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Chikungunya virus (CHIKV) is a single-stranded positive RNA virus that belongs to the
genus Alphavirus and is transmitted to humans by infected Aedes aegypti and Aedes
albopictus bites. In humans, CHIKV usually causes painful symptoms during acute and
chronic stages of infection. Conversely, virus–vector interaction does not disturb the
mosquito’s fitness, allowing a persistent infection. Herein, we studied CHIKV infection of
Ae. aegypti Aag-2 cells (multiplicity of infection (MOI) of 0.1) for 48 h through label-free
quantitative proteomic analysis and transmission electron microscopy (TEM). TEM images
showed a high load of intracellular viral cargo at 48 h postinfection (hpi), as well as an
unusual elongated mitochondria morphology that might indicate a mitochondrial
imbalance. Proteome analysis revealed 196 regulated protein groups upon infection,
which are related to protein synthesis, energy metabolism, signaling pathways, and
apoptosis. These Aag-2 proteins regulated during CHIKV infection might have roles in
antiviral and/or proviral mechanisms and the balance between viral propagation and the
survival of host cells, possibly leading to the persistent infection.

Keywords: CHIKV, mosquito cell culture, label-free quantification, mass spectrometry, protein synthesis,
apoptosis, RNA helicases, mitochondrion
INTRODUCTION

Chikungunya virus (CHIKV) is an Old World mosquito-borne virus that belongs to the genus
Alphavirus, family Togaviridae (Cunha et al., 2020). This virus is transmitted to humans mainly by
infected Aedes aegypti and Aedes albopictus blood meal bites, causing large epidemics worldwide
(Lee et al., 2013). The word chikungunya means “the one that bends” in the Kimakonde African
language (Azevedo et al., 2015) since CHIKV fever causes fatigue, rash, muscle pain, and severe
polyarthralgia during the acute phase (World Health Organization, 2017). However, the infection
can achieve a chronic stage, causing long-lasting painful and debilitating symptoms in the joints
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(Galán-Huerta et al., 2015). The lack of approved vaccines and
specific antivirals against this arbovirus makes CHIKV fever an
important public health issue (Cunha et al., 2020). Furthermore,
environmental changes and the increasing number of world
travelers in viremia also led to a significant expansion of
CHIKV reaching area during the 2010s (Weaver, 2013). In
Brazil, the first CHIKV autochthonous transmission occurred
in 2014 in the Northern region, related to the Asian lineage. Soon
after, the East–Central–South African (ECSA) lineage was
detected in the Northeast, and it spread to all Brazilian regions
in the following years, causing outbreaks in several states (Cunha
et al., 2020).

CHIKV single-stranded positive RNA genome has
approximately 11.8 kb, with polyA-tail and 5′ cap, and it exists
as a single copy in each virion. It encodes two polyproteins that
are cleaved in the course of infection by host and viral proteases
(Strauss and Strauss, 1994). This generates four non-structural
proteins 1–4 (nsP1–4) (Solignat et al., 2009) from the infectious
genomic RNA, and five structural proteins (capsid, E3, E2, 6k,
and E1) from a subgenomic RNA (Burt et al., 2017).

Virion entry in mammalian and Aedine cells can occur
through clathrin-mediated endocytosis (Lee et al., 2013), and
the surface protein receptor prohibitin has been associated with
this process in human cells. Prohibitin has also been reported to
facilitate Dengue virus 2 (DENV2) entrance in Ae. aegypti and
Ae. albopictus cells (Kuadkitkan et al., 2010; Wintachai
et al., 2012).

Both RNA replication and virion assembly take place in the
cytoplasm of host cells (Strauss and Strauss, 1994). Non-
structural proteins, such as RNA-dependent RNA polymerase
(nsP4) and protease (nsP2), are translated before the structural
ones (Kumar et al., 2021).

Structural proteins compose the ~65-nm-diameter, quasi-
icosahedral , and enveloped CHIKV particle . E1/E2
glycoprotein dimers are arranged in 80 trimeric viral spikes on
the mature virion membrane; while inside, the capsid is
constituted by monomers of the capsid protein (CP) organized
in a T = 4 geometry (Sharma et al., 2018). Spikes are essential
structures for binding and fusion to the cell membrane. Since
CHIKV can infect different types of cells, the use of multiple
conserved receptors is required for recognizing and entering cells
(Schnierle, 2019).

