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Abstract 

COVID-19, which is caused by Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), has resulted in 
devastating morbidity and mortality worldwide due to lethal pneumonia and respiratory distress. In addition, the 
central nervous system (CNS) is well documented to be a target of SARS-CoV-2, and studies detected SARS-CoV-2 
in the brain and the cerebrospinal fluid of COVID-19 patients. The blood–brain barrier (BBB) was suggested to be 
the major route of SARS-CoV-2 infection of the brain. Functionally, the BBB is created by an interactome between 
endothelial cells, pericytes, astrocytes, microglia, and neurons, which form the neurovascular units (NVU). However, 
at present, the interactions of SARS-CoV-2 with the NVU and the outcomes of this process are largely unknown. 
Moreover, age was described as one of the most prominent risk factors for hospitalization and deaths, along with 
other comorbidities such as diabetes and co-infections. This review will discuss the impact of SARS-CoV-2 on the NVU, 
the expression profile of SARS-CoV-2 receptors in the different cell types of the CNS and the possible role of aging 
in the neurological outcomes of COVID-19. A special emphasis will be placed on mitochondrial functions because 
dysfunctional mitochondria are also a strong inducer of inflammatory reactions and the “cytokine storm” associated 
with SARS-CoV-2 infection. Finally, we will discuss possible drug therapies to treat neural endothelial function in aged 
patients, and, thus, alleviate the neurological symptoms associated with COVID-19.
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Introduction
At the end of 2019, the world faced the beginning of 
what would become the biggest pandemic in recent his-
tory. In the province of Wuhan in China, the first cases 
of a new severe acute respiratory syndrome (SARS) 
were reported. The etiological agent of such syndrome 
was shown to be a coronavirus, named SARS-CoV-2 

and the disease was then referred to as coronavirus dis-
ease-19 (COVID-19). In less than 2 years, it has already 
caused more than 4 million deaths worldwide. Patients 
affected by COVID-19 may be asymptomatic or have 
mild symptoms, with fever, loss of smell, taste, body 
pain. Disease can progress to a severe form where the 
need for hospitalization occurs, which main symptom 
is a respiratory distress due to pulmonary insufficiency. 
Age has also been shown to be a critical factor for 
COVID-19 aggravation and hospitalization. Among the 
symptoms observed in hospitalized patients, impaired 
neural functions have been reported, such as cases of 
acute cerebrovascular disease with episodes of stroke, 
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headaches, dizziness, loss of consciousness, ataxia, and 
epilepsy.

SARS-CoV-2 is capable of infecting human cells 
through the binding of its surface protein Spike1 to 
host cell surface proteins. The angiotensin converting 
enzyme-2 (ACE2) functions as a receptor for the virus 
and its main gateway. Pulmonary, cardiac, gut cells and 
body vasculature express high levels of ACE2. In the 
vascular endothelia, ACE2 plays essential roles in the 
Renin–Angiotensin system, regulating arterial pres-
sure by mediating the conversion of angiotensin II (a 
vasoconstrictor) to angiotensin (1–7) (a vasodilator). 
Another receptor, the transmembrane protease serine 
type 2 (TMPRSS2) has been shown to cleave Spike pro-
tein and mediate membrane fusion by promoting the 
internalization of the virus in cells, thus acting as a co-
receptor facilitating the process of viral infection. Sev-
eral data have attributed the worsening of the condition 
in patients with the induction of vascular dysfunction 
in the body, where processes such as coagulation and 
blood pressure control fail, vascular inflammation takes 
place, and the cytokine storm promoted by the immune 
response contributes to severe pathology, leading many 
individuals to death. These events have been reported 
to be more intense in elderly patients and critical to 
disease progression.

In the brain, several routes for viral entry have been 
proposed, including the olfactory nerve, the choroid 
plexus and the blood–brain barrier (BBB). The role of the 
BBB appears to be of utmost relevance, given that SARS-
CoV-2 can be found free in the bloodstream [1] sug-
gesting that viral particles could reach BBB cells. In the 
brain, endothelial cells of blood capillaries contact other 
cells of the neurovascular unit, especially astrocytes and 
pericytes, forming the basic unit of the BBB [2, 3]. A sig-
nificant number of COVID-19 patients, regardless of the 
severity of the respiratory disease, have shown to pre-
sent impaired neurological functions [4, 5], being more 
disruptive and lethal in elder individuals [6]. Biomark-
ers of the Central Nervous System (CNS) damage such 
as neuronal neurofilament and astrocytic GFAP proteins 
were found to be increased in serum and cerebrospinal 
fluids of patients with COVID-19-induced neurological 
syndrome [7]. SARS-CoV-2 particles has been detected 
in the cerebral cortex of patients [8, 9] and specifically 
in astrocytes [10]. COVID-19 also leads to a thinning of 
the cortical tissue, which correlates with the neuropsy-
chiatric symptoms [10]. Moreover, a recent study in UK 
described that COVID-19 patients displayed a  reduced 
global brain size, with a marked reduction in grey matter 
thickness in the orbitofrontal cortex and parahippocam-
pal gyrus, and markers of tissue damage that correlated 
to the primary olfactory cortex [11].

Aging is characterized by a decline of biological 
functions, leading to cellular senescence. In the CNS, 
endothelial and astrocytic senescence have been demon-
strated to lead the BBB to a dysfunctional state in neu-
rodegenerative diseases [12]. Still, little is known about 
the effects of SARS-CoV-2 on the function and struc-
ture of the aged BBB, such as the expression levels and 
organization of tight junction and transport proteins 
such as P-glycoprotein, MRP, RAGE, LRP and the pro-
file of cytokine secretion after endothelial activation. 
Even less is known whether BBB dysfunction induced by 
viral infection can be propagated to the neural tissue and 
thus be the triggering mechanism of the neural dysfunc-
tions that promote the establishment of the neurological 
symptoms reported in patients with COVID-19.

In this review, we will discuss (1) the interaction of 
SARS-CoV-2 with the BBB endothelium and the impact 
of these interactions on neurovascular functions; (2) the 
profiles of expression of potential SARS-CoV-2 receptors 
in human BBB cells, with a focus on ACE2, comparing 
the expression patterns in the context of aging; (3) the 
immune response in aging and its role of SARS-CoV-2 
on BBB dysfunction and neuroinflammation; and (4) the 
role of endothelial dysfunction as a trigger to neurologi-
cal symptoms. Finally, we will discuss (5) possible drug 
therapies to treat neural endothelial function in aged 
patients, and, thus, alleviate the neurological symptoms 
associated with COVID-19.

Effects of SARS‑CoV‑2 on neural endothelium
Several reports have dedicated attention to identify 
potential routes of SARS-CoV-2 transmission  into the 
CNS. They have been proposed to involve the nasal and 
oral mucosa, enteric epithelial wall, and the BBB [13, 14].

