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Abstract

Background

Multimorbidity is a worldwide concern related to greater disability, worse quality of life, and

mortality. The early prediction is crucial for preventive strategies design and integrative

medical practice. However, knowledge about how to predict multimorbidity is limited, possi-

bly due to the complexity involved in predicting multiple chronic diseases.

Methods

In this study, we present the use of a machine learning approach to build cost-effective multi-

morbidity prediction models. Based on predictors easily obtainable in clinical practice (socio-

demographic, clinical, family disease history and lifestyle), we build and compared the

performance of seven multilabel classifiers (multivariate random forest, and classifier chain,

binary relevance and binary dependence, with random forest and support vector machine

as base classifiers), using a sample of 15105 participants from the Brazilian Longitudinal

Study of Adult Health (ELSA-Brasil). We developed a web application for the building and

use of prediction models.

Results

Classifier chain with random forest as base classifier performed better (accuracy = 0.34,

subset accuracy = 0.15, and Hamming Loss = 0.16). For different feature sets, random for-

est based classifiers outperformed those based on support vector machine. BMI, blood

pressure, sex, and age were the features most relevant to multimorbidity prediction.
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Conclusions

Our results support the choice of random forest based classifiers for multimorbidity

prediction.

Introduction

Multimorbidity, usually defined as the presence of two or more chronic diseases, represents a

huge challenge for health systems all over the world [1, 2]. People with multiple chronic dis-

eases commonly experienced loss of functional abilities, more frequent and longer hospitaliza-

tion, and increased risk of premature death [1–3]. Traditional medical practices based on

diagnosis and treatment of diseases in isolation highlight the limitations in health systems for

the treatment of multimorbidity [4].

Although multimorbidity is a challenge worldwide, there are differences between low and

middle-income countries (LMIC´s) and high-income countries (HIC´s) [3, 5, 6]. Multimor-

bidity affects more young people in LMIC´s than in HIC´s and represents a large part of the

burden of disease in those countries [5–7]. The different profiles imply the need for different

preventive approaches and continued treatment. In this sense, the knowledge of multimorbid-

ity patterns and factors related, especially the modifiable factors, can help public policies for

the prevention and treatment of multiple chronic diseases.

Studies on multimorbidity patterns in low and middle-income countries (LMIC´s) are still

sparse [8]. Particularly, some studies have already described the most prevalent dyads and tri-

ads of chronic conditions and identified socio-economic factors as related to multimorbidity,

but most studies deal with multimorbidity as a count of diseases [9, 10]. Given the diversity of

cooccurrences of chronic diseases, the number of diseases does not allow expressing the variety

of possible multimorbidity patterns as well as related factors.

Recently, machine learning (ML) methods have been applied to many problems in public

health to improve prediction and discover complex patterns of relationships not found by tra-

ditional methods [11]. Studies using unsupervised ML techniques have been published for the

recognition of multimorbidity patterns, but there is still a gap of studies about modeling and

prediction of multiple chronic diseases, possibly due to the complexity of establishing the clas-

sification of multiple diseases simultaneously [12–14].

The main challenges for multimorbidity prediction, not yet jointly addressed in the multi-

ple disease prediction scenario, are: to incorporate the relationship among diseases in the pre-

diction; to deal with the imbalanced and low occurrence of diseases; and to find a set of

features that are low-cost, to be able to predict with reasonable accuracy the occurrence of

multiple chronic conditions [12–17]. The contributions of this work are present a ML

approach based on multilabel classifiers to deal with these problems, and apply it to the build

and comparison of cost-effective multimorbidity prediction models, using a large sample from

the Brazilian Longitudinal Study of Adult Health (ELSA/Brasil). We provided a comparison of

the performance of seven multilabel classifiers and identified the features that are most rele-

vant in the prediction.

To encourage the use of multilabel classifiers, we developed a web application available

online at https://danielapaula.shinyapps.io/Multilabel_Tool/, where prediction models can be

built and used practically and intuitively. The application can be used by the general public

since it does not require prior knowledge of machine learning or programming.
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Methods

Study population

ELSA-Brasil is a multicenter cohort study conducted in six Brazilian capitals. The main objec-

tive is to investigate the incidence and risk factors associated with cardiovascular diseases and

diabetes. The baseline was performed from 2008 to 2010 and enrolled 15105 active or retired

civil servants (35–74 years). Participants were submitted to a set of examinations, in addition

to detailed personal interviews by trained personnel. The sampling procedures and study

design of ELSA-Brasil have been reported previously [18, 19].