Historically, it has been extremely difficult to perform control
of arbovirus vectors as a mitigation strategy (Achee et al., 2019).
Thus, it is important to understand the biological mechanisms
behind CHIKV persistent infection in Aedes spp. mosquitoes.
Previous studies have addressed the proteomics of whole Ae.
aegyptimosquitoes and their specific organs, such as midgut and
salivary glands, using two-dimensional electrophoresis and mass
spectrometry (MS) (Tchankouo-Nguetcheu et al., 2012; Shrinet
et al., 2018; Cui et al., 2020; Chowdhury et al., 2021). The
knowledge produced by proteomics may provide insights into
molecular tools to diminish the vector competence for CHIKV.
In this study, we aimed to perform a label-free quantitative
proteomic analysis of CHIKV-infected Ae. aegypti Aag-2 cells to
give an overview of the protein abundance profile changes in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
time points 0, 12, and 48 h postinfection (hpi). Proteomics and
microscopy data revealed several regulated proteins that are
possibly involved in host cell metabolic shifts that could assist
viral replication.
MATERIAL AND METHODS

Cells and Virus
Ae. aegypti Aag-2 cells (RRID : CVCL_Z617) were kindly
provided by Gorben Pijlman, PhD (Wageningen University &
Research, Netherlands) and cultured in Schneider’s medium
(Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10%
fetal bovine serum (FBS) and 100 U/ml of penicillin/
streptomycin at 28°C. Ae. albopictus C6/36 cells were
maintained in TC-100 medium (Vitrocell Embriolife,
Campinas, Brazil) supplemented with 10% FBS at 28°C.
African green monkey kidney-derived Vero cells were grown
in high-glucose Dulbecco’s modified Eagle‘s medium (DMEM;
Sigma-Aldrich) supplemented with 10% FBS and 100 U/ml of
penicillin/streptomycin in an incubator at 37°C under 5% CO2.
Cell passages were performed once a week. The CHIKV isolate
(strain Cuiabá-MT, Brazil, National Center for Biotechnology
Information (NCBI) accession number MH823667) was
supplied by the Central Public Health Laboratory of the
Federal District (LACEN-DF).

Virus Recovery and Propagation
The CHIKV isolate was recovered from an infected patient’s
blood sample and inoculated in Vero cells, which present a clear
cytopathic effect (CPE) during CHIKV infection. Three days
postinfection (dpi), the onset of CPE was noted, and the
supernatant was collected. Viral RNA was extracted from Vero
cells using TRIzol (Thermo Fisher Scientific, Waltham, MA, USA),
and replication was confirmed by RT-PCR. SuperScript IV reverse
transcriptase (Thermo Fisher Scientific) was used for cDNA
synthesis, while PCR was performed with Platinum Taq DNA
polymerase (Thermo Fisher Scientific). The primers forward 5′-
CGAAGAGTGGAGTCTKGCATYCCAG-3′ and reverse 5′-
GCCTCYTGGTATGTGGCCGCTTTAGC-3′ amplified the set of
E3–E2 genes, generating an amplicon about 1.5 kb. Then, Ae.
albopictus C6/36 cells were infected with virus-containing
supernatant from Vero culture to increase the virus titer, since
these mosquito cells have a defective antiviral RNAi machinery,
being advantageous for arbovirus propagation (Brackney et al.,
2010). C6/36 cell culture supernatant was collected for the
following steps.

Chikungunya Virus Titration
Viral titer was obtained by End-Point Dilution Assay in Terasaki
plates. Confluent Vero cells grown in a T25 flask were detached
with 1 ml of trypsin-EDTA and diluted in 4 ml of DMEM
supplemented with 10% FBS and 100 U/ml of penicillin/
streptomycin. The cells in suspension were incubated with
serial dilutions (from 1 × 10−1 to 1 × 10−9) of virus stocks in
a 1:1 volume ratio (90 µl cell suspension:90 µl virus dilution).
June 2022 | Volume 12 | Article 920425
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In 60-well Terasaki plates (Greiner Bio-One, Kremsmünster,
Austria), 10 µl per well was added in 6 replicates per dilution.
The CHIKV titration was achieved based on CPE visualized by
light microscopy at 3 dpi and TCID50 calculation. Each
condition was titrated twice, and the mean number of viral
particles was considered.