The capillaries that vascularize the CNS exhibit a 
series of physiological properties that tightly control the 
transport of cells, nutrients and metabolites between 
the blood and the brain parenchyma (reviewed in [3]). 
Such characteristics make this structure act as a protec-
tive barrier widely known as BBB. Cerebral capillaries are 
composed by microvascular endothelial cells (BMECs), 
which are organized in a juxtaposed way, connected via 
tight junction proteins, and surrounded by cellular com-
ponents: (i) pericytes—mural cells enwrapping capillary 
blood vessels on their abluminal side and (ii) astrocytes, 
whose endfeet cover most of the vasculature surface area; 
and non-cellular components, including (iii) the base-
ment membrane (BM), which provides structural sup-
port for the cellular components and functions as an 
intercellular communication hub (reviewed in [15]). All 
these elements serve as the interface between endothe-
lial cells, microglia, and neurons that together originate 
the Neurovascular Unit (NVU) of the BBB, whose main 



Page 3 of 19Adesse et al. Fluids and Barriers of the CNS           (2022) 19:63 	

functions in the CNS are regulation of homeostasis and 
protection from blood-borne toxins, pathogens, inflam-
mation, and injury [16].

The endothelium activity is regulated through a wide 
repertoire of receptors present in its membrane, as well 
as through specific proteins and junction receptors that 
govern intercellular and endothelial-matrix interactions 
[17]. The cerebral endothelial cells (ECs) are even more 
specialized to restrict the paracellular and transcellular 
movement of solutes. Their junctions are composed of a 
variety of specialized junctional regions known as adhe-
rens and tight junctions (TJs) that are built by adherens 
and tight junction proteins, ensuring the integrity of the 
vascular tube and regulation of the traction forces that 
are important for BBB integrity [18]. CNS TJs are spe-
cialized in their molecular and structural composition, 
and the specific combination of TJ proteins at the BBB 
determines its paracellular permeability (reviewed in 
[3]). Brain ECs form a continuous lining that lacks fen-
estrations and have low levels of transcytosis, proper-
ties that greatly limit transcellular permeability [19]. The 
study of the biology of microvascular ECs is particularly 
important and represents the central structure for under-
standing the molecular mechanisms of invasion and viral 
infection in the CNS.

The BBB has been a target of discussion as a critical 
invasion route for SARS-CoV-2 into the brain paren-
chyma. A circulating virus or pathogen can invade the 
brain parenchyma through the damaged BBB and leaks 
into the interstitial fluid, and then enters the cerebral spi-
nal fluid through the glymphatic system. Viruses in the 
blood can also enter the fourth ventricle directly through 
a damaged blood–CSF barrier. Indeed, microglia and 
astrocytes were found to be infected by murine coronavi-
rus (MHV-A 59, [20]), which provide further evidence of 
a crosstalk between the glymphatic system and COVID-
19 [21]. However, BBB-mediated viral entry into the 
CNS may not necessarily depend on capillary endothelial 
wall disruption, since different mechanisms of pathogen 
transport across endothelial lamina of the capillaries have 
also been described [22].

SARS-CoV-2 has been identified in brain capillary 
endothelium obtained from a post-mortem COVID-19 
case [23]. The interaction between Spike proteins with 
endothelial cells by using in  vitro BBB models showed 
significant changes to barrier properties. It was demon-
strated that SARS-CoV-2 Spike protein induced desta-
bilization of BBB-related tight junctions and promoted 
pro-inflammatory status in human BMECs [24]. Another 
SARS-CoV-2 protein, its main protease (Mpro), led to 
clevage of NEMO, a member of the NF-κB pathway, fur-
ther contributing to an inflamed BBB state. Addition-
ally, an increasing number of case reports have emerged 

describing acute neurological disorders as an implication 
of SARS-CoV-2 infection, suggesting that SARS-CoV-2 
crosses the BBB (Ng Kee Kwong et  al. [25]). We have 
recently described that BBB cells display a unique profile 
of SARS-CoV-2 receptors, with differential expression of 
molecules such as ACE2, TMPRSS2, ADAM17 and oth-
ers in human BMECs, astrocytes, pericytes, microglia 
and neurons [26]. We have also demonstrated that SARS-
CoV-2 leads to minimal productive infection on immor-
talized HMECs [27], although increased apoptosis and 
inflammation was triggered in infected cultures. Experi-
mental infection of K18-hACE2 mice or hamsters led to 
effective infection of BMECs, despite no changes in tight 
junctions were observed [28].

In non-pathological conditions, ECs control blood flow, 
in part, by maintaining an antithrombotic microenviron-
ment on its luminal surface, which facilitates the transit 
of blood components. Disorders resulting from inflam-
matory processes alter this activity and tissue homeosta-
sis, generating a microenvironment with a thrombotic 
profile (reviewed in [29]). Several risk factors for cardio-
vascular diseases such as diabetes, hypertension, smok-
ing and obesity can cause changes in blood flow and 
consequently generate endothelial dysfunction, resulting 
in a thrombotic profile, along with increased permeabil-
ity and secretion of pro-inflammatory cytokines, apopto-
sis, de-differentiation, and metabolic changes (reviewed 
in [30]).

Recent evidence points to important vascular changes 
during SARS-CoV-2 infection. The vascular symptoms 
of COVID-19 share pathophysiological mechanisms and 
phenotypes compatible with endothelial dysfunctions, 
being the most common disorders of coagulation, throm-
bosis and inflammation of multiple organs resulting from 
changes in vascular permeability ([31, 32], reviewed in 
[33]). Infection alone has the potential to cause significant 
endothelial damage. In contrast, patients with pre-exist-
ing cardiovascular diseases who already have endothelial 
dysfunctions are more susceptible to worsening due to 
SARS-CoV-2 infection [34]. Microvascular infarcts and 
hemorrhages, due to SARS-CoV-2 infection, are prob-
ably also critical in the development of encephalopathy, 
and other neurological manifestations of COVID-19 [35]. 
In clinical studies to evaluate pro-thrombotic markers 
during SARS-CoV-2 infection, it was demonstrated that 
circulating platelets have a higher expression of specific 
activation markers, such as P-selectin (CD62P), LAMP-
3, and GPIIb/IIIa in patients with COVID-19 compared 
to healthy donors. Moreover, platelets exhibited hyper-
responsive behavior with increased aggregation and 
adhesion response, which might be linked to increased 
expression of adhesive receptors, such as von Willebrand 
factor (VWF) and fibrinogen receptors, GPIbα/GPIX and 
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GPIIb/III, identified in patients with COVID-19 [36–39]. 
Infected patients also present elevated levels of d-dimer, 
a blood clotting marker that has been considered an indi-
cator of prognosis in SARS-CoV-2 infection (reviewed in 
[40]). Like d-dimer, a marked elevation of factor V activ-
ity was observed in severe COVID‐19, and it was associ-
ated with venous thromboembolism [41].

