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The dual effect of acetate on microglial TNF-α production
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H I G H L I G H T S

� Acetate was able to exacerbate the production of TNF-α in microglia.
� Acetate administered as pre-treatment to LPS acts as an anti-inflammatory.
� Histone deacetylase decreased TNF-α production in Acetate- and LPS-treated cells.
� Depending on the time of administration, Acetate modulates microglia’s activation.
� Acetate may threaten neurodegenerative and neuropsychiatric diseases.
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A B S T R A C T

Introduction: Short-Chain Fatty Acids (SCFA) are products of intestinal microbial metabolism that can reach the
brain and alter microglia in health and disease contexts. However, data are conflicting on the effect of acetate, the
most abundant SCFA in the blood, in these cells.
Objective: The authors aimed to investigate acetate as a modulator of the inflammatory response in microglia stim-
ulated with LPS.
Method: The authors used an immortalized cell line, C8-B4, and primary cells for in vitro treatments with acetate
and LPS. Cell viability was analyzed by MTT, cytokine by RT-PCR, ELISA, and flow cytometry. The authors also
performed in vivo and in silico analyses to study the role of acetate and the TNF-α contribution to the development
of Experimental Autoimmune Encephalomyelitis (EAE).
Results: Acetate co-administered with LPS was able to exacerbate the production of pro-inflammatory cytokines at
gene and protein levels in cell lines and primary culture of microglia. However, the same effects were not observed
when acetate was administered alone or as pretreatment, prior to the LPS stimulus. Additionally, pharmacological
inhibition of histone deacetylase concomitantly with acetate and LPS led to decreased TNF-α production. In silico
analysis showed a crucial role of the TNF-α pathway in EAE development. Moreover, acetate administration in
vivo during the initial phase of EAE led to a better disease outcome and reduced TNF-α production.
Conclusion: Treatment with acetate was able to promote the production of TNF-α in a concomitant LPS stimulus of
microglia. However, the immune modulation of microglia by acetate pretreatment may be a component in the
generation of future therapies for neurodegenerative diseases.
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Introduction

Microglia are resident macrophages of the CNS, originating from
primitive macrophage progenitors from the yolk sac, which migrate and
then reside in the CNS. They spread rapidly through the brain and the
spinal cord, where they form a self-renewable population without the
need for myeloid recruitment during homeostasis.1-3 They are important
in scavenging the brain parenchyma for pathogens and damage-related
molecules through different receptors and are important in the synaptic
remodeling and phagocytosis of cellular debris. Microglia can also initi-
ate a neuroinflammatory response and recruit additional microglia as
well as other immune cells.2,4-8

In many neurodegenerative diseases, microglial activation represents
a key step to disease development such as Multiple Sclerosis, Alz-
heimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis,
and microglia modulation seems to have an impact on the treatment in
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Fig. 1. Effect of acetate on cytokine production. (A and B) Microglial C8-B4 cells
were treated for 48 hours with acetate in different concentrations (2.5; 12.5; 25
and 50 mM), with LPS (0.25 μg/mL) or in combination. The supernatant was col-
lected and concentrations of (A) TNF-α and (B) IL-6 were quantified via ELISA.
(C and D) Microglial C8-B4 cells were treated for 6 h with acetate (25 mM), with
LPS (0.25 μg/mL), or in combination, and the gene expression of (C) TNF-α and
(D) IL-6 were analyzed by RT-PCR. Experiments were performed five times in
triplicates. Data are presented as mean + SEM, *p < 0.05.

Fig. 2. Effect of acetate on microglial cell viability and on TNF-α time course
production. (A) Microglial C8-B4 cells were treated with acetate in different con-
centrations (2.5; 12.5; 25 and 50 mM) for 48 hours, and cell viability was ana-
lyzed by MTT assay. (B) Microglial C8-B4, untreated and treated with 25 mM
acetate, 0.25 μg/mL LPS, or both, were maintained for 72 hours and TNF-α con-
centrations were analyzed at several points. Experiments were performed five
times in triplicates. Data are presented as mean + SEM, *p < 0.05.
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disease models.9-11 Several studies have shown that different products of
intestinal microbial metabolism can alter the profile of microglial activa-
tion in health and disease.12-14 Accordingly, Short-Chain Fatty Acids
(SCFA) are products derived from the fermentation of indigestible die-
tary fibers carried out by the intestinal microbiota and can interact with
immune cells, altering their function.15 Among them, acetate is the one
that stands out with higher serum concentration and it functions as the
substrate for acetyl coenzyme A synthesis and the regulation of gene
expression via acetylation of histone.16,17 Additionally, SCFA has immu-
nomodulatory, anti-proliferative and pro-apoptotic effects via activation
of G-protein coupled receptors.17-20 Alternatively, SCFAs can inhibit the
activity of Histones Deacetylases (HDACs) via epigenetic control.17 Ace-
tate also accentuates the DNA acetylation in the CNS through different
mechanisms that vary in a dose and time-dependent way.21 Specifically,
in microglia, the administration of acetate (in vitro and in vivo) prior to
an inflammatory stimulus was able to reduce the release of IL-1b, IL-6,
and TNF-α and increased histone acetylation.22-24

