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Introduction
Paleoparasitology aims to study parasites in archeological and 
paleontological material (Araújo et al., 2013). Paleoparasitologi-
cal research allows making inferences about the diet and health 
conditions of past populations (Ferreira et  al., 2014; Iñiguez, 
2020). Possible samples to be analyzed mainly consist of copro-
lites, that is, desiccated and/or mineralized fecal matter, and sedi-
ment from the pelvic and abdominal cavity of skeletons, as well 
as from latrines, trash pits, and spaces of occupation at archeo-
logical sites (Borba et  al., 2019; Fugassa et  al., 2008; Guedes 
et al., 2020; Ramirez et al., 2021b; Reinhard et al., 2008; Vieira de 
Souza et al., 2018; Yeh et al., 2019). Less frequently, mummified 
tissues and regurgitation pellets of birds of prey have been pro-
cessed (Beltrame et  al., 2011; Fugassa, 2014; Gonçalves et  al., 
2003).

Depending on the sample, one can expect to find diverse para-
site evidence: protozoan cysts, helminth eggs, or arthropod 
appendices. Taphonomic processes affect differently each one of 
these materials and, accordingly, the remains contained within 
them (Morrow et  al., 2016). While some eggs are particularly 
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resistant due to their multiple layers, cysts are very fragile and, 
thus, are not commonly found in ancient material (Gonçalves 
et al., 2003). In addition, some environments are not suitable for 
the preservation of parasite remains (Camacho et al., 2016; Jaeger 
et al., 2013a, 2013b; Morrow et al., 2016; Rácz et al., 2015). For 
example, humid-warm climate environments allow a high micro-
organism activity, damaging cysts, eggs, and arthropod remains. 
Hence, paleoparasitological examinations can be challenging 
when working with naturally degraded or poorly conserved 
samples.

Paleoparasitological studies had an important development in 
Argentina over the last 15 years, through the examination of sam-
ples mainly from the Patagonia region, leading to the finding of 
both helminth eggs and protozoa cysts (Beltrame et  al., 2010, 
2018, 2020; Fugassa et al., 2008, 2010, 2018). Most were well 
preserved, sometimes allowing identification at a species level. 
On the other hand, in the central region of the country, the appli-
cation of paleoparasitological techniques (Ramirez et al., 2021a, 
2021b) showed scarce results, probably attributed to the tapho-
nomic processes acting negatively on the preservation of remains.

In this sense, this work aimed at evaluating the effects of dehy-
dration/desiccation and local soil in the recovery of parasite 
remains on experimental coprolites, that is, artificially desiccated 
modern feces (Iñiguez, 1998) by conventional paleoparasitologi-
cal techniques and a quantitative approach.

Materials and methods
Recent human feces (n = 8), positive for parasite infection by 
Hymenolepis nana (Figure 1a), Ascaris sp. (Figure 1b) and Enter-
obius vermicularis (Figure 1c), were donated for this study. Fecal 
samples were separated in five different subsamples: (1) fresh 
feces; (2) experimental coprolites; (3) experimental coprolites 
with the addition of soil sediment; (4) control coprolites; and (5) 
control coprolites with the addition of soil sediment.

First, fresh feces subsamples were processed by spontaneous 
sedimentation technique (Lutz, 1919) for 1 h, to concentrate 

parasite remains. Aliquots of 200 µg were recovered from each 
sample. In addition, 1 mL was separated for sucrose flotation 
technique (Sheather, 1928), performing a 30-min flotation in a 
sucrose-saturated solution (δ = 1290).

