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Increased platelet activation
and platelet-inflammasome
engagement during
chikungunya infection
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Chikungunya fever is a viral disease transmitted by mosquitoes of the genus

Aedes. The infection is usually symptomatic and most common symptoms are

fever accompanied by joint pain and swelling. In most cases symptoms subside

within a week. However, severe prolonged and disabling joint pain, that may

persist for several months, even years, are reported. Although the pathogenesis

of Chikungunya infection is not fully understood, the evolution to severe

disease seems to be associated with the activation of immune mechanisms

and the action of inflammatory mediators. Platelets are recognized as

inflammatory cells with fundamental activities in the immune response,

maintenance of vascular stability and pathogenicity of several inflammatory

and infectious diseases. Although the involvement of platelets in the

pathogenesis of viral diseases has gained attention in recent years, their

activation in Chikungunya has not been explored. The aim of this study was

to analyze platelet activation and the possible role of platelets in the

amplification of the inflammatory response during Chikungunya infection.

We prospectively included 132 patients attended at the Quinta D’Or hospital

and 25 healthy volunteers during the 2016 epidemic in Rio de Janeiro, Brazil.

We observed increased expression of CD62P on the surface of platelets, as well

as increased plasma levels of CD62P and platelet-derived inflammatory

mediators indicating that the Chikungunya infection leads to platelet

activation. In addition, platelets from chikungunya patients exhibit increased

expression of NLRP3, caspase 4, and cleaved IL-1b, suggestive of platelet-
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inflammasome engagement during chikungunya infection. In vitro experiments

confirmed that the Chikungunya virus directly activates platelets. Moreover, we

observed that platelet activation and soluble p-selectin at the onset of

symptoms were associated with development of chronic forms of the

disease. Collectively, our data suggest platelet involvement in the immune

processes and inflammatory amplification triggered by the infection.
KEYWORDS

platelets, activation, chikungunya, inflammatory mediator, inflammasome
Introduction

Chikungunya virus (CHIKV) has a genome composed of

single stranded RNA, being a member of the genus Alphavirus,

and is transmitted by the bite of mosquitos of Aedes genus (1).

Chikungunya fever outbreaks have already occurred in parts of

Africa, Europe, Southeast Asia, the islands of the Indian and

Pacific oceans. In 2013 it was first reported in America and has

now been identified in the Caribbean and North, Central and

South America (2, 3). Nowadays, Chikungunya is a public health

problem in Brazil, with 90,000 cases in 2021 corresponding to an

increase of 32.6% related to the previous year (4). CHIKV

infection is usually self-limiting, non-fatal, with fever resolving

within a few days. Chikungunya fever’s most notable clinical

feature is the persistent musculoskeletal symptoms for weeks,

months, and even years. Patients may evolve with chronic

polyarthritis, which resemble autoimmune inflammatory

arthritis, with the pathogenesis not yet fully understood (5).

It has been demonstrated that CHIKV replication occurs in

fibroblasts both in vitro and in target tissues (muscle, connective

tissue and skin) of mice and humans (6, 7). Viral replication

triggers the activation of innate immune responses, whose main

characteristic is the production of type I interferons (IFNs) (8).

Infection of primary human skin fibroblasts with CHIKV

triggers, in addition to IFN-g, increased expression of

interleukin-1b (IL-1b), caspase-1 maturation, and expression

of AIM2 inflammasome sensor. Caspase-1 silencing increased

viral replication, suggesting that CHIKV-infected skin

fibroblasts may contribute to a proinflammatory and antiviral

microenvironment (9). Additionally, patients with acute

chikungunya fever demonstrated increased levels of cytokines

such as IL-1b, IL-6, tumor necrosis factor (TNF) and CCL-5/

RANTES (10–13). CHIKV arthralgia is mostly characterized by

severe joint pain associated with inflammation, tissue

destruction and release of proinflammatory cytokines such as

IL-1b, IL-6, TNF and 10 kDa IFN-induced protein (IP-10).

Thus, it is plausible that CHIKV infection induces a self-

perpetuation of the proinflammatory reaction that causes
02
arthralgia years after recovery from the initial febrile phase

(10, 11, 13–16).

