a mouse model.
A study using miR-4666-3p and miR-329 demonstrated

that TGF-β1 expression decreased with the weakening of
stemness properties and that the activation of the TGF-
β1/Smad pathway could function as a tumor suppressor
gene for inhibiting the stemness of CRC. The authors later
tested both miR-4666-3p and miR-329 in 73 tumor sam-
ples and paired normal tissues and revealed that these two
miRNAs are related to poor prognosis and advanced tumor
stage of CRC. This study confirms the importance of the
TGF-β/SMAD pathway for CRC-SCs and provides a new
epigenetic regulation mechanism in CRC-SCs, which can
be used in new therapeutic strategies for cancer treatment
[242].

2.8.1 Natural product

Baicalin
Baicalin is a monomeric flavonoid from the root of Scutel-
laria baicalensis, a traditional Chinese herb. Baicalin has
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TABLE 1 Drugs that target cell signaling pathways in CRC-SCs

Drugs Mechanism of action Reference
36-077 Suppresses GSK-3β/Wnt/β-catenin signaling [118]
4-Acetyl-antroquinonol B Suppresses LGR5/Wnt/β-catenin and JAK-STAT signaling [104]
Anti-DLL4 antibodies Suppresses Notch signaling [158]
Atractylenolide I Suppresses Akt/mTOR signaling [225]
Baicalin Suppresses TGF-β/Smad signaling [244]
Buparlisib (BKM120) Suppresses PI3K/Akt/mTOR signaling by inhibition of PI3K [210]
CBB1003 Suppresses β-catenin/TCF signaling [119]
Cucurbitacins Suppresses Notch signaling by downregulation of the expression of ADAM9 [142]
Curcumin Suppresses JAK/STAT signaling by inhibition of STAT3 [195]
Cyclopamine Suppresses HH signaling by inhibition of SMO [171]
Dactolisib Suppresses PI3K/Akt/mTOR signaling by inhibition of PI3K [226]
Diallyl trisulfide Suppresses Wnt/β-catenin signaling [105]
Epigallocatechin-3-gallate Suppresses Wnt signaling by upregulation of GSK-3β [96]
Evodiamine Suppresses Wnt and Notch signaling [150]
Farnesyl dimethyl chromanol Suppresses Wnt/β-catenin signaling [102]
FH535 Suppresses Wnt/β-catenin signaling [123]
GO-Y030 Suppresses JAK/STAT signaling by inhibition of STAT3 [195]
GW6471 Suppresses PPAR signaling (PPARα antagonist) [204]
Honokiol Suppresses Notch signaling by inhibition of the levels of the γ-secretase complex [139]
HZ8CV2 Suppresses Wnt signaling [126]
IC-2 Suppresses Wnt signaling [111]
JIB-04 Suppresses Wnt signaling by increasing the expression of AXIN1 and GSK3β [109]
LY294002 Suppresses PI3K/Akt/mTOR signaling by inhibition of PI3K [209]
α-Mangostine Suppresses Notch signaling [155]
Metformin Suppresses PI3K/Akt/mTOR signaling by inhibition of mTOR [231]
Miransertib Suppresses PI3K/Akt/mTOR signaling by inhibition of Akt [210]
MK-2206 Akt inhibitor [212]
Napabucasin (BBI-608) Suppresses JAK/STAT signaling by inhibition of STAT3 [196]
NCB-0846 Suppresses Wnt signaling by block TNIK [57,114]
Phenethyl isothiocyanate Downregulates Wnt/β-catenin [66]
Pien Tze Huang formula Suppresses Notch signaling [156]
Piplartine/piperlongumine Suppresses PI3K/Akt/mTOR signaling [218,222]
Portulaca oleracea extract Downregulates the expression of Notch1 and β-catenin [153]
Quercetin Suppresses Notch signaling by suppression of the γ-secretase complex [151]
Rapamycin mTOR inhibitor [211]
Retinoids Suppresses Wnt signaling via differentiation therapy by HOXA5 induction [58]
Rimonabant Suppresses β-catenin [121]
Salinomycin Disruption of the Wnt/β-catenin/TCF complex [78,89]
SC-43 and SC-78 Suppresses STAT3 signaling [199]
Sulforaphane Suppresses TAp63α/LGR5/β-catenin axis [75]
Taselisib Suppresses PI3K/Akt/mTOR signaling by inhibition of PI3K [210]
Torin 1 mTOR inhibitor [233]
Torkinib mTOR inhibitor [211]
Vismodegib Suppresses HH signaling by inhibition of SMO [176]
Zerumbone Suppresses β-catenin signaling [106]