The result of this increased acetylation manifests itself through the
attenuation of inflammatory parameters as the expression of proinflam-
matory cytokines of innate immunity.22 The final effect of this chain of
events in vivo may be the preservation of neurons and a better clinical
evolution in situations of neuroinflammation, as previously observed.22

Additionally, the authors investigated the SCFA, acetate, as a modulator
of TNF-α and IL-6 in both LPS-activated primary and C8-B4 microglial
cells at different administration schemes. The cell viability and the
mechanism responsible for acetate modulation-either epigenetic or GRP
receptor-activation were also explored.

Results

Effect of acetate on cytokine production

To understand the role of the acetate in the microglia modulation,
the authors stimulated the C8-B4 microglial cells with acetate in the
presence or absence of LPS at 0.25 μg/mL and the authors measured the
TNF-α and IL-6 production within 48 hours (Fig. 1A and 1B). The TNF-α
production increases in a dose-dependent response, being the higher
dose of acetate, the higher TNF-α levels, but only in the presence of LPS
(Fig. 1A). On the other hand, the production of IL-6, a pro-inflamma-
tory-related cytokine,25 was significantly reduced no matter the dose of
acetate, when compared to LPS alone (Fig. 1B). In an attempt to under-
stand the cytokines kinetics production, the authors evaluated the gene
expression in C8-B4 cells treated with acetate in the presence or absence
of LPS for 6 hours. The authors observed that the inflammatory pattern
followed by acetate stimulus remains in accordance with the protein lev-
els of TNF-α and IL-6 (Fig. 1C and 1D), being the gene expression levels
of TNF-α higher in the acetate treatment when compared to LPS alone.
IL-6 acts in an opposite direction, with a reduction of its gene levels after
treatment with acetate (Fig. 1D).

The authors next investigated whether the observed production of
cytokines could be a response to cell death at different concentrations of
acetate. Cells were treated with growing concentrations of acetate
for 48 hours and cell viability was measured by the MTT (Fig. 2A). It is
observed that acetate, at 50 mM reduced cell viability/proliferation.
Moreover, concentrations of 12.5 and 25 mM showed no effects on cell
viability/proliferation. Based on these results, the authors decided to
use the 25 mM dose, the most effective in increasing the production of
TNF-α with no effect on cell viability/proliferation. Additionally, a time-
course production of TNF-α reveals a peak at 12 hours post-administra-
tion of acetate in the presence of LPS (Fig. 2B). Also, this production
decreases over time, but it is still significantly higher at 72 hours post-
administration when compared to the non-stimulated controls (Fig. 2B).
It is noteworthy to say that acetate, which ate 25 mM and control did
not increase TNF-α release (Fig. 2B).

Despite C8-B4 cells representing a good in vitro modeling strategy for
studying microglia biology,26 the authors argued whether they could
2

indeed mimic primary microglia isolated from mice. For that, the
authors isolated microglia from newborn mice’s brains and treated them
with growing concentrations of acetate in the presence of LPS for 24 h.
Through flow cytometry, the authors observed that acetate was able to
increase the amount of TNF-α in LPS-treated cells (Fig. 3), corroborating
the previous results with C8-B4 cells and, therefore, confirming that the
used cell lineage responds closely to primary microglia.
Different time-related protocol of acetate stimulus leads to the different
cytokines production profile

The authors have additionally tested the effect of acetate in a “pre-
treatment manner” in microglial cells. After 24 hours of pre-treatment,