Growth Kinetics in Aag-2 Cells
To explore changes in CHIKV-infected Aag-2 cells at the protein
level, the culture harvesting times were determined according to
the highest virus titer. Multiplicities of infection (MOIs) of 0.1
and 1 were used to infect Aag-2 cells in 6-well plates in biological
triplicates. After 90 min, the supernatant was replaced with fresh
Schneider’s medium supplemented with FBS and 100 U/ml of
penicillin/streptomycin. The CHIKV-infected supernatants were
titrated at 24, 48, and 72 hpi by End-Point Dilution Assay. The
virus growth curve was set, and the harvesting time points 0, 12,
and 48 hpi were determined for the following experiments, with
a chosen MOI of 0.1.

Transmission Electron Microscopy
Aag-2 cells were grown in three independent T25 flasks and
cultured in Schneider’s medium (Sigma-Aldrich) supplemented
with 10% FBS and 100 U/ml of penicillin/streptomycin at 28°C.
Each flask was harvested at a different time point: 0 (uninfected
control), 12, and 48 hpi. The samples were transferred to 15-ml
tubes and centrifuged at 1,200 ×g for 3 min. After two rounds of
phosphate-buffered saline (PBS) washing, pellets were
transferred to microtubes, and fixation occurred overnight at
4°C in a solution containing 2% (v/v) paraformaldehyde, 2% (v/
v) glutaraldehyde, and 0.1 M of sodium cacodylate buffer, pH 7.2.
Next, whole preparations were post-fixed, for 30 min in 2% (w/v)
osmium tetroxide, 1.6% potassium ferricyanide, and 10 mM of
CaCl2 in 0.2 M of sodium cacodylate buffer, pH 7.2. Samples
were washed in distilled water and stained in a block with 0.5%
(w/v) uranyl acetate for 24 h at 4°C. The material went through
dehydration in a graded acetone series (50%–100%) for 10 min
each, and it was embedded in Spurr resin. Ultrathin sections were
obtained using an ultramicrotome UC6 (Leica, Wetzlar,
Germany) that were contrasted with uranyl acetate and lead
citrate. The final step was to examine and photograph the
sections under a Jeol 1011 transmission electron microscope
(TEM; Jeol 1011, Tokyo, Japan) at 80 kV.

Sample Preparation for
Mass Spectrometry
In T25 flasks, 2 × 106 Aag-2 cells were seeded. After 16 h, cells
were infected with CHIKV stock at MOI of 0.1 in biological
triplicates. Mock cells (with Schneider’s medium only) were
harvested at t = 0 h (uninfected), and CHIKV-infected cells
were harvested at 12 and 48 hpi. Aag-2 pellets were lysed with 8
M of urea in 20 mM of ammonium bicarbonate, pH 7.9,
containing a complete mixture of protease and phosphatase
inhibitors (Roche, Basel, Switzerland). Then, 100 mg of protein
was reduced with 5 mM of dithiothreitol (DTT) for 1 h at 32°C
and alkylated with 14 mM of iodoacetamide for 40 min at room
temperature in the dark. Samples were then applied to a filter
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
(Centrifugal Filters Ultracel, 3 kDa) and centrifuged for 10 min
at 14,000 ×g. Next, a washing step was performed with 8 M of
urea followed by centrifugation for 10 min at 14,000 ×g. A total
of 2 mg of modified trypsin (Promega, Madison, WI, USA) was
used for tryptic digestion following the proportion ratio of 1:50
(enzyme:substrate) for 18 h at 37°C under 600-rpm agitation.
Tryptic peptides were acidified by adding trifluoroacetic acid
(TFA) to a final concentration of 0.1% (v/v), desalted with
POROS R2 resin (Applied Biosystems, Foster City, CA, USA),
and packaged in micropipette tips. Desalted peptides were
vacuum dried and suspended in 0.1% (v/v) formic acid (FA),
and aliquots corresponding to 0.5 µg/µl were used for
MS analysis.