Abbreviations: CRC-SCs, colorectal cancer stem cells;AXIN1, axin-1; GSK-3β, glycogen synthase kinase-3 beta; HH, hedgehog; HOXA5, homeobox A5; JAK/STAT,
Janus kinase/signal transducer and activator of transcription; LGR5, leucinerich repeat-containing G-protein-coupled receptor 5; NF-κB, nuclear factor kappa B;
PI3K/AKT/mTOR, phosphatidyl-inositol-3-kinases/akt/mechanistic target of rapamycin; PPAR, peroxisome proliferator-activated receptor; SMO, smoothened;
TAp63α, transactivating p63 isoform α; TCF, T-cell factor; TNIK, TRAF2- and NCK-interacting kinase; Wnt, wingless.
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TABLE 3 Other molecules/therapies that target CRC-SCs

Drug/Therapy
Pharmacological/
Chemical class Action Reference

5-aminosalicylic acid Anti-inflammatory modulator
drug

Suppress stemness features in many CRC cell lines [256]

Antibody dual-antigen-
binding specificity to
CD133 and CD3

Antibody Reduces CD133+ CRC cells in vitro and in vivo [257]

ASR352 Chk1 inhibitor Inhibits CRC-SCs in preclinical models [258]
CD133-directed CAR T cells CAR-T cells Eliminates CD133+ cells and reduced tumor growth

in a phase I clinical trial with patients with
advanced metastasis colorectal, liver and
pancreatic cancers

[259]

CD133-targeted oncolytic
adenovirus

Oncolytic adenovirus Eliminates CD133+ CRC in vitro and in vivo [260]

Dabrafenib BRAF inhibitor Synergies with cetuximab (EGFR inhibitor) to
decrease stem cell in BRAF(V600E)-mutant CRC
cells

[261]

Ellagic acid Ellagitannin metabolites Mixed with urolithins (gut microbiota-derived)
reduces CRC-SCs of Caco-2 cells and primary
tumor cells from a patient with CRC

[262]

G2.2 Sulfated nonsaccharide
glycosaminoglycan mimetic

Reduces CRC-SCs in cell lines via p38 MAPK
activation

[263]

Gambogic acid Xanthonoid from Garcinia
hanburyi

Inhibits CRC-SCs by upregulation of ZFP36 [264,265]

Ginsenoside Major active component of
ginseng

Reduced growth and stemness of CRC cells in vitro
and in vivo

[266]

Heparan sulfate
hexasaccharide

Non-anticoagulant heparin
derivative

Inhibits CRC-SCs by activation of p38 MAPK [267]

Mithramycin A Polyketide antibiotic Reduces CRC-SCs in different cell lines [268]
Nigericin Antibiotic from Streptomyces

hygroscopicus
Reduces CRC-SCs in HT-29 and SW116 cell lines [269]

NSC30049 Chk1 inhibitor Inhibits CRC-SCs in preclinical models [270]
Parthenolide Sesquiterpene lacton from

Tanacetum parthenium
Eliminates CRC-SCs in preclinical models [271]

Polydatin Glycoside of resveratrol found in
Polygonum cuspidatum

Combination with radiation caused apoptosis of
LGR5+ CRC cells

[272]

Silibinin Flavonolignan from Silybum
marianum

Inhibits the growth kinetics of CRC-SCs in different
cell lines

[273]

Thiostrepton Thiazole antibiotic from
Streptomycetes sp.