Thrombocytopenia is a common feature in arboviral

infections, especially in dengue (17). In CHIKV infection,

symptoms such as hemorrhage and thrombocytopenia are

considered atypical (18), but the role played by platelets in the

inflammatory amplification during CHIKV infection remains

unknown. Platelets are well known for their hemostatic

activities. In addition to its role in thrombosis and hemostasis,

platelets participate in other pathophysiological processes

including inflammation, atherogenesis, host defense and tumor

growth and metastasis (19, 20). Platelets have an extensive

repertoire of surface receptors that transmit signals to their

interior, and trigger signal transduction pathways (21, 22).

Platelets express receptors capable of recognizing viral

pathogens, as demonstrated for human immunodeficiency

virus (HIV) (23), influenza vıŕus (24), hepatitis C virus (HCV)

(25) and Dengue virus (DENV) (26). Platelets also mediate

inflammatory and immunological processes that amplify the

thromboinflammatory response, reprogramming adjacent cells

and their functions. Platelet activation and platelet-leukocyte

interactions are reflected in the pathophysiology of diseases,

especially in inflammatory events by regulating the release of

cytokines, extrusion of neutrophil extracellular traps (NETs),

and monocytes and lymphocytes functions (27–29). When

platelets are activated in pathological situations, they may

contribute to the breakdown of the endothelial barrier, leading

to fluid leakage and edema formation (21)

Our group demonstrated that platelets from patients acutely

infected with dengue have evidence of activation, apoptosis and

mitochondrial dysfunction (30). In addition, DENV infection

activates platelets with subsequent effects on the vascular

permeability and inflammation mediated by nucleotide-

binding oligomerization domain (NOD) like receptor proteins

3 (NLRP3) and caspase-1 dependent secretion of IL-1b in

platelet extracellular vesicles (31). Even though the

contributions of platelets to inflammatory amplification and

disease pathogenesis have been identified in several viral
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diseases including dengue, HCV, influenza and COVID-19,

platelet responses in patients with chikungunya infection was

not previously addressed. We hypothesized that platelets are

activated and contribute to inflammatory amplification during

Chikungunya infection. Here, we provide evidence that infection

with chikungunya virus leads to increased platelet activation,

and release of inflammatory mediators that may contribute to

disease pathogenesis.
Methods

Human subjects

We prospectively enrolled 132 RT-PCR confirmed cases of

acute Chikungunya fever in the Hospital Quinta D’Or in Rio de

Janeiro, Brazil. Clinical data and peripheral venous blood samples

were obtained. Molecular diagnosis was performed for

chikungunya, dengue and zika, both in patient samples and in

healthy donors. The research protocol used was approved by the

Institutional Review Board (IOC/FIOCRUZ 42999214.1.1001.5248)

and informed consent was obtained before any study related

procedure. To perform the study, patients with CHIKV of both

sexes, ranging in age from 18 to 65 years, were included. Patients

who were infected with dengue, patients infected with another

species of febrile illness, and pregnant women and patients who

used nonsteroidal anti-inflammatory drugs up to 6 hours prior to

blood collection were excluded. We have also included 25 healthy

volunteers who were RT-PCR negative for chikungunya, dengue

and zika viruses, did not present with fever or other symptoms and

did not use non-steroidal anti-inflammatory drugs prior to

blood draw.
Platelet isolation

Peripheral blood samples were drawn into acid-citrate-

dextrose (ACD) and centrifuged at 200 g for 20 min to obtain

platelet-rich plasma (PRP). Briefly, PRP was centrifuged at 500 g

for 20 min in the presence of 100 nM Prostaglandin E1 (PGE1)

(Cayman Chemicals). The platelet pellet was resuspended in 2.5

mL of phosphate-buffered saline containing 2 mM EDTA, 0.5%

human serum albumin, and 100 nM PGE1 and incubated with

anti-CD45 tetrameric antibody complexes (1:25) for 10 min and

with dextran-coated magnetic beads (1:50) for additional 10 min

before purification in a magnet (Human CD45 depletion kit;