Mass Spectrometry
Tryptic digests were analyzed by reversed-phase nanoscale liquid
chromatography coupled to high-resolution nanoelectrospray
ionization MS. Chromatography was performed using a
Dionex Ultimate 3000 RSLCnano system coupled to the HF-X
Orbitrap MS (Thermo Fisher Scientific). All samples (1 mg per
run) were initially applied to a 2-cm guard column, followed by
fractionation on a 25.5-cm PicoFrit™ Self-Pack column (New
Objective) packed with 1.9-mm silica, ReproSil-684 Pur 120 Å
C18-AQ (Dr. Maisch, Ammerbuch, Germany). Each sample was
loaded in 0.1% (v/v) FA and 2% (v/v) acetonitrile (ACN) onto
the trap column at 2 ml/min, while chromatographic separation
occurred at 200 nl/min. Mobile phase A consisted of 0.1% (v/v)
FA in water, while mobile phase B consisted of 0.1% (v/v) FA in
ACN. Peptides were eluted with a linear gradient from 2% to 40%
eluent B over 32 min, followed by up to 80% B in 4 min. Lens
voltage was set to 60 V. Full-scan MS mode was acquired with a
resolution of 60,000 (FWHM at m/z 200 and automatic gain
control (AGC) set to 3 × 106). The 20 most abundant precursor
ions from each scan (m/z 350–1,400) were sequentially subjected
to fragmentation by higher-energy collisional dissociation
(HCD). Fragment ions were analyzed at a resolution of 15,000
using an AGC set to 1 × 105. Data were acquired using Xcalibur
software (version 4.2.47).

Label-Free Protein Quantification
and Identification
Protein quantification and identification were performed by
using MetaMorpheus (Solntsev et al., 2018), which takes
advantage of a modified version of Morpheus (Wenger and
Coon, 2013) for identification and FlashLFQ (Millikin et al.,
2017) for quantification. Briefly,.raw files and a FASTA file
containing the UniProt reference proteomes of CHIKV
(UP000000569) and Ae. aegypti (UP000008820), with one
protein sequence per gene, were loaded into MetaMorpheus.
Both FASTA files were downloaded in May 2021. Then,
calibration was performed with default values, with file-specific
tolerances set to each MS run. Next, global post-translational
modification discovery (G-PTM-D) was used to search for
common biological, common artifacts, and metal modifications
in the files. Identification and quantification were done allowing
a maximum of two missed cleavages, two modifications per
peptide, and a peptide minimum length of 7. Carbamidomethylation
June 2022 | Volume 12 | Article 920425
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of cysteine and selenocysteine was set as fixed modifications.
Oxidation of methionine was set as a variable modification. Protein
parsimony was applied, two peptides were required to identify a
protein group, and modified peptides were treated as different
peptides to remove ambiguities in the quantification of proteins.
Quantification was performed without match between runs (MBR),
and results were normalized by FlashLFQ. Peptide-spectrummatches
(PSMs) were considered valid if the q-value <0.01 and the
MetaMorpheus minimum score was set to 5.

Quality Control, Statistical Analysis, and
Functional Annotation
The resulting protein groups were imported into the R
environment (R Core Team, 2019), within RStudio (RStudio
Team, 2021). The quality control and statistical analysis were
performed using pmartR (Stratton et al., 2019) with the
assistance of the following packages: heatmaply (Galili et al.,
2017), dendextend (Galili, 2015), ggplot2 (Wickham, 2016), and
GAGE (Luo et al., 2009). First, proteins with less than two unique
peptides were filtered out, and protein abundance was log2
transformed. Subsequently, filters were applied according to
the number of missing values. Proteins were required to have
at least three quantified values in the total replicates and two
quantified values per group. The resulting protein groups were
analyzed by robust Mahalanobis distance using correlations,
median absolute deviations, skewness, and proportion of
missing values to verify the presence of extreme outliers.
ANOVA and post-hoc Bonferroni multiple test correction with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
a p-value <0.05 cutoff were used to identify proteins and peptides
regulated between groups. CHIKV peptides were related to the
mature proteins through a comparison of their position in the
CHIKV protein sequence and annotation of the structural
polyprotein (Q8JUX5) of the CHIKV strain S27-African
prototype. Variance-sensitive clustering through VSClust
(Schwämmle and Jensen, 2018) and heatmap clustering were
done by using proteins without missing values. Furthermore, the
optimal number of clusters was defined by minimum centroid
distance. To perform enrichment analysis, UniProt protein AC
was converted to Entrez GeneID using UniProtKB (The UniProt
Consortium, 2021) and db2db (Mudunuri et al., 2009). The
resulting 984 Entrez GeneID with their corresponding
abundances were analyzed by Generally Applicable Gene-set
Enrichment (GAGE) against the Kyoto Encyclopedia of Genes
and Genomes (KEGG) gene set of Ae. aegypti. Pathways were
considered enriched if q-value <0.1. Protein-protein interaction
(PPI) network was constructed by using STRING (Szklarczyk
et al., 2019) without text mining, and Cytoscape StringApp
(Doncheva et al., 2019) with the help of yfiles layout
algorithms app.
RESULTS