Induces cell death in CRC-SCs in HCT-15 and
HT-29 and synergizes with oxaliplatin

[274]

UCN-01 Staurosporin derivative Inhibits CRC-SCs growth and increases irinotecan
action in vitro and in vivo

[275]

Abbreviations: CRC-SCs, colorectal cancer stem cells; BRAF, B-Raf proto-oncogene, serine/threonine kinase; CAR-T, chimeric antigen receptor T cells; Chk1,
checkpoint kinase 1; EGFR, epidermal growth factor receptor; LGR5, leucine-rich repeat-containing G-protein-coupled receptor 5; MAPK, mitogen activated
protein kinases; ZFP36, ZFP36 ring finger protein.

several pharmacological effects, including anti-cancer,
anti-inflammatory, antioxidant and neuroprotective
effects [243]. In CRC RKO and HCT116 cell lines, baicalin
caused cell cycle arrest in the G1 phase, p53-independent
cell apoptosis, and EMT inhibition by inhibiting the
TGF-β/Smad pathway [244]. Baicalin also inhibited the

CRC-SC subpopulation in in vitro and in vivo models
using the CRC HCT116 cell line.
Altogether, the TGF-β/Smad signaling pathway also

plays an important role inCRC-SCmaintenance, andnovel
selective inhibitors must be screened for CRC-targeting
stemness properties.
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3 PERSPECTIVES

Tumors have high complexity and are composed of multi-
ple morphologically and phenotypically distinct subpopu-
lations of cancer cells. The CSC subpopulation plays a crit-
ical role in the recurrence, progression, and metastasis of
CRC and consequent cell resistance to current treatments
since this subpopulation appears to be more resistant to
chemotherapy and radiotherapy. In this context, exploring
newmethods to inhibit CSCs seems essential for achieving
therapeutic success in CRC. In this review, we highlight
fundamental pathways for sustaining CRC-SCs. Table 1
summarizes the reported drugs that eradicate CRC-SCs by
inhibiting these pathways. Among them, buparlisib, cur-
cumin, epigallocatechin-3-gallate, metformin, MK-2206,
napabucasin, quercetin, rapamycin, taselisib, and vismod-
egib have been tested in clinical trials as anti-CRC agents
(Table 2). In particular, napabucasin, a STAT3 inhibitor,
is the only agent that has been completed phase III
clinical trials. It improved survival compared to placebo
(median overall survival of 5.1 vs. 3 months) in advanced p-
STAT3+ CRC patients [198]. Clinical data with these CRC-
SC inhibitors are still limited. Currently, there is no clini-
cally effective therapy to suppress CSCs.
The Wnt canonical pathway seems to be the most

relevant for the growth of CRC-SCs, also counting on
the contribution of the Notch, HH, NF-κB, JAK/STAT,
PPAR, PI3K/Akt/mTOR, and TGF-β/Smad pathways,
which needs further study. It is important to note that
these signaling pathways do not operate separately but
function as a network. It is necessary to suppress more
than one pathway to inhibit possible crosstalk with other
pathways. Interestingly, these signaling pathways are aber-
rantly expressed in bulk CRC and CRC-SCs, which allows
the use of their protein expression levels as therapeutic
biomarkers to guide the treatment of CRC patients with
appropriate inhibitors.
On the other hand, many studies have reported that

many of these pathways also regulate the maintenance of
normal stem cell homeostasis [245–248], indicating that
inhibitors of these pathways may lead to toxicity to normal
tissues and limit the use of anti-CRC therapy. Although
intestine and blood stem cells are in constant proliferation,
most stemcells in themammary glands, skin, and brain are
usually quiescent [249–252]. Thus, more data are needed
on the toxicity of inhibitors of these signaling pathways.
Complementally, CAR-T (chimeric antigen receptor T)

cells, antibodies, and othermoleculeswith different targets
have also been developed to specifically target CSCs. Some
of them are summarized in Table 3.
Additionally, extracellular factors affecting the tumor

microenvironment, such as vascular niches, hypoxia,

tumor-associated macrophages, cancer-associated fibrob-
lasts, and extracellular matrix, have emerged as an impor-
tant topic in CSC regulation, and many strategies target-
ing the microenvironment of CSCs have been revealed
[253–255]. Accordingly, effective treatment strategies for
CRC-SCs must emphasize not only intracellular signaling
pathways but also reciprocal interactions between CRC-
SCs and extracellular factors.

4 CONCLUSIONS

This review highlights therapeutic targets for drugs that
act on the signaling pathways activated in CRC-SCs. Drugs
under preclinical and clinical studies are summarized to
direct future research. This knowledge will contribute to
the study of potential therapeutic schemes, combining
conventional drugswith CSC-targeting drugs and allowing
better cure rates in anti-CRC therapy.
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