Stem Cell, Easy Sep Technology). Recovered platelets were

resuspended in 25 mL of PSG (PIPES-saline-glucose: 5 mM

C8H18N2O6S2, 145 mM NaCl, 4 mM KCl, 50 mM Na2HPO4, 1

mM MgCl2-6H2O, and 5.5 mM glucose) containing 100 nM of

PGE1. The platelet suspension was centrifuged at 500 g for

20 min. The supernatant was discarded, and the pellet was
Frontiers in Immunology 03
resuspended in medium 199 (Lonza). The platelet preparations

purity (> 99% CD41+) was confirmed by flow cytometry.
Plasma obtention

Plasma was obtained from ACD-anticoagulated blood by

centrifuging the platelet-poor plasma (PPP) obtained above or

citrate-anticoagulated blood at 900 x g for 20 min and stored at

-80°C until use.
Flow cytometry analysis

Platelets (1–5 x 106) were incubated with FITC-conjugated

anti-CD41 (BD Phamingen, CA) (1:20) and PE–conjugated anti-

CD62P (BD Phamingen, CA) (1:20) for 30 min at 37°C. Isotype-

matched antibodies were used to control the nonspecific binding

of antibodies. Platelets were distinguished by specific binding of

anti-CD41 and characteristic forward and side scattering. A

minimum of 10,000 gated events was acquired using a

FACScalibur flow cytometer (BD Bioscience, CA).
Western blotting

Freshly isolated platelets from CHIKV patients and healthy

volunteers were lysed [0.15 M NaCl, 10mM Tris pH 8.0, 0.1 mM

EDTA, 10% (v/v) Glycerol and 0.5% (v/v) Triton X-100] in the

presence of a protease inhibitor cocktail (Roche, Indianapolis,

IN). Platelet proteins (25 mg) were separated by SDS-containing

15% polyacrylamide gel (SDS-PAGE) and transferred into

nitrocellulose membranes. Membranes were blocked in Tris-

buffered saline (TBS) supplemented with 0.1% Tween 20 (TBS-

T) plus 5% milk for 1 h before incubation overnight with

primary rabbit anti- human IL-1b cleaved (1:300) (Santa Cruz

Technology) or rabbit-anti-human NLRP3 (1:500) (Cell

Signaling Technology) or mouse-anti-human caspase-4 (1:500)

Cell Signaling Technology), or for 1 h with mouse anti-human

b-actin (Sigma Aldrich) (1:20,000) antibodies. After washing five

times in TBS-T, membranes were revealed using peroxidase-

conjugated secondary antibodies (Vector) (1:10,000) or

streptavidin (R&D) (1:200).
Quantification of inflammatory
mediators in blood

The concentrations of the proteins platelet factor 4 (PF4/

CXCL4), soluble P-selectin (sPselectin), macrophage migration

inhibitory factor (MIF) and the eicosanoids thromboxane B2
(TXB2) and 12-hydroxyeicosatetraenoic acid (12-(S)-HETE)

were measured in plasma from patients or healthy volunteers,

or in supernatant from in vitro infected platelets, using standard

commercially available enzyme-linked immunosorbent assay
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kits according to the manufacturer’s instructions (R&D Systems,

Cayman Chemicals and ENZO).
Virus, infections and virus titration

CHIKV (Asian strain) was kindly donated by Dr. Amilcar

Tanuri and propagated in the Vero cells at an MOI of 0.1.

Infection was carried out for 1 h at 37°C. The residual virus

particles next were removed by washing with phosphate-

buffered saline (PBS), and the cells were cultured for 2 to 5

days. After each period, the cells were lysed by freeze-thawing

and centrifuged at 1,500 g at 4°C for 20 min to remove cellular

debris. The Plaque-forming Assay was performed for virus

titration in VERO E6 cells seeded in 24-well plates. Cell

monolayers were infected with different dilutions of the

supernatant containing the virus for 1h at 37˚C. The cells were

overlaid with high glucose DMEM containing 2% FBS and 2.4%

carboxymethylcellulose. After 3 days, the cells were fixed with

10% formaldehyde in PBS for 3h. The cell monolayers were

stained with 0.04% crystal violet in 20% ethanol for 1h. The viral

titer was calculated from the count of the plaques formed in the

wells corresponding to each dilution and expressed as plaque

forming unit per mL (PFU/mL). For in vitro analysis, 1.109

platelets per milliliter from healthy donors diluted in medium

199 were infected with CHIKV for three hours (at 37°C in a 5%

CO2 atmosphere), using the multiplicity of infection of 0.1 or 1

PFU/platelet. After 3 h of infection, the samples were centrifuged

at 600 x g for 10 minutes and the supernatant was stored at -80°

C for later quantification. Thrombin (1U/mL) was used as an

experimental positive control, and Vero E6 cell medium

maintained for the same culture time at the same dilution

used to reach the desired MOI as a negative control. (Mock).
Statistical analyses