To study the Ae. aegypti Aag-2 cell response to CHIKV infection,
we designed an experimental label-free quantitative proteomic
procedure supported by microscopy analysis (Figure 1).
FIGURE 1 | Experimental design and preliminary results. (i) Obtention of chikungunya virus (CHIKV)-infected Aag-2 cells, which consisted of the determination of
multiplicity of infection (MOI) (1), harvesting times (0, 12, and 48 hpi), and microscopy analysis. (ii) Sample preparation for mass spectrometry (MS) analysis. (iii)
Bioinformatics analysis that resulted in 196 proteins statistically significant as upregulated or downregulated.
June 2022 | Volume 12 | Article 920425
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Determination of Multiplicity of Infection
and Harvesting Time Points for
Chikungunya Virus-Infected Aag-2 Cells
A growth kinetics curve in infected Aag-2 cells was performed to
identify the time point with the highest production of viral
particles and the most suitable CHIKV MOI for Ae. aegypti
cells. Initially, we performed a CHIKV infection using MOI of 1
in Vero cells, since those cells allow a distinguishable CPE. As
infection control, we used isolates of DENV2 and Mayaro virus
(MAYV), also using MOI of 1. As a negative control, we used
mock-infected Vero cells. From these assays, we could notice that
our CHIKV isolate was more virulent than the other arboviruses,
producing higher levels of CPE (syncytia formation) and cell
death (Supplementary Figure 1). The CHIKV isolate (NCBI
accession number MH823667) used in this study was sequenced
and phylogenetically clustered with isolates of the ECSA
(Vasconcellos et al., 2019). This lineage is known to be more
virulent than other CHIKV lineages since ECSA isolates can
interfere with the innate immune system by impairing interferon
activation (Figueiredo and Figueiredo, 2014; Langsjoen et al.,
2018). For this reason, CHIKV MOIs of 0.1 and 1 were tested to
infect Aag-2 cells to establish growth kinetics.

We determined the times 24, 48, and 72 hpi to harvest
supernatant and perform viral titration. As expected, the
growth kinetics showed a higher CHIKV particle production at
all harvesting times using MOI of 0.1, which was chosen for the
next steps. Supernatant titration showed a slightly higher viral
particle production at 48 hpi (2.86 × 104/ml) rather than at 24
hpi (2.32 × 104/ml) and at 72 hpi (1.7 × 104/ml) (Figure 2). Very
similar results were obtained in a previous work, when CHIKV-
infected Aag-2 cells achieved higher titrations at 48 hpi, using
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
both MOIs of 0.1 and 1 (Kumar et al., 2021). Accordingly, 48 hpi
was established as the final harvesting time point. In addition,
considering the enhanced virulence aspect of our CHIKV isolate,
we also decided to choose an intermediate harvesting time point
of 12 hpi. An earlier harvesting time point could shed light on
interesting biological aspects in the protein abundance of
CHIKV-infected Aag2 cells, presented in our proteomic
analysis (see below). Therefore, we established the CHIKV
MOI of 0.1 to infect Ae. aegypti cells, for further analysis at 0
(uninfected), 12, and 48 hpi.

Transmission Electron Microscopy of
Chikungunya Virus-Infected Aag-2 Cells
TEM analysis was performed using the established MOI of 0.1
and the harvesting time points 0, 12, and 48 hpi, to visually
support the biological effects of CHIKV infection. Uninfected
Aag-2 cells (Control) presented a well-defined morphology, with
apparently intact mitochondria, nucleus, autophagosome vesicle,
and a structure that appears to be a Golgi complex (Figures 3A,
B). At 12 hpi, a small number of viral particles in the extracellular
space were observed, although the integrity of the plasmatic
membrane and organelles, such as the nucleus and
mitochondria, seem to remain preserved (Figures 3C, D).
Conversely, an apparent CPE is observed in Aag-2 cells at 48
hpi. Degraded fragments of membranes can be seen, possibly
from cytoplasmic membranes and membranous organelles
(Figures 3E, F). Moreover, mitochondria present a suggestive
abnormal elongated morphology at 48 hpi (Figure 3F).
Considering our TEM images, viral particles can be found in
both intracellular and extracellular environments. However, a
surprisingly elevated number of virions in the intracellular space of
themosquito cell at 48 hpi are observed in Figure 3G. According to
our observations, despite that viral production had already been
verified at 12 hpi, a significant cell integrity loss and virion
production could be only noticed at 48 hpi, in agreement with the
growth kinetics (Figure 2). This pattern is also observed for other
arboviruses, such as MAYV (Vasconcellos et al., 2020).