Fig. 3. Production of TNF-α in primary microglia. Primary microglial cells were
treated with acetate (25 mM), with LPS (0.25 μg/mL) alone or in combination of
both for 24 hours and the percentage of cells expressing TNF-α were analyzed.
In A, representative dot plots. In B, the quantification. Experiments were per-
formed five times in triplicates. Data are presented as mean + SEM, *p < 0.05.
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cells were washed and submitted to LPS stimulation for additional
48 hours. Surprisingly, this stimulation scheme was able to induce a sig-
nificant reduction of TNF-α levels in relation to cells stimulated simulta-
neously with LPS and acetate (Fig. 4A). Although small, the pre-
treatment of acetate was able to induce a significant reduction in the
production of TNF-α in the group treated with LPS in comparison with
just the LPS treatment (Fig. 4A). This data demonstrates the role of ace-
tate as an anti-inflammatory modulator when administered previously
to the LPS stimulus (Fig. 4A). Acetate pre-treatment, in turn, also led to
reduced IL-6 production, consistent with the reduction observed in the
concomitant LPS and acetate stimulation (Fig. 4B).
Mechanism of acetate immunomodulation

The effect of acetate in microglia immunomodulation can be mediated
via either the epigenetic control, Acting on Histone Acetyl Transferase
(HAT) and Histone Deacetylase (HDAC),15 or via the activation of G pro-
tein-coupled receptors (GPR41 and GPR43). In order to evaluate the
3

participation of these two mechanisms in the TNF-α, the production the
authors used Trichostatin A (TSA), an inhibitor of HDAC,27 and Pertussis
Toxin (PTX), an SCFA receptors’ (GPR41 and GPR43) blockers.28 The
authors observed that treatment with 1 ng/mL TSA was able to increase
the LPS-induced TNF-α secretion (Fig. 4C). Moreover, the TSA treatment
led to a decrease in the TNFa production in comparisonwith the LPS+Ace-
tate treated group indicating that both acetate and TSA may compete for
histone acetylation. On the other hand, PTX presented no significant effect
on TNF-α production in acetate- and LPS-stimulated cells (Fig. 4C). Cell
behavior followed by TSA or PTX stimuli onto TNFα secretion, suggests
that acetate can be epigeneticallymediated, i.e., by inhibition of HDACs.
Effect of acetate the development of EAE

In order to investigate the anti-inflammatory effects of acetate in a
pre-treatment manner in vivo, the authors proceeded to the Experimental
Autoimmune Encephalomyelitis (EAE), mice were treated with vehicle
or acetate (400 mg/kg) for 8 days (−1 to day 7). The treatment with ace-
tate or vehicle was finished before the appearance of the first’s symp-
toms, commonly present after the 7 to 10th-day post-immunization,
characteristic of the induction phase of the disease, thus being a result
comparable to the pre-treatment in vitro. The development of the disease
was delayed in the group treated with acetate compared to the vehicle
group (control) as shown in Fig. 5A. The authors observed the same pro-
file of the in vitro findings, where the acetate acts in an anti-inflamma-
tory way when administered before the inflammatory stimulus.
Additionally, acetate-treated mice had milder clinical EAE scores in the
comparison with control mice (Fig. 5A). The authors further evaluated
the TNF-α production from both animals. Similarly, as seen in the in vitro
data, cells isolated from acetate-treated animals subjected to EAE show
less expression of TNF-α, demonstrating that the treatment is capable of
inducing long-term anti-inflammatory effects, even after the cells were
removed from the organisms (Fig. 5B).
In silico analysis of spinal cords of EAE mice

Trying to understand the relevance of TNF-α and its activation path-
way, the authors performed in silico analysis from public microarray
data of the spinal cord of animals submitted to EAE and their healthy
controls (Fig. 6) (GSE60847). A schematic view of the TNF-α contribu-
tion to the EAE development was generated (Fig. 6a). The differential
expression analysis showed an increase in the expression of genes
related to the TNF-α pathway in EAE animals, including TNF, TNF recep-
tors, adaptor proteins, caspases, MAPK, and NF-kb (Fig. 6b). This shows
the important role of TNF-α in the pathology of EAE and inflammation.
In addition, pathway enrichment analysis based on the 500 up-regulated
genes in the Gene Ontology (molecular function) shows that activity
related to TNF-α and its receptors was important in the spinal cord of
mice with EAE (Fig. 6c).