All statistical analyses were performed using GraphPad

Prism software (version 8.0.0, San Diego, CA). Comparisons

between groups were performed using the student t test for

parametric distributions, and the Mann-Whitney U test for

nonparametric distributions. Results are presented as floating

bars with median and quartiles. In all analyses, p<0.05 was

considered statistically significant.
Results

Chikungunya fever triggers platelet
activation

The clinical profile of chikungunya patients (CHIKV) is

described in Table 1. The importance of platelet activation has
Frontiers in Immunology 04
already shown in other viral infections, especially dengue (30–

32).We started our investigation analyzing whether platelets

would be activated by chikungunya virus (CHIKV) infection

when compared to healthy donors (Control). We performed the

analysis of P-selectin (CD62P) in isolated platelets. P-selectin is

an important adhesion molecule that is stored in alpha granules

and participates in platelet interactions with endothelial cells,

monocytes, neutrophils and lymphocytes (21). As shown in

Figure 1A, Chikungunya fever increased P-selectin (CD62P)

expression in platelets and the amount of soluble P Selectin

(sP-selectin) in plasma from patients compared to healthy

donors (Figure 1B). This data indicates that CHIKV infection

leads to platelet activation in patients.

To confirm increased platelet activation in CHIKV infection,

we analyzed the release of inflammatory mediators produced

mainly/exclusively by platelets in patients’ plasma. Like the

CD62P molecule, platelet factor 4 (CXCL-4/PF-4) is stored in

platelet alpha granules and is rapidly released once platelets are

activated. PF-4 is a chemokine secreted exclusively by platelets

and megakaryocytes. We observed in Figure 1C that PF4 release

was increased in plasma from Chikungunya patients when

compared to the control. When platelets are activated,

arachidonic acid (AA) is released from membrane

phospholipids by phospholipase A2 (PLA2). The AA in

platelets is metabolizes by two alternative metabolic pathways,

the cyclooxygenase (COX) and the 12-lipoxygenase (12-LOX).

The 12-LOX activity metabolizes AA to 12-hydroperoxy-

5,8,10,14-eicosatetraenoic acid S enantiomer (12-(s)HpETE),

which is rapidly reduced to 12-hydroxyeicosatetraenoic acid

(12-(s)HETE) (33). As observed in Figure 1D, patients’ plasma

had a higher concentration of 12-HETE when compared to

control. Collectively, these results support the hypothesis that

platelets are activated during chikungunya virus infection.
Chikungunya fever triggers
inflammasome activation in platelets

Recent studies have shown that platelets, which are

anucleated cells, possess pre-messenger RNA and mRNA,

being capable of mRNA splicing, translation and protein

synthesis, including IL-1b (34). Platelets constitutively express

the components of the NLRP3 and ASC inflammasome and can

use them to assemble a functional inflammasome, activating

caspase 1 to process IL-1b (31). Using purified platelets from

patients with CHIKV and Controls, we analyzed the expression

of cleaved IL-1b, the active form of the protein. As noted in

Figure 2A, we observed a prominent 17-kD size band

corresponding to cleaved IL-1b in platelets from Chikungunya

patients compared to control. In addition, we also observed an

increase in the expression of NLRP3 (Figure 2B). This data

suggests that the infection leads to modulation of IL-1b and

NLRP3 protein expression, and that platelets present the active
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machinery for IL-1b processing. Inflammasomes are

multiprotein complexes of the innate immune system that

orchestrate development of inflammation by activating the

secretion of the proinflammatory cytokines IL-1b and IL-18.

Recently, it was demonstrated that caspase 4 is part of a non-

canonical inflammasome pathway that activates NLRP3 and

generates IL-1b processing. In our work, we observed that

caspase 4 expression was also increased in platelets during

CHIKV infection (Figure 2C).
Platelet infection with CHIKV in vitro
partially reproduces the phenotype
in patients

To better understand platelet activation during CHIKV

infection, we performed in vitro analyses. Therefore, isolated

platelets from healthy donors were infected with CHIKV (MOI

= 0.1 or 1) for three hours and platelet activation was assessed.