ELSA-Brasil was approved by the National Research Ethics Committee (Conep—No. 976),

and the research protocol developed at all Research Centers was approved by the Research Eth-

ics Committee of the Oswaldo Cruz Institute (CEP Fiocruz/IOC—No. 343/06). All partici-

pants gave written consent to participate.

Study variables

Outcome variables. Chronic diseases with prevalence greater than or equal to 5% at base-

line were included. Multimorbidity was defined as the presence of at least two chronic diseases

in the set of 10 morbidities: cancer, diabetes, dyslipidemia, common mental disorder,

migraine, heart disease (acute myocardial infarction, angina pectoris or heart failure), asthma,

cirrhosis, joint problems, and kidney disease.

Cancer, heart disease, asthma, cirrhosis, joint problems, and kidney disease were identified

by the participant’s self-report of a previous diagnosis by a physician. Dyslipidemia was identi-

fied by clinical exam. Diabetes was defined by self-report or use of medication and when not

reported, it was defined by clinical exam [20–25].

Common mental disorders were identified using the Clinical Interview Schedule—Revised

(CIS-R) instrument (cut-off point for the presence of a disorder� 12 points) [26]. Migraine

was defined according to a detailed headache questionnaire based on the International Head-

ache Society (IHS) criteria [24].

Predictors variables. The choice of the set of predictors was based on previously pub-

lished predictive models for chronic diseases [3, 26–28]. We considered 31 variables that do

not imply additional costs beyond those easily accessible by physicians in a clinical visit. The

variables were defined as follows:

Sociodemographic variables: sex, age (in years), education (never attended to school to ele-

mentary, secondary, undergraduate and postgraduate), self-reported race/color (based on Bra-

zilian Census: white, “pardo,” black, indigenous and Asian), marital status (single or not

single), per capita household income (in dolar), children (yes/no), maternal education (never

attended to school, incomplete elementary, elementary, secondary and undergraduate).

Lifestyle and dietary variables: smoking (never, past, or current), consumption of alcohol

(not consuming, moderate—consumption <210 and 140 g/wk for men and women, respec-

tively, excessive–higher than previous consumption limits) [29], physical activity in leisure

time (weak, moderate, and strong following the classification of the International Physical

Activity Questionnaire, in the domain of leisure-time physical activity) [30]. Days of physical

activity (number of days/week) [28]. Sleep symptom (yes/no). Sleeping problem (yes/no) [28].

Fruit consumption and vegetable consumption (high, daily, weekly and rarely) [31]. Coffee

consumption (no; yes, with caffeine; yes, decaffeinated) [28].

Anthropometric variables: body mass index (BMI) (kg/m2), systolic blood pressure (BP)

(mmHg), diastolic BP (mmHg), heart rate (BPM), waist-hip ratio.
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Family history variables (yes/no): hypertension, diabetes, heart disease, stroke, cerebrovas-

cular accident, angioplasty and stent, sudden death, asthma, cancer.

Statistical analysis

Descriptive analysis. The analytical sample considered 14836 participants who provided

information about the chronic diseases considered. Descriptive analysis was performed. Par-

ticipants were grouped according to the number of chronic conditions (0,1,2,3,4, 5 or more),

and differences among the groups were tested by Pearson’s chi-square test, analysis of vari-

ance, and Kruskal-Wallis test. The multimorbidity patterns were identified and the prevalence

analyzed [32]. The level of significance was set at p< .05. The R 4.1.0 software was used in all

analyses.

ML algorithms. i. Incorporating the relationship between the diseases. Multilabel classifiers

approach the issue of incorporating the relationship between the diseases in the model design.

They provide different ways of establishing the relationship between the diseases and can be

divided into two main categories: Algorithm adaptation and problem transformation. In this

work, seven multilabel classifiers were implemented and their performances compared. One

algorithm adaptation method (multivariate random forest) and three problem transformation

methods (Binary Relevance, Dependent Binary Relevance, and Classifier Chain), with support

vector machine (SVM) and random forest (RF) as base classifiers for each one of transforma-

tion methods [33, 34]. These methods differ in the way they establish the relationship between

the diseases for prediction:

Multivariate random forest (MTV-RF)–The relationship between the labels is established by

a composite normalized Gini index splitting rule, which uses a weighted covariance structure

(e.g., auto regressive, compound symmetry) to assign the relationship between the labels.