Proteomic Analysis
A total of 2,583 protein groups with at least two unique peptides
were identified (Supplementary Table 1). The efficiency of the
normalization of protein group abundances was assessed by
boxplot and histogram, exhibiting a bell-shaped distribution
(Supplementary Figures 2A, B). We also applied filters to
ensure the use of more confident protein groups in
quantifications. First, protein groups with more than three
missing values in the total replicates were removed, resulting
in 2,296 protein groups (Supplementary Figure 2C). Then, to
perform ANOVA, protein groups with less than two quantified
values per condition were removed, resulting in 1,951 protein
groups (Supplementary Figure 2D). These protein groups were
submitted to robust Mahalanobis distance analysis to evaluate
the presence of extreme outliers, and none could be observed
(Supplementary Figure 2E). Moreover, we performed a
probabilistic principal component analysis (PPCA) to
demonstrate the grouping of the replicates among conditions
(Supplementary Figure 2F).
FIGURE 2 | Growth kinetics of chikungunya virus (CHIKV)-infected Aag-2
cells. The multiplicities of infection (MOIs) of 0.1 and 1 were used to infect
mosquito cells, and the supernatant was collected at three different time
points (24, 48, and 72 hpi). Titration of infective CHIKV particles was
performed with EndPoint Dilution Assay. The chosen MOI was 0.1, and the
harvesting time points 12 and 48 hpi were selected.
June 2022 | Volume 12 | Article 920425

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Vasconcellos et al. CHIKV-Infected Aedes aegypti Cell Proteomics
Next, the 1,951 protein groups were tested by one-way
ANOVA, which resulted in 196 protein groups with a
difference in the abundance quantification between the
conditions analyzed (Supplementary Table 2). By comparing
the abundance fold-change (FC) of these protein groups
observed between 12 hpi vs. Control, 48 hpi vs. Control, and
48 vs. 12 hpi, it is possible to notice that the 12 hpi vs. Control
comparison presents a fewer number of differentially abundant
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
protein groups (Figure 4A). Conversely, the other two
comparisons, 48 hpi vs. Control and 48 vs. 12 hpi, presented a
greater number of regulated protein groups, comprising 130 and
128, respectively. Moreover, a variance-sensitive clustering
(VSClust) analysis was performed, resulting in three clusters of
Ae. aegypti protein groups. This analysis clustered 738 protein
groups, comprising 365, 215, and 158 protein groups, in clusters
1, 2, and 3, respectively (Supplementary Table 3). Protein
A B

D

E F

G

C

FIGURE 3 | Electron micrographs of uninfected (A, B) and chikungunya virus (CHIKV)-infected (C–G) Aag-2 cells. (A, B) Uninfected cells showing the mitochondria
(red arrows), autophagic vesicle (green arrow), a possible Golgi complex (pink arrow), and the nucleus (N). (C, D) Aag-2 cells infected with CHIKV using multiplicities
of infection (MOIs) of 0.1 at 12 hpi. (C) Possible released viral particles can be seen in the extracellular space (yellow arrows), and the proposed autophagic vesicle is
darker (green arrow). Mitochondria (red arrows) and the nucleus (N) membranes are apparently still preserved. (E–G) Aag-2 cells infected with CHIKV at 48 hpi using
MOI of 0.1 showing possible virions (yellow arrows) found in both extracellular (E) and intracellular spaces (G), inset, while mitochondria present a suggestive
abnormal elongated morphology (red arrows) (F), and membrane residues are observed (white arrows), probably associated with cytopathic effect (CPE) (F, G). Bars
represent 1 mm in (A–C) and 0.5 mm in all other images.
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abundance in cluster 1 decreased along with the 48 hpi compared
to Control (Figure 4B). Conversely, in cluster 2, the abundance
during the course of infection (12 and 48 hpi) was greater than in
Control. Cluster 3 showed a lower abundance at 12 hpi and an
abundance recovery at 48 hpi.