Altogether, TNF-α presents an essential role in the generation of neu-
roinflammation and the immune modulation of microglia by acetate
Fig. 4. Acetate pre-treatment leads to reduced TNF-α produc-
tion. (A and B) Microglial C8-B4 cells, untreated, treated with
acetate (25 mM), with LPS (0.25 μg/mL), in combination, or
acetate administered as a pre-treatment 24 h before LPS and
washed (wash), were maintained for 48 h and (A) TNF-α and
(B) IL-6 concentrations were analyzed in the supernatant. In C,
C8-B4 cells were treated with acetate (25 mM), Trichostatin
(TSA − 1 ng/mL), Pertussis toxin (PTX ‒ 100 ng/mL), LPS
(0.25 μg/mL), or in combination with LPS and acetate. Experi-
ments were performed five times in triplicates. Data are pre-
sented as mean + SEM, *p < 0.05.



Fig. 5. Effect of Acetate in the development of EAE. (Upper
part) Schematic representation of the EAE experimental design.
(A) C57Bl6 control and acetate treated (40 mg/kg − from
day −1 to day 8) animals were immunized with MOG35−55 and
monitored daily for 25 days to evaluate the clinical evolution
of EAE. In B, animals were euthanized at day 10 post immuni-
zation and the percentage of TNF-α+ cells were evaluated in
splenocytes. Cells were treated (black bars) or not (white bars)
with PMA (Phorbol myristate acetate) and ionomycin
for 24 hours. Experiments were performed twice. N = 5 per
experiment. Data are presented as mean + SEM, *p < 0.05.

Fig. 6. In silico analysis of spinal cords of EAE mice. (A) Scheme of TNF-α pathway activation. Genes upregulated in the dataset are shown in red. (B) The differential
expression of genes related to the scheme seen in A. (C) Pathway analysis of the dataset where the Gene Ontology Molecular Function is shown.
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may be a component in the generation of future therapies for neurode-
generative diseases, as long as the time for starting the treatment is
taken into account.
Discussion

Microglia continually monitor the tissue parenchyma for pathologi-
cal alterations, under steady-state, and play important roles in the regu-
lation of CNS synaptic pruning. In the occurrence of an inflammatory
insult, microglia, and CNS-infiltrating macrophages not only constitute
the first line of defense against pathogens by regulating components of
innate immunity, but they also regulate the adaptive immune responses.
4

Dysregulation of the microglial development and function impacts both
health and disease status.2,7,29,30

It is known that peripheral and systemic changes are capable of alter-
ing the pathophysiology of the CNS, including products derived from
the gut microbiota.31 Specifically, microglia seem to need signals
derived from the microbiota for maturation and adequate function.32

SCFAs mediate the function of immune cells, both intestinal and sys-
temic, and even in brain cells since they can cross the blood-brain bar-
rier, and changes in SCFA concentrations appear to be related to CNS
pathologies.31 In the present study, the authors show that acetate affects
the release of TNF-α in a dose and time-dependent way. However, ace-
tate alone was not able to induce this proinflammatory cytokine, which
suggests the participation of acetate in exacerbating the response against
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LPS. It is noteworthy to say that the C8-B4 cell line, analyzed in the pres-
ent study, has been obtained from a newborn’s brain, and it is already
known that microglial heterogeneity changes throughout the lifespan
and brain area.32

Additionally, it is still unclear how SCFAs participate in the immune
modulation since conflicting results have been recorded in the literature.
Butyrate, for example, one of the most studied SCFAs, has shown a pro-
inflammatory and anti-inflammatory capacity in different diseases
of the SNC.31,33,34 The same has been observed for other SCFA, as
results show their role in the development of neurodegenerative
diseases,31,34,35 while other studies demonstrate their participation in
the worsening of the neuroinflammatory condition.33,36,37 Some studies
have shown the ability of acetate to activate immune cells.38-41 Despite
some reports pointing to SCFAs as exerting suppressive effects on the
activation of immune cells,15,18,20,42 the present data demonstrate
increased TNF-α production, at the protein and gene transcription levels,
upon acetate stimulation on LPS-treated cells. Such discrepancy could be
attributed to different cell lines used in the different studies. Moreover,
it is also demonstrated in the literature that acetate leads to the produc-
tion of Reactive Oxygen Species (ROS) in neutrophils38 and macro-
phages,39 which ultimately leads to the production of TNF-α,
perpetuating the inflammatory state.43