Binary relevance (BR)—The simplest problem transformation method that implements a

binary classifier for each label. The labels are predicted independently of each other and label

dependencies are not taken into account.

Dependence Binary relevance (DBR)—The multilabel classification is transformed into sim-

ple binary classifications for each label, as well as in the BR method, but the dependence

between the labels is established using for each label the actual information of all binary labels

(except the target outcome) as additional features.

Classifier Chain (CC)–A binary classifier is trained for each label following a given order.

The dependence between the labels is designed by including in the feature space of each classi-

fier the true label information of all previous labels in the chain.

The choice of classifiers was based on scalability for large datasets and performance on pre-

diction problems [17–19].

For model evaluation, we consider the performance measures usually considered for multi-

label classifiers: Hamming loss, subset accuracy, accuracy, and F-measure, defined as follows

[34]:

Let D be a multilabel dataset, |D| the number of observed instances (for example, the num-

ber of participants in the study), L the full set of labels in D, and |L| the number of labels (for

example, the number of diseases considered). For Yi the label set of i-th instance (observed dis-

eases for the i-th participant), and Zi the subset of predicted labels (predicted diseases for i-th

participant), we define:

Hamming Loss: It is the most common evaluation metric in the multilabel literature, com-

puted as the symmetric difference between predicted and true labels (predicted diseases that

were not observed or observed diseases that were not predicted) divided by the total number
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of labels.

HammingLoss ¼
1

jDj

XjDj

i¼1

jYiDZij
jLj

ð1Þ

where Δ is the operator that returns the symmetric difference between Yi, the label set of the i-

th instance, and Zi, the predicted one. The |.| operator counts the number of 1’s in this differ-

ence, in other words the number of miss predictions.

Subset Accuracy: This metric is also known as 0/1 Subset Accuracy and Classification Accu-

racy, and it is the most strict evaluation metric. The[[]] denotes de Iverson bracket, which

returns 1 if the expression inside it is true or 0 otherwise. In this case, its value is 1 only if the

predicted set of labels equals the true one.

SubsetAccuracy ¼
1

jDj

XjDj

i¼1
½½Yi ¼ Zi�� ð2Þ

where [[Yi = Zi]] returns 1 if all labels for i-th instance are equal to the predicted ones.

Accuracy: It is defined as the proportion of correctly predicted labels concerning the total

number of labels (predicted or observed) for each instance.

Accuracy ¼
1

jDj

XjDj

i¼1

jYi \ Zij
jYi [ Zij

ð3Þ

where |Yi\Zi| is the number of correctly predicted labels, and |Yi[Zi| is the total number of

active labels, in the both real label set and the predicted one.

F-Measure: This metric is the harmonic mean between Precision and Recall, providing a

balanced assessment between precision and sensitivity.

F � Measure ¼ 2 �
Precision � Recall
Precisionþ Recall

ð4Þ

where Precision ¼ 1

jDj

PjDj
i¼1

jYi\Zi j
jYi j

(5), with |Yi|, the total number of truly relevant labels, and |

Yi\Zi| defined as in Eq (3). Recall ¼ 1

jDj

PjDj
i¼1

jYi\Zi j
jZij

(6), with |Zi|, the total number of predicted

labels, and |Yi\Zi| defined as in Eq (3).

ii. Dealing with imbalance. To evaluate the imbalance of disease occurrences we used cardi-

nality, density, and IRLbl (Imbalance ratio per Label). These measures characterize the dataset

and can influence the classifiers, they are defined as follows [14, 35]:

Let D be a multilabel dataset, |D| the number of observed instances (for example, the num-

ber of participants in the study), L the full set of labels in D, and |L| the number of labels (for

example, the number of diseases considered). For Yi the label set of i-th instance (observed dis-

eases for the i-th participant) in D, we define:

Label Cardinality: is the average number of labels of the observations in a dataset D:

LC Dð Þ ¼
1

jDj

XjDj

i¼1
jYij ð7Þ

where |Yi| is the total number of truly relevant labels for the i-th instance.
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Label Density: is the average number of labels of the observations in a dataset D divided by |

L|:

LD Dð Þ ¼
1

jDj

XjDj

i¼1

jYij
jLj

ð8Þ

IRLbl (Imbalance ratio per Label):

IRLbl yð Þ ¼
maxy�2Lð

PjDj
i¼1
½½y �2Yi��Þ

PjDj
i¼1
½½y 2 Yi��

ð9Þ

where the symbol [[]] denotes the Iverson bracket, which returns 1 if the expression inside it is

true or 0 otherwise, y denotes the label for which the measure IRLbl(y) is calculated, y´ denotes

a label evaluated in L (y´2L), and max is the maximal value.

IRLbl is a measure calculated individually for each label and represents the maximum

observed occurrence in the set of labels divided by the occurrence of each label (the highest

observed occurrence of a disease divided by the occurrence of each disease). The higher is the

IRLbl the larger would be the imbalance, allowing to know which labels are in minority or

majority. MeanIR is the average IRLbl for an MLD. It is useful to estimate the global imbalance

level [14, 35].

Due to the imbalance observed in the dataset regarding the chronic conditions, the perfor-

mance measures were averaged over stratified 10-fold cross-validation (CV), repeated 5 times.

In each iteration, the algorithms were then trained in turn on nine partitions and evaluated on

the remaining partition. We consider a nested 3-fold cross-validation for hyperparameter tun-

ing. The methods can handle missing values internally, except for the SVM-based algorithms,

for which the imputation was performed within the CV, on the test and training partitions sep-

arately, to avoid bias in performance estimation. Technical details are given in the appendix

(SMethods1 in S1 Appendix).

A possible strategy to deal with imbalance is to consider a resampling algorithm in model

design. To evaluate the impact of resampling algorithms, we applied the random oversample

based on the IRLbl [35]. The oversample was applied on each partition of the training set gen-

erated during the stratified cross-validation procedure [18, 36, 37].

iii. Searching for low-cost predictors. To consider searching for low cost features, we used a

feature selection technique based on information gain. Variable importance was estimated for

the MTV-RF model. We analyzed the effect of the number of features in classification perfor-

mance using the Binary Relevance + Information Gain (BR+IG) approach [16, 38]. This fea-

ture selection consists of first transforming the multilabel data into single-label datasets, by

Binary Relevance, and then using them to select features based on information gain scores. We

analyze the model performances for different numbers of features following the score ranking.

Variable importance was averaged over 100 runs for the MTV-RF using a generalization of the

permutation variable importance [33].

iv.Web application. The web application for building and using multilabel classifiers, called

Multilabel_Tool, is available at https://danielapaula.shinyapps.io/Multilabel_Tool/, and was

developed using the Shiny package from R. A sample of the R code files for creating the appli-

cation is available at https://github.com/paula-daniela/Multilabel_Tool.git, as well as two

examples of datasets that can be used as input files for building the models and making

predictions.

On the developed web application, MTV-RF, BR, and CC classifiers are available, as well as

measures of information gain (BR+IG), so that it is possible to evaluate the performance of the

models for different sets of features selected from (BR+IG), and to perform hyparameter
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tuning by cross-validation. A brief tutorial of the web application is available in the appendix

(SResults3 in S1 Appendix).

Results

Among the 14836 participants included in this study, 8347 (56.3%) had multimorbidity

(Table 1). The average age was 52.1 years, with a range of 34–75 years. Most of the participants

with multimorbidity were women 5060 (60.6%) and had a higher mean age (53.2). Among the

subgroups with the highest number of diseases, we observe a gradient of increase in the aver-

age age, and proportion of women (Table 1).

The condition with the highest prevalence was dyslipidemia (44.2%), followed by migraine

(29.5%) and common mental disorder (26.7%) (Fig 1A). Dyslipidemia, migraine and common

mental disorder also had the highest prevalences when with co-occurring conditions (33.6%,

25.1%, and 23.9%, respectively) (Fig 1A). Overall, for all diseases, among the most common

co-occurring diseases were dyslipidemia migraine and common mental disorder (Fig 1B). A

high prevalence of dyslipidemia was observed among people with heart disease (63%), and

with diabetes (61%), high prevalence of migraine among participants with common mental

disorder (55%), cirrhosis (41%), asthma (41%), joint problems (36%) and kidney disease

(35%) (Fig 1B).