We do not observe increases in the expression of CD62P on the

platelet surface (Figure 3A) or its soluble form in the supernatant

(Figure 3B), when compared to the uninfected controls

(uninfected platelet and Mock). In this group of experiments,

we used thrombin as positive control that leads to increased

expression and release of CD62P (Figures 3A, B). We then
Frontiers in Immunology 05
evaluated whether CHIKV infection could lead to the release of

cytokines present in platelet alpha granules. We observed that

the two MOIs analyzed led to an increase in PF-4 release, as did

the positive control (Figure 3C). We also analyzed the release of

macrophage migration inhibitory factor (MIF), which is a

relevant cytokine in platelet activation by the DENV (35), and

observed that CHIKV infection at the MOI of 1 and the positive

control induced an increase in MIF secretion (Figure 3D). Our

next step was to analyze the release of platelet-derived lipid

mediators. We observed increased release of 12-(s)-HETE by

platelets infected at MOI of 1 (Figure 3E) and thromboxane

release at the MOI of 0.01 (Figure 3F). The positive control did

not lead to consistent release of either mediator. To understand

if the processing and release of IL-1b would occur in platelets

infected with CHIKV in vitro, we measured the release of IL-1b
in the supernatant. We observed that the two MOIs tested led to

the release of IL-1b while the positive control did not

(Figure 3G). These data show that platelet infection with

CHIKV in vitro partially reproduces the activation phenotype

observed in patients. Based on the differences observed between

in vivo and in vitro activated platelets, we suggest that some of

the phenomena observed in the patients that are not induced by

the in vitro infection model may be generated through indirect

platelet activation by the inflammatory milieu and/or by direct

activation and reprogramming of megakaryocytes.
TABLE 1 Characteristics of Chikungunya patients and control donors.

Characteristics1 Control (25) Patients (132)

Age, years 36 (28.5-45) 44 (33-56)

Sex, male 11 (44%) 61 (46%)

Systemic arterial hypertension – 32(24%)

Onset of symptoms (days) – 2 (2-3)

Viral load (copies/mL) – 69.95 (0.08-21.387)

Clinical Symptoms (acute phase)

Fever – 124 (93%)

Rash – 43 (32%)

Headache – 94 (71%)

Retro-orbital pain – 52 (39%)

Myalgia – 93 (70%)

Arthralgia – 120 (90%)

Prostration – 60 (45%)

Conjunctivitis – 2 (1.5%)

Limb edema – 27 (20%)

Nausea and vomiting – 40 (30%)

Pain on Palpation – 7 (5.3%)

Arthritis – 2 (1.5%)

Weakness in Hands and Legs – 34 (25.75%)

Numbness – 14 (10.6%)

Swallowing Difficulty – 2 (1.5%)
1Numerical variables are represented as the median and the interquartile range, and qualitative variables are represented as the number and the percentage.
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Increased platelet activation converges
with chronic cases of chikungunya fever

The most noticeable clinical feature of chikungunya fever is

that after the acute phase a high proportion of infected

individuals experience chronic incapacitating arthralgia, which

can last for months to years (36). To assess whether platelet

activation in the acute phase of the disease could be related to the

chronicity of the cases, we contacted patients eighteen months
Frontiers in Immunology 06
after clinical recovery and asked if they still felt of joint pain/

arthralgia and/or muscle pain (Table 2). With this information,

we divided Chikungunya patients in two groups: Those who no

longer had any joint pain/arthralgia and/or muscle pain (non-

chronic); and those who remained with joint pain/arthralgia

and/or muscle pain (chronic). Among the 132 patients analyzed

in this study, 51 progressed to a chronic condition and 29 had no

symptoms related to chikungunya infection after the acute

phase. We observed that those who progressed to a chronic
A B

DC

FIGURE 1

Chikungunya infection leads to platelet activation. (A) Analysis of CD62P expression on platelet surface by flow cytometry was performed in 25
patients and 12 controls, chosen randomly; (B) Plasma quantitation of the soluble molecule of CD62P; (C) Plasma quantitation of platelet factor
4 (PF-4); and (D) Plasma quantitation of 12-(S)-HETE. (B–D) Samples were collected from 132 (CHIKV) and 25 healthy volunteers (Control). The
symbol ** means p<0.01 and the **** means p<0.0001.
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condition of the disease had higher platelet activation