The “cytokine storm syndrome” (CSS) has been identi-
fied as a central event in COVID-19 and is presumably 
the main cause of the observed endothelial damage and 
the establishment of acute respiratory distress syndrome 
(ARDS). This clinical condition is characterized by an 
excessive release of proinflammatory cytokines includ-
ing tumor necrosis factor-α (TNF-α), granulocyte–mac-
rophage colony-stimulating factor (GM-CSF), monocyte 
chemoattractant protein 1 (MCP1), interleukin-1α (IL-
1α), IL-1β and IL-6. In more severe cases, increased lev-
els of IL-2, IL-7, IL-10, and TNF-α were observed, which 
may indicate an important role of specific cytokines 
and chemokines in driving COVID-19 progression 
[42–44]. This unrestrained increase in the levels of these 
cytokines ultimately results in the influx of immune cells 
from the circulation to the infection sites. The secreted 
chemokines activate neutrophils that secrete high lev-
els of peroxidase and reactive oxygen species, and acti-
vate matrix metalloproteinases (MMPs), which aggravate 
damage to lung tissue and the cardiovascular system. 
Such immune hyper-activation can be particularly 
destructive to the tissues as it generates a destabilization 
of the interactions between endothelial cells, with dam-
age and increased permeability of the vascular barrier 
that can trigger the failure of multiple organs (reviewed 
in [45]). Zuo et al. [46] showed that neutrophil extracel-
lular traps (NETs) are enhanced in hospitalized COVID-
19 patients. The same authors also documented that sera 
from individuals with COVID-19 trigger NET release 
from control neutrophils in vitro. NETs are extracellular 
webs released by neutrophils in response to infections. 
These traps are basically made up of DNA, histones, 
microbicidal proteins and oxidizing enzymes. However, 
this is a suicidal response, because when not properly 
regulated, NETs can attach to the capillary endothelium 
and platelets, induce coagulation and thus initiate the 
spread of inflammation and thrombosis with alveolar-
capillary barrier damage, leading to vascular leakage, 
edema and finally ARDS [46–50].

Another factor that deserves attention is related to 
the establishment of macrophage activation syndrome, 
one of the mechanisms strongly identified as responsi-
ble for endothelitis in patients with the severe COVID-
19 form ([14, 51, 52], reviewed in [53]). In a comparative 
study of lung tissues of patients who died from COVID-
19 or ARDS due to H1N1 infection, a greater number of 

ACE2-positive ECs and significant changes in endothelial 
morphology were observed [54], drawing attention to the 
presence of intercellular junction’s rupture, edema and 
loss of contact with the basement membrane.

Vascular alterations, such as endothelial rupture by 
direct signaling effects or indirectly by increasing the 
production of inflammatory mediators accompanied by 
coagulation cascade dysregulation, have been reported 
in infections with other coronaviruses [55, 56]. In fact, 
the coagulation phenotype of COVID-19 is so remark-
able that it was proposed that this disease should be in 
fact named as viral thrombotic fever [57]. Similar to 
COVID-19, SARS-CoV infection was associated with 
endothelial dysfunction, thrombotic complications, and 
hematological manifestations. As observed in SARS-
CoV-2 infection, SARS-CoV also hijacks ACE2 as the 
main receptor for entry into host cells and, therefore, 
it specially targeted pneumocytes and enterocytes due 
to the high expression of ACE2 by these cells [58, 59]. 
Cases of vasculitis and EC inflammation have been 
documented, as well as pulmonary embolism, deep vein 
thrombosis and generalized multiple organ infarctions 
associated with polyangiitis and microcirculatory disor-
ders in post-mortem patients with SARS-CoV infection. 
Additionally, SARS-CoV was also associated with fetal 
complications due to dysfunction of the placental circula-
tion [60–62]. Likewise, MERS-CoV infection also altered 
coagulation pathways. Patients infected with MERS-CoV 
presented thrombocytopenia, a drop in platelet count 
and, in the most severe cases, intracerebral hemorrhages 
and multiple organ failure. [63–65]. Experimentally, the 
effect of MERS-CoV on the coagulation cascade has been 
observed in transgenic mice expressing human dipeptidyl 
peptidase 4 (hDPP4), which has been identified as a tar-
get receptor for virus entry and binding to the host cell. 
In these animals, histopathological analyzes revealed the 
presence of microthrombi in the lung vasculature, as well 
as inflammatory infiltrates and alveolar edema [66].

The role of aging on BBB function and expression 
of SARS‑CoV‑2 receptors
Clinical observations indicate that elderly COVID-19 
patients are the most affected individuals by the disease 
progression and that SARS-CoV-2-infected patients 
aged over 80-years old showed a greater risk of death 
in comparison with younger patients [67, 68]. Ini-
tial reports described death rates above 10% in people 
older than 70 [69, 70]. Several key receptors that regu-
late SARS-CoV-2 entry into the host cells are observed 
in older patients [71]. In addition, elderly people have a 
less efficient response to vaccinations and worse out-
comes from cancer or infectious diseases, likely due to 
immunosenescence [72]. For example, older individuals 
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show diminished type-1 IFN production upon vaccine 
administration [73], which is a key cytokine in immune 
response to multiple viruses including SARS-CoV-2 [74]. 
On the other hand, it is also possible that age by itself 
may not necessarily be a risk factor for severe COVID-19 
outcome, but rather that diseases more commonly found 
in elderly patients are aggravating factors themselves.

In an attempt to find pharmacological targets of interest 
for COVID treatment, studies of the molecular mecha-
nisms by which SARS-CoV-2 can infect human cells have 
been extensively pursued. As mentioned above, ACE2 is 
responsible for degrading angiotensin II and blood pres-
sure regulation [75]. ACE2 is highly expressed in differ-
ent organs such as kidney, heart, lungs, small intestine, 
liver and including brain [76–80]. In the CNS, ACE2 can 
be found in neurons, astrocytes and oligodendrocytes, 
with high expressions in the cortex, substantia nigra and 
in paraventricular areas, such as the choroid plexus of 
the lateral ventricle [68, 81]. Endothelial cells from blood 
vessels in resting (“healthy”) conditions express lower 
levels of this receptor, and are potentially less suscepti-
ble to SARS-CoV-2 infection when compared to other 
neural cell types [82, 83]. On the other hand, the invasion 
of human cells by SARS-CoV-2, which occurs mainly 
through endocytosis, does not rely solely by its interac-
tion with ACE2, but rather involves interactions of viral 
proteins with other host cell proteases [84]. Thus, the 
expression levels of ACE2 do not fully determine the sus-
ceptibility to SARS-CoV-2 infection because the invasion 
also depends on the availability of proteases in the host 
cell that are responsible for the protein S cleavage, allow-
ing the viral envelope fusion with the target cell [85].