Regarding the imbalance between occurrences, the dataset has a label cardinality of 1.86

and a density of 0.19. The mean IRLbl of the diseases was 3.82, indicating an average imbalance

of approximately four between the occurrences of dyslipidemia and the other diseases. To eval-

uate resampling methods to deal with imbalance we applied random oversampling based on

IRLbl for the MTV-RF classifier. Oversampling was applied to each partition of the training

set generated during the stratified cross-validation procedure. We observed a slight

Table 1. Sociodemographic characteristics for the study population, according to the number of chronic conditions.

Variables Number of chronic conditions Total Missing

0 (n = 2238) 1 (n = 4251) 2 (n = 4111) 3 (n = 2550) 4 (n = 1163) 5+ (n = 523) n = 14,836 n (%)

Age, mean (sd) 49.3 (8.6) 51.4 (9) 52.3 (9) 53.2 (9) 54.7 (8.9) 56.2 (8.7) 52.1 (9.1) 0

Sex, n (%) 0

Male 1288 (57.6) 2194 (51.6) 1846 (44.9) 960 (37.6) 367 (31.6) 114 (21.8) 6769 (45.6)

Female 950 (42.4) 2057 (48.4) 2265 (55.1) 1590 (62.4) 796 (68.4) 409 (78.2) 8067 (54.4)

Education, n (%) 0

Never attended school to elementary school 257 (11.5) 496 (11.7) 538 (13.1) 323 (12.7) 163 (14) 104 (19.9) 1881 (12.7)

Secondary school 813 (36.3) 1381 (32.5) 1398 (34) 925 (36.3) 453 (39) 189 (36.1) 5159 (34.8)

University degree 1168 (52.2) 2374 (55.8) 2175 (52.9) 1302 (51.1) 547 (47) 230 (44) 7796 (52.5)

Family per capita income, mean (sd) 900 (732.7) 973.2 (803.1) 951.9 (771.3) 931.2 (770.3) 913.2 (786.8) 798.8 (618.4) 938.2 (771.5) 59 (0.4)

Skin color/race, n (%) 171 (1.2)

White 1127 (50.7) 2252 (53.8) 2101 (51.7) 1323 (52.5) 609 (52.9) 231 (44.6) 7643 (52.1)

Pardo 642 (28.9) 1169 (27.9) 1152 (28.4) 715 (28.4) 294 (25.5) 165 (31.9) 4137 (28.2)

Black 366 (16.4) 629 (15) 661 (16.3) 394 (15.6) 214 (18.6) 102 (19.7) 2366 (16.1)

Indigenous 27 (1.2) 33 (0.8) 42 (1.0) 30 (1.2) 12 (1.0) 7 (1.4) 151 (1.0)

Asian 63 (2.8) 106 (2.5) 105 (2.6) 59 (2.3) 22 (1.9) 13 (2.5) 368 (2.5)

Marital Status, n (%) 0

Single 638 (28.5) 1357 (31.9) 1413 (34.4) 920 (36.1) 477 (41.0) 222 (42.4) 5027 (33.9)

Not single 1600 (71.5) 2894 (68.1) 2698 (65.6) 1630 (51.1) 686 (59) 301 (57.6) 9809 (66.1)

Note. All variables showed significant differences between the subgroups.

https://doi.org/10.1371/journal.pone.0275619.t001
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improvement in all performance measures, especially in subset accuracy, but, due to the

computational cost, we did not apply the resampling method to the other classifiers. The

results are in the appendix (SResults1 in S1 Appendix).

The performance measures for the ML algorithms, considering all predictors, are presented

in Table 2. In general, the methods based on RF, as adaptative as well as transformation,

showed better performance than the methods based on SVM. The best performance was

achieved for RF-CC.

For each feature, the info gain was evaluated using the BR+IG approach. BMI had the high-

est information gain, followed by systolic BP, waist-hip ratio, diastolic BP, and age. Sets of 5,

10, 15, 20, and 25 features were selected by BR+IG rank, to compare the performance of the

methods on smaller sets of predictors. For most methods, the performance measures F-mea-

sure and accuracy become stable after 10 features, and for Hamming loss, from 15 features on.