Bearing in mind that microglia activation is related to several neuro-
pathologies, including Alzheimer’s Disease and Multiple Sclerosis (MS),
and that TNF-α production is present as an activation trigger, the authors
decided to investigate whether acetate is capable of inducing long-last-
ing effects, even before an inflammatory insult. The levels of TNF-α
have been reported to be severely high in the gray matter of EAE and
MS brains, pointing to TNF-α as a primary neurotoxic molecule in EAE,
as confirmed by the present in-silico analysis. It has been shown stronger
pro-inflammatory responses of immune cells and their associated cyto-
kines, chemokines, and receptors in males vs. female,44 which can repre-
sent a caveat in the present study. Additionally, up-regulation of TNF-α
is followed by increased Th17 immune response and an exacerbated
EAE-related disease. Surprisingly, when acetate was administered before
LPS, instead of concurrently, the inflammatory effect of acetate was not
observed, reflected by diminished levels of TNF-α. This data indicates
that acetate affects microglia immediately, suggesting a rapid interac-
tion with receptors or even a mediation through epigenetic modifica-
tion. The data on GPR blockade and HDAC inhibition indicate that TNF-
α production by microglia is due to histone acetylation, ultimately sup-
porting gene transcription thorough upon cellular activation with LPS.
Interestingly, the authors observed that acetate acts in antagonistic ways
depending on the time of administration. In concomitant treatment with
LPS, the authors observed an increase in TNF-α, however, both in vitro
and in vivo data demonstrate that acetate acts in an anti-inflammatory
way as pre-treatment. Here the authors clarify the inconsistencies in the
literature and prove that acetate, depending on the time of administra-
tion, can act in antagonistic ways in the cellular inflammatory profile.

Altogether, the present study’s data demonstrate that acetate can
promote chromatin accessibility, histone acetylation, and TNF-α produc-
tion in LPS-stimulated microglia. The use of acetate was explored in the
context of tumors, in which it was demonstrated that acetate enhances
IFN-g gene transcription43 in addition to presenting effects on T-cell
effector function after prolonged glucose restriction.45 The authors
believe that a better understanding of the role of SCFA and its immune
modulation may be an important component in the generation of future
therapies for neurodegenerative diseases. Depending on the time of
administration, acetate can modulate the activation of microglia.

Material and methods

Cell culture and treatment

The murine microglial cell line C8-B4 (ATTC) was cultured in Dul-
becco’s Modified Eagle Medium: Nutrient Mixture F-12 (Gibco™)
5

supplemented with 10% fetal bovine serum (Sigma-Aldrich), 100 U/mL
penicillin and 100 μg/mL streptomycin (Life Technologies), at 37 °C
in 5% CO2. Acetate solution was prepared using acetic acid glacial (Lab-
synth™). For use, it was diluted to 1 Molar stock solution, pH = 7.4.
Used concentrations were 2.5; 12.5; 25; and 50 mM, according to
the figure. Primary mixed glial cells were cultured as described previ-
ously.46-48 Briefly, they were prepared from the brains of 0−2-day-old
mice, C57Bl/6 J. Whole brains were dissected into the complete
medium. Meninges were removed and cells dissociated by trituration
prior to seeding at 5 × 10^5 cells/mL onto 175-cm² tissue culture flasks.
The culture medium was changed weekly until the culture reached con-
fluency (14−20 days).

Microglial cells were harvested from 175 cm2
flasks of mixed glial

cultures by shaking at 245 r.p.m. for 2 h. Cells were collected by centri-
fugation and seeded at 5 × 10^5 cells/mL. After 1-hour of incubation
at 37 °C, non-adherent or weakly adherent cells were removed by gentle
shaking and washed out. Cells were further cultured in DMEM supple-
mented with 10% FBS for 1 day.

The reagents, LPS from Salmonella enterica (L5886) are used at a
concentration of 0.25 μg/mL, Trichostatin A (T8552) at 1 ng/mL, and
Pertussis toxin (P7208) at 100 ng/mL, all were purchased from Sigma-
Aldrich.

EAE model

Experimental protocols were reviewed and approved by the Institu-
tional Animal Care and Use Committee (CEUA number 34, 100/12) in
compliance with the Ethical Principles in Animal Research of the Brazil-
ian College of Animal Experimentation. Mice were housed on a 12/12 h
light/dark cycle with free access to chow and water in the Animal Facili-
ties of the Department of Immunology, ICB, University of Sao Paulo.
Within 2 days of life, the brain was extracted from animals of both sexes
for the isolation and mixed culture of glial cells.