One of the proteases that allow SARS-CoV-2 cell 
invasion is TMPRSS2, which is a member of the hepsin 
subfamily of membrane anchored serin proteases. It has 
been suggested that TMPRSS2 cleaves SARS-CoV-2 
Spike1 protein, therefore allowing viral entry into human 
cells. TMPRSS2 is expressed in several tissues including 
the lungs, heart, kidney, liver, colon, esophagus and 
brain [68]. In the CNS, TMPRSS2 appears to be mostly 
co-expressed with ACE2 in glial cells [82]. In a similar 
fashion to ACE2, TMPRSS2 expression is lower in 
children and increases with age [71]. Accordingly, ACE2 
expression in the upper and lower airways is significantly 
lower in children when compared to adults [71]. Age was 
a significant factor for ACE2 and TMPRSS2 expression 
in alveolar, bronchiolar, renal and hepatic tissues in elder 
mice [86] and in alveolar type II cells in elder humans 
[87]. Moreover, stromal immune-inflammatory cells in 
humans over 50  years old display increased ACE2 and 
TMPRSS2 expression [88]. Besides age-related expression 

levels of ACE2, males appear to expresses this receptor 
to a higher degree than females [89]. In this context, 
epidemiological data also suggest that older males may be 
at a higher risk group for severe COVID-19 [90].

A disintegrin and metalloproteinase domain 17 
(ADAM17) is another potential target of interest in 
COVID-19 research. ADAM17 has been identified in 
lungs, skeletal muscle, heart, ovaries, testis, pancreas, 
kidneys, small intestines and brain [91, 92]. In the CNS, 
ADAM17 is mostly found in astrocytes and endothe-
lial cells from the BBB [26, 93]. ADAMTs are part of the 
metzincin metalloprotease family, which also includes 
matrix metalloproteases and snake venom metallopro-
teases [94]. Its main function in healthy individuals is to 
cleave extracellular proteins altering their activity, such 
as membrane bound TNF-α into its soluble form [95]. 
ADAM17 also cleaves APP, suggesting a role in Alzhei-
mer’s disease pathogenesis [96]. Additionally, ADAM17 
was found to be selectively increased in CSF of patients 
with neoplastic meningitis [97]. The mechanism by which 
ADAM17 promotes SARS-CoV-2 infection is yet to be 
elucidated, however, it is possible that its protease activ-
ity can promote the viral particle fusion with the cyto-
plasmic membrane [98]. Moreover, the role of ADAM17 
may be also related to its ability to promote IL-6 and 
other inflammatory pathways [99], since IL-6 receptor is 
a known substrate for ADAM17 [94], a mechanism that 
will be further discussed in “Aging and mitochondrial 
dysfunction in BBB neuroinflammation” section of this 
review. ADAM17 is increased in aging in mice and con-
tributes to vascular remodeling and impaired endothelial 
wall shear stress mechanosensing [100]. Interestingly, in 
Drosophila, ADAM17 showed a protective role in neu-
ronal and glial degeneration in the aging retina [101].

Additional proteins that may be involved with SARS-
CoV-2 infection are cathepsins, CD209L and furin. 
Cysteine protease cathepsins (Cat) function in protein 
degradation in lysosomal systems, but can also partici-
pate in the plasma membrane signaling and in extracel-
lular matrix proteins regulation, therefore impacting 
functions such as endocytosis [102]. This lytic activity 
and promotion of endocytosis has been observed with 
SARS-CoV [103] and some of them, such as Cat-L and 
Cat-C, have shown promising initial results as targets 
in initial pharmaceutical trials [8, 9, 104]. Interestingly, 
cathepsins are closely related to the TGF-β signaling 
pathway [105], which plays a crucial role in the mainte-
nance of the BBB integrity.

CD209L is a member of the calcium dependent fam-
ily of lectins, whose main function is to mediate protein 
interactions with mostly carbohydrate domains, but also 
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with other proteins, lipids and nucleic acids [106]. While 
the interaction of CD209 with SARS-CoV-2 has yet to be 
thoroughly studied, its interaction with other viruses has 
been show before, including SARS-CoV. CD209L works 
synergistically with ACE2 promoting internalization of 
viral particles [107–109].

Furin is a protease, which participates in cleavage 
of proteins and alterations of their substrates’ func-
tions. Furin has been shown to participate in the activa-
tion of several factors such as hormones, neuropeptides 
and other signaling molecules [110]. In the context of 
COVID-19, some targets of interest that are activated 
by furin are IFN-γ and ADAM17 [111]. In a similar 
fashion, furin may also work in conjunction with ACE2, 
TMPRSS2 and other proteases facilitating viral entry into 
host cells [112].

Immune response in the aged brain: 
SARS‑CoV‑2‑induced neuroinflammation
The knowledge about the neural sequelae in COVID-19 
is still relatively sparse and new insights and studies are 
highly needed. The mechanisms underlying the SARS-
CoV-2-induced neurological symptoms of COVID-19 
and the impact of aging are subjects of intense inves-
tigation. In general, examples of the contribution of 
hallmarks of aging to the age-related predisposition to 
COVID-19 include:

a.	 Age-related mitochondrial dysfunction, that can 
induce epigenetic changes in regulatory T-cells 
(Treg), which impair their pro-recovery functions to 
hinder proper resolution of inflammation and repair.

b.	 Monocytes and naïve T-lymphocytes undergo cel-
lular senescence following telomere attrition from 
sustained replication, impairing the host’s ability to 
mount an efficient immune response to a viral chal-
lenge or create a memory T-cell response to vaccines.

c.	 Altered intercellular communication underlies the 
low-grade inflammation associated with aging, 
which contributes to the development of age-related 
comorbidities (reviewed by [113])

The ability to control viral load is one of the best prog-
nostics of whether a patient will have mild or severe 
COVID-19 symptoms [114]). For the immune system to 
effectively suppress and eliminate SARS-CoV-2, it must 
perform four main tasks: recognize, alert, destroy and 
clear the virus. Each of these mechanisms is known to 
be dysfunctional and increasingly heterogeneous in older 
people [115]. However, which of these tasks is the most 
relevant to COVID-19 progression in older people is not 
yet clear ([116], reviewed by [117]).