Regarding subset accuracy, SVM-based classifiers were the most stable, regardless of the num-

ber of features (Fig 2).

SVM-based transformation methods perform better concerning Hamming loss and subset

accuracy for a few features (Fig 2). As the number of features increases, RF-based methods

take the lead, besides performing better regarding accuracy and F-measure, even for small

numbers of features. RF-BR is one of the best methods concerning accuracy and F-measure

for all feature sets. RF-BR is among the best methods regarding Hamming loss from 15 fea-

tures, with performance similar to RF-CC and RF-DBR, and concerning subset accuracy, from

Fig 1. Prevalence and cooccurrence of chronic conditions. a) Prevalence of chronic conditions (light gray + dark

gray), occurring jointly with other conditions (light gray) and occurring without any condition (dark gray); b)

Prevalence of y-axis comorbidities among participants who have x-axis conditions; common mental–common mental

disorder.

https://doi.org/10.1371/journal.pone.0275619.g001

Table 2. Prediction performance measures.

Method Accuracy Subset Accuracy Hamming Loss F-Measure

MTV-RF 0.335 0.145 0.166 0.407

RF-CC 0.339 0.152 0.165 0.409

SVM-BR 0.322 0.140 0.168 0.392

SVM-DBR 0.313 0.143 0.169 0.380

RF-BR 0.336 0.145 0.165 0.409

RF-DBR 0.328 0.147 0.166 0.397

SVM-CC 0.315 0.145 0.169 0.381

Note. MTV- Multivariate; RF-Random Forest; CC- Classifier Chain; SVM- Support Vector Machine; BR- Binary Relevance; DBR- Dependent Binary Relevance.

https://doi.org/10.1371/journal.pone.0275619.t002
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22 features. The difference is that the last two methods, which include dependency between

labels, have higher subset accuracy than RF-BR, with RF-CC outperforming RF-DBR from 25

features on.

Analogously to the BR+IG rank, the variable importance for the MTV-RF showed that BMI

was the best predictor for multimorbidity, followed by systolic BP, age, diastolic BP, and sex

(Fig 3). Furthermore, the sets of the first top eight predictors were equal by both importance

and BR+IG ranks. The importance decreases for the other features with values close to zero.

Fig 2. Performance of multilabel classifiers according to the number of features. MTV- multivariate; RF-Random

Forest; CC- Classifier Chain; SVM- Support Vector Machine; BR- Binary Relevance; DBR- Dependent Binary

Relevance.

https://doi.org/10.1371/journal.pone.0275619.g002

Fig 3. Average variable importance for the first top 15 features using multivariate random forest. BP-Blood

Pressure; BMI-Body Mass Index.

https://doi.org/10.1371/journal.pone.0275619.g003
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To exemplify the classification rule and interpretability of the MTV-RF classifier, a subsam-

ple of the study population was considered (n = 1340), for simplicity. The resulting classifica-

tion rule and the trees generated for each disease considered are available in the appendix

(SResults2 in S1 Appendix).

Discussion

Recent studies on multimorbidity have implemented ML techniques to identify patterns of

association between chronic conditions [11–13]. However, knowledge about modeling and

prediction is still limited. Few studies deal with predictions for multiple diseases, mostly used

counts [9, 10, 39]. When predicting with counting, the full complexity of relationships between

diseases and between diseases and predictors is neglected in exchange for a less complex

modeling process. The difficulties in predicting multimorbidity and how to overcome these

issues when building a classifier have not yet been reported. The present study is the first to

present the main problems in predicting multiple diseases and how to solve them, besides pro-

viding a user-friendly web application for building and using prediction models.

We present a machine learning approach based on multilabel classifiers, and use it to build

and compare the performance of seven classifiers for predicting multimorbidity. This method-

ology and developed web application can be used to build feasible models, for screening indi-

viduals with multimorbidity from a small set of characteristics easily accessible in clinical

practice. In the context of LMIC´s, with scarce resources, where it is known that multimorbid-

ity represents a high burden of disease, these models can help as a tool for prevention and tar-

geting of interventions based on the modifiable factors [7, 8]. Moreover, since the models can

predict the disease’s cooccurrence, they can support the design of integrated clinical practices

of care instead of conventional fragmented strategies for each chronic disease, one of the main

challenges for multimorbidity prevention and management [8].