Experimental coprolites with sediment were prepared by mix-
ing archeological sediment with equal mass in grams of fresh 
feces. In order to obtain dehydrated samples emulating original 
coprolites, experimental coprolites with and without soil sediment 
were then desiccated at 37°C and daily dehydration was controlled 
by weighing, until no further reduction in weight occurred, which 
took place after 2 weeks. Then, they were kept at 37°C for the 
same time they were initially dehydrated (Iñiguez, 1998), to ensure 
total dehydration. However, no weight variation was observed 
during this additional period, counting a total dehydration time of 
4 weeks. On the other hand, coprolite controls, with and without 
sediment, were kept at −20°C throughout the process to avoid the 
influence of ambient temperature on the samples, resulting in 
decomposition, for example, and mainly, as a parallel comparison 
with samples subjected to the effects of desiccation. Soil sedi-
ments were taken from the cranium of an individual from El 
Diquecito site (2562 ± 47 BP AA93742), located in the coast of 
Mar Chiquita Lagoon, province of Córdoba. This individual was 
negative to paleoparasitological examination (Ramirez et  al., 
2021b). Soil texture was silt loam with a basic pH (8), and showed 
a violent reaction when immersed in hydrochloric acid, suggesting 
the presence of large amounts of calcium carbonate (Tavarone 
et  al., 2016). When humid, the sample was yellowish brown 
(10YR5/4, according to the Munsell Soil Color Chart); when 
dried, it was very pale brown (10YR7/3) Tavarone, 2014).

Conventional paleoparasitological techniques were applied to 
experimental and control coprolites. First, they were rehydrated 
in a 0.5% water solution of trisodium phosphate for 72 h (Callen 
and Cameron, 1960) at 4°C. Spontaneous sedimentation was used 
for 24 h and aliquots of 200 µg of each subsample were taken for 
the analyses. Flotation technique was applied as described.

The observations were made with a light microscope (Labk-
lass XSZ 107 CCD) using 100× magnifications. All the eggs 

Figure 1.  Helminth eggs detected in the samples of the present study. Eggs found in fresh feces subsamples: (a) Hymenolepis nana, (b) Ascaris 
sp., and (c) Enterobius vermicularis; Eggs found in experimental coprolites subsamples: (d and e) H. nana and (f ) Ascaris sp. (d) and (e): Note the 
deformation in the walls of H. nana eggs.
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present were counted and eggs per gram (EPG) were estimated 
using the formula EPG = NEO/0.02, where NEO means Number 
of Eggs Observed. The divisor 0.02 refers to the 200 µg aliquot 
that was totally analyzed from each sample. In subsamples with-
out addition of soil sediment, including fresh samples, the for-
mula was adjusted to EPG = (NEO/0.02)/2. The integrity of the 
retrieved eggs was also evaluated by morphological analysis con-
sidering subsamples and both techniques. A total of 40 subsam-
ples and approximately of 400 slides, 10 per subsample, were 
examined.

Non-parametric of Friedman and Wilcoxon signed-rank tests 
were performed in a Microsoft Excel® program through Data 
Analysis Toolpak for Excel, with the null hypothesis of no differ-
ence in parasite recovery (α = 0.05), using the EPG calculated in 
each experimental procedure. The analyses were corroborated 
with R statistical software version 4.0.2 (R Core Team, 2020).

Results
An important loss of parasite eggs was observed in all the samples 
when comparing fresh feces subsamples with experimental and 
control coprolites, both with and without sediment soils added 
(Table 1). When donated, one sample positive to E. vermicularis 
(ID02) showed no eggs, even in the fresh feces subsample, thus it 
was not used for evaluation. Another sample positive to pinworm 
infection (ID06) only showed parasite eggs in the fresh feces 
subsample.

Statistical analyses demonstrated significant differences 
among subsamples when both, spontaneous sedimentation Lutz 
(p = 0.01) and Sheather flotation techniques (p < 0.01), were 
applied. The detection of eggs was statistically significant using 
spontaneous sedimentation when compared to the performance of 
flotation technique regarding fresh feces (p = 0.03) and experi-
mental coprolites (p = 0.03). Considering all subsamples (n = 40) 
using the two techniques, the difference among EPG values was 
highly significant (p < 0.01; Supplemental Appendix 1).