From those 196 regulated protein groups, tested by one-way
ANOVA followed by Bonferroni multiple test correction, 116 did
not present any missing values. These protein groups were
submitted to clustering in a heatmap analysis (Figure 4C).
Consistently with VSclust analysis (Figure 4B), two consistent
patterns of protein modulation in the CHIKV-infected Aag-2
cells are exhibited, especially considering clusters 1 (pink nodes)
and 2 (blue nodes): i) predominantly decreased abundance the
last time postinfection (48 hpi) compared to Control and 12 hpi
and ii) increased abundance in the last time postinfection (48
hpi) compared to Control and 12 hpi. In contrast, cluster 3
presented a different abundance pattern. Protein abundance
abruptly decreased at 12 hpi compared to the control and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
drastically increased from 12 to 48 hpi. Despite 158 protein
groups in cluster 3, only four protein groups were present in the
heatmap analysis (Figures 4B, C).

Abundance of Chikungunya Virus Peptides
Throughout Infection
Since growth kinetics and TEM showed an increase of viral
particles until 48 h (Figure 2), the percentage of identified
CHIKV peptides was expected to increase during the course of
infection, as observed in Figure 5, reaching only about 0.4% of all
identified peptides at 48 hpi. It is noteworthy to mention that an
MOI of 0.1 was used to infect Aag-2 cells. A previous study
developed by our group used MOI of 1 to infect mosquito cells
with MAYV, and a higher percentage of viral peptides was
observed (Vasconcellos et al., 2020).

Two CHIKV proteins were identified at 12 and 48 hpi,
referring to P1234 (Q8JUX6) and structural (Q8JUX5)
polyproteins. None of them were found to be regulated. Both
A B

C

FIGURE 4 | Quantitative overview of abundance variation of protein groups during chikungunya virus (CHIKV) infection of Aedes aegypti Aag-2 cells. (A) Volcano
plot highlighting regulated protein groups analyzed by one-way ANOVA with post-hoc Bonferroni multiple test correction (p-value < 0.05) from 1,951 protein groups
analyzed. (B) Clusters of abundance profiles of 1,129 protein groups were obtained in VSClust. (C) Heatmap of 116 protein groups without missing values clustered
according to their abundance patterns.
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polyproteins are proteolytically cleaved along the viral infectious
cycle into non-structural (nsP1–4) and structural proteins (CP,
E3, E2, 6k, and E1) (Solignat et al., 2009). Regarding CHIKV
peptides, three of them were differentially abundant (Figure 5B),
all part of the structural polyprotein (Q8JUX5). Two peptides
(NPTVTYGK and NQVIMLLYPDHPTLLSYR) were identified
in the region of the spike glycoprotein E2 and one
(QAGQLAQLISAVNK) as part of the CP (Figure 5B).

Bioinformatics
Volcano plot (Figure 4A) and PPCA (Supplementary
Figure 2F) showed a more similar abundance pattern of
protein groups between 12 hpi and the uninfected condition,
rather than 48 hpi. In agreement, no enriched pathway was
found between the 12 hpi vs. Control by GAGE enrichment
analysis (data not shown), while the time point comparisons
encompassing 48 hpi displayed a difference in the protein
abundance related to several pathways. Eight KEGG sets were
enriched: ribosome (aag03010), biosynthesis of amino acids
(aag01230), carbon metabolism (aag01200), metabolic
pathways (aag01100), propionate metabolism (aag00640),
valine, leucine and isoleucine degradation (aag00280), citrate
cycle (tricarboxylic acid (TCA) cycle) (aag00020), and glycolysis/
gluconeogenesis (aag00010) (Figure 6). Interestingly, the
ribosome (aag03010) set was the only gene set to present a
negative level change, suggesting the presence of proteins more
abundant in the Control compared to 48 hpi. In contrast, carbon
metabolism was enriched in both comparisons, with a great
positive level change in 48- compared to 12-hpi comparison.
Moreover, other pathways presented a positive level change in
both comparisons, and some of these sets could be related to
energy metabolic processes, such as the citrate cycle (TCA cycle)
(aag00020), glycolysis/gluconeogenesis (aag00010), and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
metabolic pathways (aag01100) (Figure 6). These observations
suggest an enhanced carbon metabolism and a decreased
abundance in proteins related to ribosomes at 48 hpi.