The prevalence of multimorbidity observed in this study (56.3%) was higher than expected

in Brazil (reported in previous studies between 16.8% and 24.2%) [10, 40–43]. Differences

between prevalences can occur due to several reasons, such as the different sets of diseases and

differences in variables such as age. The majority of participants with multimorbidity were

women and had higher average age. Among participants with at least two chronic conditions,

we observed a gradient of increase in the proportion of people with primary or secondary edu-

cation, and decrease in average per capita income. Most studies found that age is a risk factor

for multimorbidity as well as sex, however, there is still no consensus on other factors such as

education and income [8].

Dyslipidemia, migraine and common mental disorder were the most prevalent diseases and

were also among the most cooccurring. High cooccurrences were also found between diabetes

and dyslipidemia, heart disease and dyslipidemia, migraine and common mental disorder,

asthma and migraine, and joint problems and migraine. These results are in agreement with

previous studies that reported a high prevalence of dyslipidemia, as well as associations

between mental disorders, joint problems, migraine, and respiratory diseases [8, 41–45]. The

patterns of association found are compatible with the patterns previously identified in Brazil

and LMIC’s named as "cardio-metabolic" and "musculoskeletal-mental" [41, 44, 45].

Considering the full set of features, the best performance was achieved for RF-CC. SVM-

based transformation methods performed worse than both adaptive and transformation RF-

based methods. Decision trees have already been indicated as a good method for multiple-dis-

ease classification over SVM-based methods, and our results support the choice of RF-based

classifiers for multimorbidity prediction [14]. The analysis for the different feature sets con-

firmed that RF-based classifiers should be preferred over SVM-based classifiers from 15
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predictors, selected by BR+IG. Despite the assumption of independence between diseases,

RF-BR was consistently among the best predictors, with the advantage of easy implementation

and scalability, However, RF-CC should be considered if subset accuracy is the most important

metric, i.e. when we want to achieve the best performance regarding the accurate identification

of all diseases a patient may have. The performance of the CC can decrease significantly for a

dataset with a high number of labels and high dependency or cardinality, so more studies are

needed for evaluation of this classifier for multimorbidity prediction [46, 47].

BMI combined with age, sex, waist-hip ratio, systolic and diastolic BP, sleep symptom and

sleeping problem composed the set of eight best predictors, for MTV-RF, according variable

importance. They also had the highest information gains, which was expected given that they

are measures based on decision tree algorithms. Such features, found to carry the highest

importance, are related to chronic diseases and multimorbidity. Sex and age are commonly

reported as risk factors for multimorbidity, BMI, BP, and waist-hip ratio are also pointed out

as a risk factor, especially for cardio-metabolic multimorbidities, and sleep disturbances and

multimorbidity have been related previously, in particular associated with neuropsychiatric

and musculoskeletal conditions [8–10, 48–50].

Our study has some limitations. Because this is a cross-sectional study, it is not possible to

identify a well-established cause-effect relationship between the variables. In general, ML

methods use features to predict a response, but they may not be causal factors, so the direction-

ality between predictor and response is difficult to establish. It should be noted that the impor-

tance of the variables found is limited to the model and population studied, using other

algorithms may change the relevance of the variables. Therefore, although ML provides some

insights into risk factors, it is not a conclusive analysis for this purpose.

Despite these limitations, our study is the first to present a ML approach to solve the main

problems in multimorbidity prediction in a scenario where the number of chronic diseases is

the most used outcome in predictions. The ML methodology used and web application devel-

oped are comprehensive, and can be applied to any clinical field in which multiple outcomes

are considered. Starting from a large sample size, which makes the ML process more robust,

we show that it is possible, from a small set of features, that are easy to collect in clinical prac-

tice, to build a feasible tool for multimorbidity prediction.

Supporting information

S1 Appendix.
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Ciência & Saúde Coletiva. 2020. 25:3869–3877. https://doi.org/10.1590/1413-812320202510.

34492018

11. Panch T, Szolovits P, Atun R. Artificial intelligence, machine learning and health systems. Journal of

global health. 2018: 8(2). https://doi.org/10.7189/jogh.08.020303 PMID: 30405904

12. Hassaine A, Salimi-Khorshidi G, Canoy D, Rahimi K. Untangling the complexity of multimorbidity with

machine learning. Mechanisms of ageing and development. 2020; 190, 111325. https://doi.org/10.