Statistical analyses revealed a particularly significant differ-
ence concerning dehydration effects between the initial EPG 
values in the fresh feces and those obtained from experimental 
coprolites (p < 0.01; Figure 2a). Regarding the effects of sedi-
ment soil, a marked difference was noted between the initial 
EPG values in the fresh feces and those recovered in 

experimental coprolites with sediment (p < 0.01; Figure 2b). A 
significant difference was observed when comparing EPG from 
fresh subsamples with those of control coprolites without soil 
(p = 0.02) and highly significant with control coprolites with soil 
sediment (p = 0.01). EPG significantly differed from control 
coprolites with sediment subsamples in relation to their corre-
sponding experimental coprolites with sediment (p = 0.02). 
When experimental coprolites without soil sediment were com-
pared with their respective control subsamples, a near to α value 
was observed, showing no significant difference (p = 0.06; Fig-
ure 2a and b). Importantly, there was a highly significant differ-
ence in egg loss between experimental coprolites with and 
without sediment addition (p < 0.01; Figure 2c; Supplemental 
Appendix 1).

Partial deformation of egg walls and internal content was 
observed only in subsamples containing H. nana eggs, using both 
techniques. However, these morphological modifications of eggs 
were evidenced in a larger number of experimental coprolites 
with sediment (ID07 = 75, 0% of deformed eggs by Lutz, Sheather, 
respectively) and without sediment (ID03 = 62, X%; ID05 = 45, 
60%; ID07 = 54, 50%; ID08 = 50, 0%; 0 = No eggs deformed; 
X = No eggs retrieved; Figure 1d and e) than in fresh feces 
(ID03 = 24, 32%; ID05 = 23, 28%; ID07 = 4, 0%; ID08 = 0, 0%) 
that were predominantly intact (Figure 1a). The same tendency 
was also observed in control subsamples containing H. nana 
eggs, with a percentage of modified eggs in subsamples with sedi-
ment: ID03 = 11, 0%; ID05 = 45, 100%; ID07 = 100, 03%; 
ID08 = 0, 33%, and without sediment: ID03 = 13, 0%; ID05 = 45, 
43%; ID07 = 30, 29%; ID08 = 4, 13%. Ascaris sp. eggs showed no 
evidence of deformation in the subsamples (Figure 1b and f).

Discussion and conclusions
The influence exerted by environmental and climatic conditions 
and the different elements present in the soils on the preservation 
of the micro remains is a major issue when working with ancient 
parasites recovery. Thus, paleoparasitologists often find helminth 
eggs, with their diagnostic elements, altered in different ways, 
from slightly damaged to total absence, preventing parasite 
identification.

In the present work, we evaluated the influence of dehydration 
and local soil adding to modern feces on loss of parasite eggs. We 

Table 1.  Samples, helminth species, and egg quantification in fresh feces, experimental, and control coprolites.

Sample ID/parasite Fresh feces Experimental coprolites Control coprolites

NoHo EPG NoHo EPG NoHo EPG

SS FL SS FL ID SS FL SS FL ID SS FL SS FL

ID01 Ascaris sp. 1272 353 3180 882.5 EC 33 22 82.5 110 CC 159 237 397.5 592.5
ECsed 6.5 2.5 65 25 CCsed 131 32 1310 320

ID03 H. nana 190 25 475 62.5 EC 111 – 277.5 – CC 233 12 582.5 30
ECsed – – – – CCsed 38.5 1 – 10

ID04 Ascaris sp. 43 3 107.5 7.5 EC 18 – 45 – CC – – – –
ECsed 1.5 – 15 – CCsed – – 335 25

ID05 H. nana 499 142 1247.5 355 EC 35 5 87.5 25 CC 57 7 142.5 17.5
ECsed – – – – CCsed 33.5 2.5 – –

ID06 E. vermicularis 2 4 5 10 EC – – – – CC – – – –
ECsed – – – – CCsed – – – –

ID07 H. nana 275 33 687.5 82.5 EC 89 2 222.5 10 CC 64 17 160 42.5
ECsed 2 – 20 – CCsed 0.5 – – –

ID08 H. nana 117 3 292.5 7.5 EC 20 5 50 25 CC 127 15 317.5 37.5
ECsed 0.5 – 5 – CCsed 8.5 1.5 85 15

NoHo: number of helminth eggs; EPG: eggs per gram of feces; EC: experimental coprolite without addition of soil sediment; ECsed: experimental 
coprolite with sediment addition; CC: control coprolite without sediment addition; CCsed: control coprolite with sediment addition; SS: parasitological 
technique of spontaneous sedimentation; FL: parasitological technique of flotation in sucrose-saturated solution.
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analyzed 40 final subsamples including fresh feces, experimental 
coprolites with and without sediment from local soil, and control 
coprolites with and without sediment.