During aging, the immune system changes in two 
major ways. One is a gradual decline in immune func-
tion called immunosenescence, which hampers pathogen 
recognition, alert signaling, and clearance. This mecha-
nism is not to be confused with cellular senescence, an 
aging-related phenomenon whereby old or dysfunctional 
cells arrest their cell cycle and can become epigeneti-
cally locked into a pro-inflammatory state in which they 
secrete cytokines and chemokines. A chronic increase in 
systemic inflammation called inflammaging is an impor-
tant hallmark of aging. Inflammaging is characterized 
by a chronic sterile low-grade inflammation, which is an 
overactive and less effective alert system [118]. A variety 
of cellular and molecular mechanisms are involved in 
inflammaging, which include cellular senescence, immu-
nosenescence, mitochondrial dysfunction, meta-inflam-
mation and gut dysbiosis (reviewed by [14]). Senescent 
cells have a differential secretory profile that includes 
increased release of pro-inflammatory mediators such 
as IL-6, IL-8, IFN-γ, MCP-1, and ECM-degrading mol-
ecules, including MMP2 and TIMP2, as well as increased 
expression of cell cycle regulators [119].

A growing body of evidence suggests that COVID-
19 overall severity in older patients may be related to 
immunosenescence and inflammaging. In the case of 
neurological manifestations of COVID-19 such factors 
may also play a pivotal role in neuropathology. Inflam-
maging is a known risk factor for dementia, stroke, and 
cerebral small vessel disease (CSVD) [120]. Aging is also 
known to potentiate brain pathology in viral infections, 
such as West Nile Virus infection, in which patients with 
> 60 years old have a 20-fold increase in the risk of devel-
oping neurological manifestations and retinopathy [121, 
122].

Inflammaging, as a phenomenon of sustained systemic 
inflammation, contributes to increased BBB permeabil-
ity [123], which may account for higher rates of SARS-
CoV-2 invasion of the brain parenchyma. Although 
endothelial cells express lower levels of ACE2 receptors 
and low susceptibility to SARS-CoV-2 infection [124], it 
has been shown that upon inflammatory stimulus, ACE2 
expression can be upregulated, thus increasing infectivity 
[125]. In fact, apart from the well-known cytokine storm, 
COVID-19 patients with inflammatory neurological 
disease or encephalopathy, had specific increase in cir-
culating IL-6, IL-8 and TGF-β1 [126]. Therefore, inflam-
maging could not only disrupt BBB integrity but also 
increase endothelial cell susceptibility to SARS-CoV-2 
infection.

The host immune response of COVID-19 presents 
a signature called “the global immune signature” of 
SARS-CoV-2 infection, which consists of elevated serum 
cytokines (particularly IL-1β, IL-6 and TNF-α), impaired 
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IFN responses, and peripheral lymphopenia as markers 
of severe disease [127, 128].

The aging brain is also vulnerable to inflammation, as 
demonstrated by the high prevalence of age-associated 
cognitive decline and Alzheimer’s disease [129–131]. As 
mentioned above, aging is characterized by the devel-
opment of persistent pro-inflammatory responses that 
contribute to atherosclerosis, metabolic syndrome, can-
cer and frailty [132–134]. Systemically, circulating pro-
inflammatory factors can promote cognitive decline 
[135, 136]. The underlying mechanisms that initiate and 
sustain maladaptive inflammation with aging are not 
well defined (reviewed by [137]); however, they appear 
to include microglia losing their ability to clear misfolded 
proteins that are associated with neurodegeneration [138, 
139].

As stated above, epidemiological data suggest that 
older males may be at a higher risk for severe COVID-
19. This observation correlates with the fact that sex may 
be indeed a predictor for some neuropathological events. 
Sex-differences are now widely described as an important 
factor in aging in the context of cerebral microvascula-
ture physiology and response to insults. Sex hormones 
androgens [testosterone (T) and dihydrotestosterone 
(DHT)], estrogens [estradiol (E2), estrone, estriol], and 
progestins [(e.g., progesterone (P4)] are produced pri-
marily in the gonads but can also be produced by vascu-
lature and in the brain, where they may act as important 
regulatory factors [140]. As such, sex hormones can 
mediate gap junction communication, vascular relaxa-
tion, and neuronal plasticity (reviewed by [141]). How-
ever, hormonal production decline observed mostly 
after menopause correlates with aging and cerebrovas-
cular dysfunction. Both estrogen and androgen recep-
tors were found to be expressed in brain microvascular 
endothelial cells, in males and females [142]. As recently 
reviewed by Robison and colleagues [141], cerebral blood 
flow is higher in girls (4–8 years old) than boys and this 
effect is still present in elder females. Interestingly, hor-
mone replacement therapy in post-menopausal women 
restored the decrease found in whole cerebral and cer-
ebellar blood flow [143].

Considering age and sex as risk factors for neuropatho-
logic conditions, being Neuro-COVID-19 included, is 
corroborated by vast literature that reports increased 
cytokine transport through the BBB [144, 145], astro-
cyte reactivity [146] and Pgp activity [147] as function 
of sex and age differences. Also, females have better BBB 
integrity in humans [148] and respond differently to 
ApoE4 and high fat diet in mice [149]. Adult females also 
respond to stroke with smaller infarct areas than males 
in animal models, and such effect was abolished when 
females were ovariectomized (reviewed by [146]).

Aging and mitochondrial dysfunction in BBB 
neuroinflammation
It has been extensively proven that a large array of neuro-
logical diseases and brain aging itself are associated with 
oxidative stress [150–152]. Multiple sclerosis, stroke, 
brain tumors, and neuroinfections are conditions which 
associate both reactive oxygen species (ROS) aggression 
and BBB impairment as well-proven pathogenic mecha-
nisms [137]. Whether oxidative damage is an important 
and early event in BBB alteration process, has not been 
fully established so far. However, BBB disruption was 
reported not only in vascular or inflammatory brain dis-
eases but also in neurodegenerative disorders in which 
oxidative stress plays an important role in the pathogenic 
scenario [153, 154].

Mitochondrial dysfunction has been implicated in the 
establishment and/or progression of neurological and 
neurodegenerative diseases [155]. In the aging process, 
mitochondria accumulate replication errors in their DNA 
(mtDNA) and oxidative damage from the production of 
reactive oxygen species (ROS) (Park and Larsson [156]). 
In addition, toxic exposure and pathological processes, 
including diabetes, cardiovascular diseases, gastrointesti-
nal disorders, and cancer can also lead to mitochondrial 
dysfunction [157–159]. A recent study demonstrated 
that SARS-CoV-2 infection of lung cells induced mito-
chondrial disruption, which was correlated with poor 
immune response and exacerbated inflammation leading 
to COVID-19-related sepsis [160].

SARS-CoV-2 infection impacts cell stress responses 
and redox balance (reviewed by [161]). It has been 
described that SARS-CoV-2 leads to disruption of redox 
balance in infected cells through modulation of NAD+ 
biosynthesis, PARP function along with altering protea-
some and mitochondrial functions. ROS production and 
the increase in IL-6 production and lipid peroxidation 
that ensues, contribute to cytotoxicity. These events are 
related as enhanced ROS production hampers the pro-
teasome function, which then leads to impaired protein 
degradation and further negatively influence mitochon-
drial function [162–165].