Female C57BL/6 (8‒12 weeks old) were immunized subcutaneously
with MOG35−55 (150 μg) emulsified in CFA, with 500 μg of M. tuberculo-
sis Des, H37Ra (Becton & Dickinson ‒ BD). They also received 2 doses of
Bordetella pertussis toxin (200 ng) intraperitoneally, at 0 and 48 h after
immunization. The animals were observed daily, and the scores were
given as stated: 0-No disease, 1-Limp tail, 2-Weak/partially paralyzed
hind legs, 3-Completely paralyzed hind legs, 4-Complete hind, and par-
tial front leg paralysis, 5-Complete paralysis/death. The animals were
followed for 25 days post-immunization for the disease progression, for
the cytokine production, splenocytes, and the whole brain were isolated
on the 10th-day post-immunization, and the intracellular staining was
performed.

Cells viability by mtt assay

The MTT (Thiazolyl Blue Tetrazolium Bromide) assay was carried
out to determine the optimum concentration of acetate. Cells were
seeded at 1.5 × 10^4 per well in a 96 well plate and, after 24 hours, the
complete medium was replaced with a medium without FBS. 5 mg/mL
of MTT was added to each well and incubated for 2 hours at 37 °C in 5%
CO2, protected from light. The MTT reagent was removed and 100 μL of
DMSO was added. The optical density was read at 570 nm with the Ver-
samax Tunable Microplate Reader, Molecular Devices (Sunnyvale, Cali-
fornia).

Quantitative PCR

Total RNA from cells was extracted with Trizol® (Invitrogen, Carls-
bad, CA). cDNA (2 μg of total RNA) was synthesized with Moloney
Murine Leukemia Virus Reverse Transcriptase (Promega, Madison, WI,
USA). The real-time PCR assay was carried out using 3 μL of cDNA as
the template and 5 μL of Power SYBR Green PCR Master Mix (Thermo
Fisher Scientific, Waltham, MA, USA). Primers used in this study are as
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followed, HPRT: 5′-CTCATGGACTGATTATGGACAGGA-3′ (F),
5′GCAGGTCAGCAAAGAACTTATAGCC-3′ (R); TNF-α: 5′-CATCTTCT-
CAAAATTCGAGTGACAA-3′ (F) 5′-TGGGAGTAGACAAGGTACAACCC-3′
(R); IL6: 5′-CCGGAGAGGAGACTTCACAG-3′ (F) 5′-ACAGTGCAT-
CATCGCTGTTC-3′ (R).

Determination of cytokines by ELISA

TNF-α and IL-6 levels in the culture supernatants were measured
using commercial sandwich ELISA kits (R&D Systems, Minneapolis, MN,
USA) according to manufacturers’ instructions. Absorbance was mea-
sured at 450 nm, and the results are presented in ρg/mL.

Flow cytometry

After the stimulus with LPS and acetate for 24 h, the microglial cells
proceeded to flow cytometry. Cells were incubated for CD11b (pacific
blue, BioLegend-San Diego, Ca, USA. cat: 101,224) with a concentration
of 1: 100 for 30 minutes. For the analysis of the intracellular TNF-α pro-
duction, the monoclonal anti-TNF-α antibody was used (BD Diag-
nostics®, Franklin Lakes, USA ‒ cat: 554,420). The acquisition and
analysis of the samples were performed in a FACS-calibur flow cytome-
ter (Becton & Dickinson, Mountain View, CA), using the CellQuest soft-
ware (Apple).

In silico analysis

The authors analyzed the expression of genes related to the TNF-α
pathway through GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/)
in a public dataset (GSE60847) and compared the differential expression
of spinal cord genes between EAE and sham animals, the authors use
only differentially expressed genes with adjusted p < 0.05. The 500 up-
regulated genes were submitted to pathway enrichment using Enrichr
(https://maayanlab.cloud/Enrichr/) and GO (https://geneontology.
org).

Statistics

Experiments were performed in triplicate and three independent
tests were performed for each assay. The data were described in terms of
the mean and S.E.M. unless specified in the figure legend. Differences
between groups were compared using ANOVA (with Tukey’s post-test)
and Student’s t-test. A 95% significance level was used, and differences
were regarded as p < 0.05. Statistical analyses were performed using
GraphPad PRISM 6.01 (La Jolla, CA, USA). No masking and no blinding
were used during group allocation.
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