(Figure 4A) and increased release of soluble p-selectin

(Figure 4B) than those who did not progress to chronic

disease. In the graphs, we demarcate the interquartiles with a

gray rectangle and the dotted line corresponds to the median of

the values referring to the controls. These data suggest that

exacerbated platelet activation in the acute CHIKV infection

could contribute to and may predict the chronicity of patients.
Frontiers in Immunology 07
Discussion

Platelets are well known cells for their hemostatic activities

that are currently recognized by their important functions in the

immune response (21), participating in the pathophysiology of

several diseases including arthritis (37) and infectious diseases as

dengue (30, 32–36, 38), COVID-19 (39–41) and malaria (42–

45). Ultrastructural studies have demonstrated that chikungunya
frontiersin.org
A
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C

FIGURE 2

Infection with chikungunya virus leads to inflammasome activation in platelets. (A) Western blot analysis of cleaved IL-1 b and b-actin expression
in platelets isolated from four control subjects and eight CHIKV patients and graph demonstrating band densitometry comparing to CHIKV with
Control (NS, p=0.2828); (B) Western blot analysis of NLRP-3 and b-actin expression in platelets isolated from three control subjects and four
CHIKV patients and graph demonstrating band densitometry comparing to CHIKV with Control (NS, p=0.2667); (C) Western blot analysis of
caspase 4 and b-actin expression in platelets isolated from four control subjects and five patients with CHIKV; and graph demonstrating band
densitometry with *P ≤ 0.05 comparing to CHIKV with Control.
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virus is associated with human platelets by becoming entrapped

in platelet aggregates, and some of the platelets showed features

of degranulation and lysis during this process (46, 47). Platelets

from CHIKV patients and in vitro infected platelets in the

present study also showed features of platelets activation, even

though some features were exclusive of platelets from patients.

We have observed increased platelet P-selectin surface

expression and increased soluble P-selectin released in the
Frontiers in Immunology 08
plasma from Chikungunya patients. P-selectin is a

glycoprotein stored in platelet a-granules that is translocated

to the surface and released in suspension during platelet

activation. P-selectin surface expression is increased in patients

with dengue, and is higher in patients presenting warning signs

and severe dengue syndromes compared to mild dengue (26). P-

selectin is the main adhesion molecule responsible for platelet

interaction with monocytes (21, 48) and circulating platelet-
A B

D

E F

G

C

FIGURE 3

Chikungunya virus infection leads to platelet activation in vitro. Platelets from healthy donors were infected with chikungunya virus at MOIs of
0.1 and 1 for three hours. (A) Analysis of CD62P expression on platelet surface by flow cytometry; (B) Quantification of soluble CD62P in the
supernatant of infected platelets; (C) Quantification of platelet factor 4 (PF-4) in the supernatant of infected platelets; (D) Quantification of
Macrophage migration inhibitory factor (MIF) in the supernatant of infected platelets; (E) Quantification of 12-(s)-HETE in the supernatant of
infected platelets; (F) Quantification of Thromboxane in the supernatant of infected platelets and (G) Quantification of IL-1b in the supernatant
of infected platelets. *P ≤ 0.05 comparing to CHIKV with Control and #P ≤ 0.05 comparing to CHIKV with MOCK.
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monocyte aggregates are increased in dengue-infected patients

(32). P-selectin and PF-4 are also important markers of platelet

activation in other viral infections such as SARS-CoV-2 and

HIV. In COVID-19 it has been shown that P-selectin is essential

for platelet-monocyte binding and consequent tissue factor

expression, leading to a amplification of thromboinflammatory

response (39, 40). Also in COVID-19, several studies have

shown a correlation between increase PF-4 levels and severe

cases, as well as in cases of post-vaccine thrombosis (40, 49).