Disturbances in the permeability of the BBB is a com-
mon factor in several neurological disorders that can 
impact the oxidative balance. Oxidative stress influ-
ences pathophysiological processes such as cardiovas-
cular diseases, neurodegenerative diseases, chronic 
neuroinflammation, Alzheimer’s disease, and even 
aging [166]. Mitochondria are among the major cellu-
lar sources of ROS through the activity of the electron 
transport chain [167]. Declines in glial cell functions 
have been described during aging, which was accompa-
nied by mitochondrial dysfunction and inflammation. 
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Inflammatory mediators released by activated glial cells 
can modulate mitochondrial function, thereby estab-
lishing a crosstalk between mitochondrial dysfunction 
and neuroinflammation [168]. Mitochondrial DAMPs 
may have the dual role of mediating neurodegenera-
tion and amplifying neuroinflammation. These events 
are further impacted by environmental risk factors and 
can further contribute to an increase in ROS produc-
tion [169, 170]. ROS accumulation by mitochondria 
is a major cause of neuronal apoptosis and impaired 
ROS clearance can alter mitochondrial viability and 
alter BBB permeability [171]. Indeed, chronic oxida-
tive stress can disrupt electron transport chain activity 
[172], that could be propagated by microglia and astro-
cytes, being the main inductors of hyperinflammation 
and neuronal loss [173]. Increased ROS levels induces 
transcription of pro-inflammatory genes and release of 
IL-1, IL-6, IL-10 and TNF-α which, together, generate 
a favorable microenvironment to neuroinflammatory 
processes [170].

Given the importance of mitochondria in the antivi-
ral defense and their participation in the immune system, 
mitochondrial dysfunction involving alterations of the 
mitochondrial respiratory chain, production of mtROS 
and regulation of cell death may be potential targets in the 
pathogenesis of COVID-19 [174–176]. In addition, mito-
chondrial dysfunctions leading to the loss of BBB integrity 
was suggested to be involved in SARS-CoV-2 trafficking 
into the brain [177]. Because BBB functions decline dur-
ing aging [178], elderly population has an inflammatory 
BBB, thus providing a favorable microenvironment for 
neurological manifestations arising from the “cytokine 
storm”, which may also be a direct consequence of mito-
chondrial dysfunction. Therefore, understanding the 
effects of neuroinvasion in the elderly population is of 
great importance to elucidate the mechanisms by which 
viruses cause this disorder in the CNS and also to design 
an effective treatment that improves the clinical outcome 
of COVID-19. Antioxidant system declines with aging 
and this decline correlates with decrease in mitochondrial 
electron transfer, which, in turn, favors generation of ROS 
[179, 180]. Endogenous antioxidants such as coenzyme 
Q10, glutathione and melatonin are, therefore, potential 
and promising targets for anti-aging therapy and could 
prevent brain inflammaging effects [181]. In that direc-
tion, we have shown that a targeted delivery of COQ10 pre-
vented cellular senescence and oxidative stress in neural 
progenitor cells and astrocytes treated with antiretroviral 
drugs, exposed to drugs of abuse or infected with HIV-1 
[182, 183]. Moreover, exogenous melatonin treatment pre-
vented neuroinvasion and cerebrovascular abnormalities 
in K18-hACE2 mice [184], thus corroborating a protective 
role of antioxidant therapy in Neuro-COVID-19.

Cytokines produced during the inflammatory course 
of COVID-19 induce mitochondrial dysfunctions such 
as increased permeability, prevent mitochondrial oxi-
dative phosphorylation, enhance ROS production, and 
induce alterations of mitochondrial dynamics and even 
apoptosis [185–187]. Moreover, pathological impact 
of SARS-CoV-2 involves targeting mitochondria and 
mitochondrial failure [188–190]. Mechanistically, 
SARS-CoV-2 infection has been found to impact host 
mitochondrial functions through ACE2 regulation and 
open-reading frames that allow for increased viral repli-
cation and evasion of host cell immunity [191]. Because 
reprogramming of mitochondria is a strong inducer of 
oxidative stress and inflammatory reactions, targeting 
ROS production as adjuvant therapy with anti-oxidants 
could decrease excessive inflammation and cell damage 
that lead to severe SARS-Cov-2 infection.

Mitochondria are dynamic organelles that control its 
metabolism and interaction with other organelles via 
two major events that occur simultaneously in the organ-
ism, namely mitochondrial fission and fusion. Proteins 
that control mitochondrial fission include Drp1 and Fis1 
[192, 193] and mitochondrial fusion includes Mitofusin 
1 and Mitofusin 2 (Mfn1 and Mfn2) and OPA1. Mito-
chondrial morphology is highly dynamic, being different 
and adjustable in each cell type and maintains a genetic 
and biochemical homogeneity by allowing for dilution 
of toxic superoxide species, mutant mtDNA, and repo-
larization of membranes during homeostasis, stress and 
inflammation [194–197]. Accordingly, we have recently 
shown that infection of HBMEC by SARS-CoV-2 leads 
to an inflammatory status with cytokine and chemokine 
production and remodeling of mitochondrial networks, 
with increased Mfn2 expression [27]. However, additional 
studies that focus on the role of host cell mitochondrial 
remodeling upon SARS-CoV-2 infection, including mito-
chondrial biogenesis and metabolic responses, remain to 
be elucidated.

Endothelial dysfunction as a trigger 
to neuroinflammation and neurological symptoms
Loss or alterations in the perception of taste and smell 
were the first unconventional symptoms described in 
COVID-19 patients. They appear to be prevalent in at 
least 19% of patients, although they could possibly be 
present in as much as 70% of infected patients [198–200]. 
These symptoms are more common in the early stages of 
the disease and do not seem to last long in non-severe 
patients [199–201]. Other common and possibly related 
symptoms of COVID-19 are nausea, headaches, short-
term memory disruption, lack of attention, disorientation 
and irritability [202–204]. Despite being debilitating, they 
usually are not life-threatening. On the other hand, there 
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have been reports of far more dangerous outcomes of 
SARS-CoV-2 invasion into the CNS, including encepha-
litis. Encephalitis is characterized by inflammation of the 
brain resulting in fever, seizures, and alterations in EEG 
patterns, and has been known to occur as result of either 
auto-immune diseases or viral infections [205, 206], 
including SARS-CoV-2 [207]. Furthermore, there have 
been cases of seizures and ischemic stroke in infected 
patients ([208–211]). Stroke is an acute focal lesion in the 
CNS that leads to loss of neurological function. It has a 
vascular origin and is characterized by abrupt interrup-
tion of blood supply in parts of the brain [212]. These 
very common events in COVID-19 patients are caused 
by coagulopathy and cerebral endothelial cells damage. 
Furthermore, disruption of ACE2 function caused by 
high SARS-CoV-2 viremia can impair its vasoprotective 
function in brain vessels [77]. These symptoms appear to 
be more commonly found in the elderly, strongly corre-
lating aging with more severe outcomes of SARS-CoV-2 
infection [70].