We collected data that allow us to infer about post-depositional 
influence on parasite recovery. A highly significant loss of eggs of 
H. nana, E. vermicularis, and Ascaris sp. was observed between 
the fresh feces subsamples and the experimental coprolites or 
experimental coprolites with sediment (Figure 2), evidencing the 
importance of both desiccation and local soil in parasite 
degradation.

Previous research employing experimental coprolites showed 
that, although suffering gross morphological alterations after des-
iccation, Trichuris trichiura eggs presented no statistically sig-
nificant morphometric changes. Therefore, whipworm could be 
identified at a species level (Confalonieri et al., 1985). As noted 
by Araújo (1988), modification of ancylostomid eggs after exper-
imental desiccation was not significant either. In the present 
study, in most fresh subsamples with H. nana, the egg structure, 
including walls and filaments, was found in ideal conditions, 
allowing precise identification (Figure 1a). In contrast, in their 
experimental coprolite subsamples, a high number of eggs with 
deformed walls was detected (Figure 1d). If this phenomenon was 
observed in authentic coprolites, deformation could hamper iden-
tification at a species level. Although H. nana and H. diminuta 
eggs are not close in size to each other (Atías, 1998), when con-
siderable shrinkage in their walls occurs, the distinction between 
these common species by morphometric means could be hin-
dered. On the contrary, Ascaris sp. eggs showed no morphologi-
cal modifications when desiccated (Figure 1f). This is possibly 
due to eggshell composition, which includes multiple thick albu-
minoid and lipid layers (Atías, 1998). Hymenolepid eggs were 
more prone to deformation and degradation, both due to soil com-
position and desiccation. However, the deformation of some eggs 
in fresh feces shows how fragile the eggs of this species are and 
how easily they tend to decay. In addition, E. vermicularis eggs 
were found in one fresh feces subsample (Figure 1c), but none in 
the rest of the subsamples. This case might also result from the 
structure of the parasite, since pinworm eggs have thin layers that 
decompose easier than those of other helminth eggs. This high-
lights the importance of performing more sensitive assays like 
those of Molecular Paleoparasitology which have allowed detect-
ing E. vermicularis infection by paleogenetic means in individu-
als without eggs found by microscopy (Iñiguez et al., 2003, 2006; 
Jaeger and Iñiguez, 2014).

In this work, the effect of soil sediment had a high statistically 
significance (p < 0.01; Figure 2b and c), which could be attrib-
uted to both organic and inorganic soil matter.

Among abiotic and inorganic compounds, there are metals, 
salts, and other chemicals that can have an aggressive effect on 
the structure and composition of parasite remains, and alter their 
morphology and morphometry. Partial deformation in H. nana 
was observed in experimental coprolites with sediment samples, 
which could result from the presence of some compound in the 
soil (Figure 1e). Nevertheless, in the control coprolites from other 
subsamples, egg deformation of the same species was also seen, 
thus indicating that there should be another factor besides soil 
composition that modifies parasite structures. Interestingly, we 
observed that morphological alterations caused by cold storage 
did not show the same pattern in the three helminth species ana-
lyzed. Roundworm eggs did not seem to suffer morphological 
distortion caused by desiccation, addition of soil, or freezing; 
instead, well preserved Ascaris sp. eggs were identified.

In this sense, since control coprolites were kept at −20°C, 
freezing could be a factor that prevents a totally good preservation 
of remains, causing instead some kind of damage, as indicated by 
Sianto et al. (2013), and significant egg loss, as demonstrated in 
this study (Figure 2a and b), when compared to the initial EPG. 
Morono et al. (2015) showed that freezing and storage at −20°C 
of environmental samples decreased microbial cell count to 
10.7%, and lowered their viability compared to that of fresh sam-
ples. Cryopreservation has been traditionally regarded as the best 
method for overcoming decomposition and putrefaction in the 
preservation of biological samples, despite damage caused to 
cellular structures by ice crystal formation (Morono et al., 2015). 
These contrasting properties could have been involved in the 
destruction of helminth eggs observed in this work, but this 
might have been caused also by the microorganisms contained in 
the soil. Notably, when EPG from experimental coprolites and 
control subsamples without soil were compared, close to α, no 
significant difference was observed between them, showing sim-
ilar influence of temperature and cold storage, in sharp contrast 
with the significant decrease of EPG values in subsamples of 
experimental coprolites (desiccation) with soil added (vs 
freezing).