Regarding HIV infection, it is observed that platelet activation

with increased P-selectin expression is persistent even with

antiretroviral therapy, being a complicating factor because it

participates in thrombus formation and increases the risk of

developing cardiovascular diseases (28, 50). 12-HETE is a

product of arachidonic acid metabolism that has been reported
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as a major modulator of vascular and joint inflammation during

the pathophysiology of sterile and infectious diseases. In our

study we observed increased 12-(S)-HETE levels in the plasma of

CHIKV patients. Platelet activation and 12-HETE synthesis

were previously related to activation and infiltration of

neutrophils to the inflamed joints of rheumatoid arthritis

patients (51). Since rheumatoid arthritis is also a complication

of the chronic phase of CHIKV infection, these data are

suggestive of the participation of platelet activation and 12-

HETE release in Chikungunya fever arthropathy. Accordingly,

platelet activation at the acute phase was higher in patients that

progressed with joint and muscle pain in the chronic phase in

the present study. In addition, increased 12-(S)-HETE synthesis

was related to patients with hypertension (52) and increased

pulmonary permeability in models of sterile inflammation (53),

however we could not detect differences in plasma 12-HETE

between patients with non-chronic/chronic joint or muscle pain

Platelets have already been shown to have the machinery to

perform post-transcriptional splicing and IL-1b synthesis (34).

We have previously shown that during dengue there is a

significant positive correlation between thrombocytopenia and

IL-1b release (54) and that dengue infection leads to assembly of

NLRP3 inflammasomes, activation of caspase 1, and caspase 1–

dependent IL-1b secretion in dengue (31). In the present work,

we confirm the accumulation of cleaved IL-1b and NLRP3
TABLE 2 Characterization of the population regarding the symptoms
presented after 1 year of diagnosis.

Characteristics1 Non chronic (51) Chronic (29)

Age, years 38 (30.5-55) 48 (42-57)

Sex, male 31 (60%) 8 (27.6%)

Joint and/or muscle pain 0 (0%) 29 (100%)
1Numerical variables are represented as the median and the interquartile range, and
qualitative variables are represented as the number and the percentage.
A B

FIGURE 4

Patients who progressed to chronic conditions of CHIKV had greater platelet activation. (A) Patients who progressed to a chronic condition had
higher expression of CD62P on the surface of platelets by flow cytometry, of the 25 patients analyzed, 8 did not progress to a conical condition
and 10 became chronic, the other 7 did not have contact; and (B) Plasma quantitation of the soluble molecule of CD62P of patients who
progressed to a chronic condition, of the 80 patients contacted, 51 did not progress to a chronical condition and 27 became chronic, the other
2 did not obtain quantification. *P ≤ 0.05 comparing non-chronic to chronic condition.
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proteins in platelets from patients with CHIKV infection.

Inhibiting IL-1b signaling in CHIKV-infected mice conferred

protection from bone loss and consequent improvement in

ar thr i togen ic cond i t ions (55) . NLRP3-dependent

inflammasome assembly and consequent IL-1b activation has

been shown to be pathogenic in several viral infections

contributing to pulmonary fibrosis in cytomegalovirus infected

mice (56) and in patients with acute-on-chronic hepatitis B liver

failure (57). In infections with influenza A virus, however,

activation of NLRP3-dependent inflammasome complex

contributes to protective responses and to ameliorate illness

(58). Despite the contradictory response depending on the type

of viral infection, the importance of NLRP3-dependent

inflammasome in various viral infections is contiguous and

therefore an interesting target for manipulation aiming at

improved disease outcomes, including in CHIKV infection.

There are no previous reports on the role of caspase 4 in

platelets, in our work we demonstrated increased caspase 4

expression in patients with CHIKV. The increase in caspase

together with NALP3 and IL-1b cleavage suggests that non-

canonical inflammasome assembly occurs in these platelets.

Caspase 4 is a caspase not related to apoptosis and, like

caspase 1, it is considered an inflammatory caspase. Activation

of noncanonical inflammasome can activate the NLRP3-

caspase-4-mediated processing and secretion of IL-1b and IL-

18, and induces the inflammatory cell death, pyroptosis, via

gasdermin D cleavage and activation (59–62). Increased caspase

4 activation in A549 epithelial cells has been linked to growth

restriction of B. pseudomallei (63). However, we cannot rule out

the role of caspase 1 in IL-1b processing in CHIKV platelets, and

therefore more experiments are needed to understand the role of

each protein in platelet inflammasome engagement during

CHIKV infection.