Several studies demonstrated a direct correlation of 
CNS invasion of SARS-CoV-2 and neurological impair-
ment [202, 213]. In contrast, other reports were unable to 
detect viral RNA in the CSF of COVID-19 patients expe-
riencing neurological complications [214, 215], suggest-
ing that COVID-19 related neuropathies may not occur 
due to a viral invasion of the CNS. Overall, it appears that 
SARS-CoV-2 could be acting as an immune trigger, and 
that encephalitis caused by the virus may occur due to 
an exacerbated immune reaction, rather than direct viral 
penetration of the tissue. However, it is important to clar-
ify that both pathways are possible, and the ending result 
is likely some combination of both factors.

As stated previously, productive endothelial infec-
tion by SARS-CoV-2 appears to be limited and was not 
confirmed in in vitro studies on human endothelial cells 
[83]. On the other hand, activation of coagulation path-
ways during viral infection may lead to excessive produc-
tion of pro-inflammatory cytokines, leading to altered 
function of the BBB as well as thrombosis that can cause 
direct damage to blood vessels [216]. For instance, IL-6 is 
a known modulator of BBB function, being able to modu-
late nitric oxide signaling as well as promoting angiogen-
esis trough the HIF1-α/VEGF pathway (Andreozzi et al. 
[217], Fu et  al. [218]). Furthermore, COVID-19 patients 
with neurological symptoms show altered inflammatory 
mediators such as IL-6 and TGF-β in both serum and 
CSF when compared to patients with only mild symp-
toms [219, 220]. Other groups observed elevated levels 
of IL-1, IL-8 INF-γ and TNF-α in SARS-CoV-2-infected 
individuals ([203], Farhadian et  al. [221]; Velpula et  al. 
[222]). Increased levels of inflammatory cytokines corre-
late with disease severity ([43], Del Valle et al. 2020; Han 

et  al. 2020) and the presence of neurological symptoms 
[220]. Interestingly, a recent study demonstrated that 
SARS-CoV-2 can infect epithelial cells more efficiently 
in vitro if pre-treated with IFN-γ [125].

The described sepsis-like cytokine storm can be overly 
harmful to the host if not properly mitigated [223–225]. 
In fact, similar cytokine storm events were observed in 
previous coronavirus-triggered diseases [226, 227]. The 
exact source of cytokines induced by SARS-CoV-2 is not 
yet clear and is likely to be derived from multiple cellular 
sources. While productive infection of endothelial cells 
may be limited, it is possible S1 protein alone could have 
detrimental effects on BBB integrity, which would also 
facilitate infection of the CNS [26]. Lastly, the virus may 
invade the CNS by infecting other brain cells that express 
high levels of ACE2.

An alternative mechanism by which SARS-CoV-2 may 
penetrate the BBB is not by direct infection of surround-
ing cells and resulting inflammation, but rather activation 
of signaling pathways trough viral proteins. Indeed, S1 
protein can significantly alter the expression of proteins 
such as ZO-1 and Claudin-5, which are integral mem-
bers of the endothelia tight-junctions that, when altered, 
directly impact endothelium permeability [24, 26]. In 
COVID-19 patients, cellular components released into 
the blood (e.g., viral proteins, RNA, and debris in gen-
eral) as a result of a cytolytic event could be harmful not 
only by directly increasing the risk of coagulopathy and 
stroke [228] but also by indirectly increasing BBB perme-
ability, allowing the virus to infect astrocytes, which do 
express high levels of ACE2 and TMPRSS2 [26].

Current and/or promising therapies to target aged 
BBB in COVID‑19
Several data indicate that the highest prevalence 
of severe cases or deaths caused by SARS-CoV-2 
infection occurs in elderly patients, which may be due 
to a higher incidence of comorbidities with associated 
vascular disorders, such as hypertension, diabetes 
and cardiovascular diseases [229]. Indeed, aging is 
accompanied by cerebrovascular dysfunctions, which 
can increase the risks for ischemic stroke, intracerebral 
hemorrhages and cognitive decline [230]. As previously 
mentioned, the cytokine storm observed in COVID-19 
results in increased production of pro-inflammatory 
cytokines, and has been associated with high morbidity 
in patients. The increase in these pro-inflammatory 
mediators is also observed in the blood plasma of healthy 
elderly individuals [231], suggesting that inflammaging 
may be relevant to increased vulnerability of elderly 
patients to viral infection [232]. Inflammaging [118] is a 
characteristic phenotype of normal brain aging that has 
also been closely linked to many age-related diseases [14, 
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231]. Anti-inflammatory therapies have been proposed 
to mitigate the COVID-19-associated cytokine storm 
syndrome. Among such proposed approaches, the use of 
Tocilizumab was recently recommended in hospitalized 
patients who present respiratory decompensation 
due to SARS-CoV-2 infection [233]. Tocilizumab is 
a humanized monoclonal antibody, clinically used in 
rheumatological disorders, that inhibits IL-6 signaling 
through the competitive blocking of its receptor binding 
site (IL-6R) [234]. IL-6 is a pro-inflammatory cytokine 
produced by different brain cells that is upregulated in 
neuroinflammatory conditions, such as infections and 
CNS injuries [235]. Recent evidence suggests that the 
use of Tocilizumab combined with dexamethasone, an 
anti-inflammatory agent, promotes modest benefits 
in reducing mortality of hospitalized patients with 
severe COVID-19 who have increasing oxygen needs 
[236–238]. Elevated levels of IL-6 promote endothelial 
dysfunction and increased vascular permeability 
through the modulation of junction proteins, such as 
VE-cadherin and ZO-1 [239, 240]. Thus, the use of 
anti-IL-6 recombinant monoclonal antibodies has the 
potential to attenuate inflammation-induced endothelial 
activation and provide a therapeutic strategy to reverse 
cerebrovascular dysfunctions associated with COVID-
19 infection. However, there is still insufficient data 
to support the benefits of this therapy for this group of 
patients.

Since BMEC dysfunctions could also be caused by 
direct infection and replication of SARS-CoV-2 in the 
CNS, antiviral therapies emerge as therapeutic strate-
gies to mitigate neurological manifestations in patients 
with COVID-19. Remdesivir is an antiviral drug that sup-
presses the rapid replication of SARS-CoV-2 [241] and 
has shown benefits in reducing recovery time in adults 
hospitalized with COVID-19 [242]. Antiviral therapy 
with remdesivir combined with dexamethasone has been 
recommended as another strategy to mitigate infection 
and the inflammatory response in hospitalized COVID-
19 patients  who require increasing amounts of oxygen 
[243].