1016/j.mad.2020.111325 PMID: 32768443

13. Majnarić LT, Babič F, O’Sullivan S, Holzinger A. AI and big data in healthcare: towards a more compre-

hensive research framework for multimorbidity. Journal of Clinical Medicine. 2021. 10(4), 766. https://

doi.org/10.3390/jcm10040766 PMID: 33672914

14. Zufferey D, Hofer T, Hennebert J, Schumacher M, Ingold R, Bromuri S. Performance comparison of

multi-label learning algorithms on clinical data for chronic diseases. Computers in biology and medicine.

2015; 65:34–43. https://doi.org/10.1016/j.compbiomed.2015.07.017 PMID: 26275389

15. Gibaja E, Ventura S. Multi-label learning: a review of the state of the art and ongoing research. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2014; 4(6):411–444. https://doi.org/

10.1002/widm.1139

PLOS ONE Comparing machine learning algorithms for multimorbidity prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0275619 October 7, 2022 12 / 14

https://doi.org/10.1016/S0140-6736%2812%2960240-2
http://www.ncbi.nlm.nih.gov/pubmed/22579043
https://doi.org/10.1016/S0140-6736%2814%2961462-8
http://www.ncbi.nlm.nih.gov/pubmed/25468158
https://doi.org/10.1016/j.archger.2020.104157
https://doi.org/10.1016/j.archger.2020.104157
http://www.ncbi.nlm.nih.gov/pubmed/32585554
https://doi.org/10.1016/j.healthpol.2017.09.006
http://www.ncbi.nlm.nih.gov/pubmed/28967492
https://doi.org/10.1056/NEJMra1109345
https://doi.org/10.1056/NEJMra1109345
http://www.ncbi.nlm.nih.gov/pubmed/24088093
https://doi.org/10.1016/S0140-6736(17)32130-X
https://doi.org/10.1016/S0140-6736(17)32130-X
https://doi.org/10.1186/s12889-015-2008-7
http://www.ncbi.nlm.nih.gov/pubmed/26268536
https://doi.org/10.1177/2235042X20961919
http://www.ncbi.nlm.nih.gov/pubmed/33117722
https://doi.org/10.11606/s1518-8787.2018052000637
https://doi.org/10.1590/1413-812320202510.34492018
https://doi.org/10.1590/1413-812320202510.34492018
https://doi.org/10.7189/jogh.08.020303
http://www.ncbi.nlm.nih.gov/pubmed/30405904
https://doi.org/10.1016/j.mad.2020.111325
https://doi.org/10.1016/j.mad.2020.111325
http://www.ncbi.nlm.nih.gov/pubmed/32768443
https://doi.org/10.3390/jcm10040766
https://doi.org/10.3390/jcm10040766
http://www.ncbi.nlm.nih.gov/pubmed/33672914
https://doi.org/10.1016/j.compbiomed.2015.07.017
http://www.ncbi.nlm.nih.gov/pubmed/26275389
https://doi.org/10.1002/widm.1139
https://doi.org/10.1002/widm.1139
https://doi.org/10.1371/journal.pone.0275619


16. Pereira RB, Carvalho APD, Zadrozny B, Merschmann LHDC. Information gain feature selection for

multi-label classification. 2015. Journal of Information and Data Management 6.1;48–48

17. Charte F, Rivera AJ, del Jesus MJ, Herrera F. Addressing imbalance in multilabel classification: Mea-

sures and random resampling algorithms. Neurocomputing. 2015 163(0):3–16. https://doi.org/10.1016/

j.neucom.2014.08.091

18. Schmidt MI, Duncan BB, Mill JG, et al. Cohort profile: longitudinal study of adult health (ELSA-Brasil).

Int J Epidemiol. 2015; 44(1):68–75. https://doi.org/10.1093/ije/dyu027 PMID: 24585730

19. Aquino EM, Barreto SM, Bensenor IM, et al. Brazilian longitudinal study of adult health (ELSA-Brasil):

objectives and design. Am J Epidemiol. 2012; 175(4):315–324. https://doi.org/10.1093/aje/kwr294

PMID: 22234482
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