Although our experiments indicate strong platelet activation

during chikungunya fever, our in vitro infection model

reproduced only part of the patients’ platelet phenotype. We

observed that CHIKV induces the release of inflammatory

mediators, including cytokines and eicosanoids, important in

various immunoregulatory processes and diseases, but not in the

translocation of P-selectin to the cell surface or its release as a

soluble molecule. We can speculate to explain this difference that

CHIKV infection can peripherally generate the release of several

classic stimuli, such as ADP, fibrinogen, thrombin (which we

used as a positive control), as well as inflammatory mediators

such as interleukin 6 (IL-6) or Tumor necrosis factor (TNF) and

coagulation factors aiding greater platelet activation (64). The

pathways that platelets respond to the pathogen can also vary in

vitro and in vivo according to the receptor used. For example, in

presence of antibodies platelets would interact with CHIKV

through the FcgRIIA receptor (CD32a), a low affinity Fc

receptor for the immunoglobulin G constant region that

recognizes immune complexes with IgGs. Recognition through

this receptor triggers intracellular signaling events that lead to
Frontiers in Immunology 10
platelet activation and aggregation, which is a very common

event in bacterial infections but has also been reported in

infections generated by dengue and H1N1 influenza viruses

(64–69). In our in vitro experiments, when using purified

platelets diluted in culture medium, these other elements of

the infection microenvironment that may be participating in

platelet response are missing. However, we cannot rule out that

during infection, CHIKV is also directly stimulating

megakaryocytes, as has been seen in other infections, such as

dengue virus, SARS-CoV-2 and HIV, with alterations in the

maturation and development of the megakaryocyte, in the

production of platelets, permissiveness to viral replication,

f o r m a t i o n o f i n f e c t i o u s v i r a l p a r t i c l e s a n d

thromboinflammation, potentially influencing the observations

we have in patients (70–77). Further studies are still needed to

fully understand the mechanisms of platelet and megakaryocyte

activation and their contributions to the pathophysiology of

chikungunya fever.

A high proportion of individuals infected with CHIKV

experience intense and limiting joint pain (arthralgia), which

fails to return to healthy conditions after the acute phase, and

which clinical cure can take weeks to months, thus affecting the

quality of life. Progression to the chronic phase appears to be

independent of the viral strain and location of the outbreak.

Some studies have positively correlated factors such as

increasing age, time of acute disease persistence, female

gender, pre-existing rheumatologic conditions, high viral titers

and high level of anti-CHIKV antibodies with the persistence of

the disease to a chronic phase (78, 79). High levels of interleukin

12 have been linked to both the acute and chronic phases of the

disease (16). Analyzes performed in chronic patients identified a

large infiltrate of leukocytes, including TCD8, TCD4, NK cells

and macrophages in biopsies of muscle tissue, joint-associated

tissue and synovial fluid during chronic CHIKV disease (16, 80).

Increased cytokines and chemokines such as IL-6, GM-CSF, IL-

1a, IL-15, CXCL9 and CXCL10 and complement system

components such as C3 were also observed from 6 to 36

months after infection in patients with chronic disease

compared to with retrieved controls (12, 81, 82). Increased

platelet activation in patients that have evolved with chronic

arthralgia and myalgia observed in this work is suggestive of an

active participation of platelets in the generation of immune

mechanisms related to chronic progression. Our observation

that patients who progressed to a chronic condition presented

higher platelet activation in the acute phase, suggests platelets as

another immunological component predisposing to chronicity.

New studies are still needed to investigate whether platelets

remain activated or predisposed to be activated in these patients

who have progressed to a chronic condition compared to the

healed patients.

In summary, we demonstrated for the first time that platelets

are activated in Chikungunya virus infection, and that this

activation can lead to NLRP3 inflammasome formation and
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IL-1b processing besides the release of inflammatory

eicosanoids, cytokines and chemokines. Therefore, platelet

activation contributes to inflammatory amplification during

acute phase, which may be implicated in the progression to

chronic disease in Chikungunya. All these activation-dependent

responses and clinical associations highlight a role for platelets in

pathophysiological mechanisms of this arboviral disease that

continues as a major public health problem.
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