As stated above, COVID-19 is accompanied by 
dysfunctions in the vascular endothelium and induction 
of a procoagulant state with elevation of thrombotic 
markers, such as d-dimers. Elevated levels of d-dimer 
can trigger ischemic stroke and have been associated 
with worse clinical outcomes in patients with COVID-
19 [244]. Several studies have explored the action of 
anticoagulants, such as low molecular weight heparin, 
as a therapeutic strategy to reduce the risk of thrombotic 
disease in patients with COVID-19. A retrospective 
study showed that low molecular weight heparin appears 
to be associated with a better prognosis in hospitalized 
COVID-19 patients with coagulopathy or with high 
d-dimer [245]. In addition to its anticoagulant properties, 
heparin is known to have anti-inflammatory effects on 
endothelial cells, leading to reduced translocation of 
nuclear factor kappa B (NF-κB) transcription factor and 
production of inflammatory markers, such as IL-1β, IL-6, 
E-selectin, and intercellular adhesion molecule (ICAM)-1 
[246], which could positively impact the inflammation 
associated with COVID-19. Unfortunately, there is still 
insufficient evidence on the effectiveness of the use of 
anticoagulant therapies in the treatment of cerebral 
vascular disorders due to COVID-19.

A strategy recently approved by the Food and Drug 
Administration (FDA) that has the potential to mitigate 
the risks of severe COVID-19 progression in elderly 
patients or those with associated vascular comorbidi-
ties was the combination of bamlanivimab and etese-
vimab. Bamlanivimab and etesevimab are neutralizing 
human monoclonal antibodies, which specifically bind 
to different epitopes in the SARS-CoV-2 Spike protein 
receptor-binding domain (RBD), blocking the binding of 
the virus to the ACE2 receptor on the host cell surface. 
These antibodies have been approved for use in adult and 
pediatric outpatients who are at high risk of progressing 
to severe COVID-19 and/or hospitalization. Individuals 
who are most at risk, according to the criteria adopted 
by the FDA, include elderly patients aged ≥ 65  years or 
≥ 55 years who have comorbidities, such as cardiovascu-
lar disease and hypertension [247]. As aging progresses, 
the risk of being hospitalized as a result of COVID-19 

Fig. 1  Proposed model of aging as a cofactor to COVID-19 neuropathogenesis. Neural cells express variable levels of SARS-CoV-2 receptors, such 
as ACE2 and TMPRSS2, shown in BMECs, microglia, astrocytes, neurons and pericytes (A). Young brain parenchyma is protected by the BBB, with 
low paracellular transport and high levels of TJ proteins, including zona occludens, claudins and occludins (A). Aged BBB (B) displays increased 
permeability as well as increased expression of adhesion molecules such as ICAM-1 and VCAM-1 and the phenomenon of inflammaging, that 
includes increased levels of pro-inflammatory cytokines (IL-6, TNF-α and IL-1β), reduction of circulating Naïve T cells and increase in memory T 
cells and mitochondrial dysfunction (B). SARS-CoV-2 infection of young hosts induce cytokine storm (C), destabilization of the BBB and increase 
in circulating and local levels of pro-inflammatory molecules, basement membrane abnormalities due to increased MMPs and infection of neural 
cell types, including neurons, oligodendrocytes, microglia and BMECs. Aged BBB (D) may display highly increased permeability and endothelial 
activation, with expression of adhesion molecules, striking presence of cytokine storm with neuronal loss or atrophy, demyelination and increased 
microglial activation

(See figure on next page.)



Page 11 of 19Adesse et al. Fluids and Barriers of the CNS           (2022) 19:63 	

Fig. 1  (See legend on previous page.)
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increases. Combined administration of bamlanivimab 
and etesevimab appears to significantly reduce the risk of 
hospitalization and death related to COVID-19 [248].

Overall, the rapid expansion of knowledge of SARS-
CoV-2 virology has stimulated the development of a 
number of clinical trials adopting anti-inflammatory, 
anti-thrombotic, and antiviral approaches. The effective-
ness of these approaches must be assessed individually, 
due to the different conditions associated with patients’ 
susceptibility, such as age and the presence of pre-exist-
ing endothelial dysfunctions. Thus, further studies are 
needed to precisely determine the benefits of current 
therapies for brain endothelial dysfunction in elderly 
patients.

Concluding remarks
COVID-19 hit the world as an unprecedented pan-
demic, followed by an impressive mobilization of the 
scientific community in order to rapidly understand 
the mechanism involved in physiopathogenesis of this 
viral disease. The severity of acute disease urged for 
studies about invasiveness and abnormalities in differ-
ent organs, due to the wide range of clinical manifesta-
tions, which include lethal pneumonia and respiratory 
failure, and can promote important neurological dys-
functions that, in many cases, are perennial. While res-
piratory deficit dominates the clinical symptoms of the 
acute form of the disease, the cerebrovascular impact 
of COVID-19 plays an important role in the pathol-
ogy of the infection due to the loss of vascular stability, 
which is directly related to endothelial activation by the 
cytokine storm, being aging a risk factor for COVID-19 
progression. One of such challenges is the understand-
ing of the post-COVID syndrome and the onset of neu-
rological manifestations.

Aging leads to a significant shift in immunological 
response, hence increasing susceptibility to COVID-
19 and decreased response to immunization. Among 
hallmarks of inflammaging, we highlighted in this 
review the changes to mitochondria biology and 
plasticity, that further contribute to a constant 
inflammatory state (Fig.  1A, B). Brain endothelium 
loses its barrier properties, leading to “leaky” BBB, 
which can also contribute to higher susceptibility to 
SARS-CoV-2 neuroinvasion. In the brain parenchyma, 
neural cells express higher levels of SARS-CoV-2 
receptors (Fig. 1B), such as ACE2 and TMPRSS2.

Such pre-inflamed scenario can lead to an aggra-
vation of the cytokine storm phenomenon (Fig.  1D), 
which may lead to more severe overall pathology in 
COVID-19. Even though hundreds of studies have been 
published, in the past 2 years, describing factors related 
to the prevalence of COVID-19 and risk factors, “age” is 

certainly one of the most relevant factors and still is the 
focus of several studies in progress.

COVID-19 still poses a challenge even after vac-
cination campaigns have reached high levels in many 
countries. However, the different variants of concern of 
SARS-CoV-2 that have emerged since then, and rein-
fection cases are very common. In this context, further 
studies investigating the mechanisms of invasion and 
induction of BBB dysfunctions are necessary for the 
development of therapeutic strategies to treat neuro-
logical sequelae post-infection.
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