The pH of soil sediment could be a further factor leading to the 
deformation of H. nana eggs. Previous research showed notably 
well-preserved eggs and larvae found in Korean mummies recov-
ered from an extremely alkaline environment, in tombs with addi-
tion of lime-soil mixture (Shin et  al., 2009). Samples from a 
mummified bog body from acidic pH environments also showed 
particularly good preservation; yet, no fragile parts, that is, those 
parts of the eggs made up of soft structures, were observed (Searcey 
et al., 2013). Rácz et al. (2015) recovered parasite eggs from copro-
lites of skeletonized human remains from three different alkaline 

Figure 2.  Boxplots displaying EPG values for each subsample evaluated. Eggs loss due to (a) desiccation effect, (b) sediment addition effect, 
and (c) desiccation effect versus desiccation plus sediment addition effect.
FF: fresh feces; CC: control coprolites; EC: experimental coprolites; CCsed: control coprolites with sediment addition; ECsed: experimental coprolites 
with sediment addition.
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environments; they observed that embryos and plugs were not 
properly preserved, suggesting that a basic pH would not allow 
good preservation for the most fragile egg parts. In the present 
work, the alkaline pH of the sediment used for the elaboration of 
the experimental coprolites could also be another aggressive ele-
ment for the preservation of some parts of the eggs, particularly in 
those of H. nana. However, the influence of pH on parasite preser-
vation has been controversial (Reinhard et al., 1986) and, as shown, 
no consensus on this regard has yet been reached. Therefore, fur-
ther research will allow gathering more empirical evidence for this 
issue.

As mentioned above, for biotic and organic elements present 
in soil, there is wide diversity of free-living nematodes, fungi 
(including nematophagous and coprophagous species), insects, 
and bacteria. Many of these organisms have the potential to 
destroy parasite remains, thus hindering paleoparasitological 
findings in certain sediment contexts, such as Brazilian sam-
baquis (Camacho et al., 2013), urban post-Contact archeological 
sites in Brazil (Jaeger et al., 2013a, 2013b), and latrines in USA 
(Reinhard et al., 1986). Furthermore, Camacho et al. (2016) sug-
gested that the loss of Ascaris lumbricoides eggs in an experimen-
tal approach emulating stratigraphic levels was most probably 
due to biodegradation.

In the present study, we proposed that both the chemical com-
position and pH of the soil, as well as the presence of living 
organisms, seem to magnify the damage done to parasite eggs, 
since their loss in experimental coprolites in the presence of the 
soil was dramatic.

Yet, we are aware of the limitations of this study. More experi-
mental coprolites need to be elaborated to increase observation of 
the effect brought about by desiccation and local soil on preserva-
tion. We also observed that the parameters evaluated affected 
parasite species differently, thus a larger number of samples need 
to be studied, including other parasites not examined here. Other 
types of soils with chemical and granulometry data also need to 
be tested. Future research will require testing experimental copro-
lites with other soils, from different locations and with other char-
acteristics. Additionally, a formula for estimating the EPG values 
which includes species gravity and sample density should be 
designed in future experimental approaches.

In sum, we observed a significant decrease of parasite eggs 
when desiccation and soil effects were evaluated separately. The 
destructive effect of both parameters was amplified when consid-
ered together. The decrease of original parasite load suggests that 
paleoparasitological results are underestimated and that they 
depend not only on the climate of the archeological site region, 
but also on the type of soil and on the characteristics of structures 
of parasites. Paleoparasitological findings, often consisting in 
scarce or only one egg, do not reflect the real parasite infection 
rate that the individual had at the moment of death.

Although preliminary, this study provides new insights into 
the interpretation of paleoparasitological results, and conse-
quently, into the understanding, at a regional level, of the health 
status of past human groups, in addition to contributing to Paleo-
parasitology in general.
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