Regulated proteins at 48 hpi compared to Control
(Figure 7A) and at 48 compared to 12 hpi (Figure 7B) were
submitted to STRING analysis to predict the PPI network to
highlight regulated biological processes. The main biological
terms encountered in the PPI clusters were related to carbon
metabolic processes and protein synthesis as observed by GAGE
analysis (Figure 6). Overall, in the two pairwise comparisons,
PPI clusters with Gene Ontology (GO) terms related to energetic
metabolism presented predominantly positive FC in the PPI
network at 48 hpi. Conversely, PPI clusters with terms related to
protein synthesis were mostly represented by proteins with lower
FC in the PPI network at 48 hpi.
DISCUSSION

De Novo Synthesis of the Virus Over 48 h
Higher demand for structural proteins for de novo synthesis of
virions could explain the progressive detection of viral structural
components over 48 h (Figures 3, 5). In an alphaviral particle,
240 monomers of CP protein are structured together to form the
capsid, in which about 80 trimeric E1/E2 proteins called spikes
are inserted (Brown et al., 2018). Therefore, 240 CP and
approximately 240 E2 proteins (80 ×3) are required to
assemble a single CHIKV particle. E2 belongs to the
immunoglobulin superfamily, and its cytosolic domain
interacts with CP; thus, E2-CP interaction is needed for viral
particle assembly and budding (Cunha et al., 2020). CP itself is
responsible for the packaging of viral genomic RNA. Together,
they form the nucleocapsid (Brown et al., 2018).
A B

FIGURE 5 | Analysis of chikungunya virus (CHIKV) and Aedes aegypti peptides during the infection. (A) Percentage of Aedes Aegypti (blue dotted line) and CHIKV
(red dotted line) identified peptides over the time points (0, 12, and 48 hpi). (B) Regulated CHIKV peptides between 12 and 48 hpi, which correspond to the E2 spike
glycoprotein and the capsid protein. Those proteins are proteolytically cleaved from the structural polyprotein (Q8JUX5).
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Protein Synthesis Inhibition of
Chikungunya Virus-Infected Aag-2
Cells at 48 hpi
Since viruses are intracellular parasites that carry only their
genomes and specific proteins; they depend on recruiting
several host proteins to replicate, such as ribosomal proteins
(RPs) (Petit and Shah, 2019). RPs may cause different effects in a
virus life cycle: enhancing viral proliferation, translating viral
proteins, or even inhibiting viral infection. Usually, after viral
infection, host mRNA translation is suppressed (Li, 2019). In this
study, we could identify several proteins related to protein
syntheses, such as proteins of Spliceosome, Ribonucleoprotein
complex, Cytoplasmic translation, and Ribosome. These proteins
were predominantly downregulated over 48 h in all analyses
performed. Specifically, in VSclust analysis, cluster 1 proteins
were overrepresented with GOs related to protein synthesis
(Supplementary Figure 3), while differentially abundant
proteins related to protein metabolism are present in the PPI
networks (Figure 7), and the enrichment analysis of the KEGG
pathway ribosome gene set is enriched with negative level change
at 48 hpi (Figure 6). Previous reports revealed a widespread
translational shutoff of human fibroblasts in the late stages of
CHIKV infection (White et al., 2011). Despite the translational
shutoff, the translation of CPs remained active (White et al.,
2011). Moreover, Cui et al. (2020) observed that CHIKV-infected
Ae. aegypti mosquitoes had protein synthesis perturbed/
inhibited from 24 to 96 hpi. Other viruses, such as poxvirus,
influenza viruses, and hantaviruses, are also known to inhibit
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
host protein synthesis. In these cases, inhibition is performed by
affecting the cap of host mRNA and its interactions with
eukaryotic initiation factor 4 (eIF4). On the other hand,
measles virus, rabies virus, and foot-and-mouth disease virus
target eukaryotic initiation factor 3 (eIF3), also resulting in host
protein translation inhibition (Walsh and Mohr, 2011). In the
present study, we detected three downregulated subunits of the
eIF3 at 48 hpi when compared to 12 hpi and/or Control: eIF3
subunit C (Q17Q06, FC 48 hpi vs. Control −0.43, Cluster 1), eIF3
subunit M (Q17D30, FC 48 hpi vs. Control −0.28, Cluster 1), and
eIF3 subunit G (Q1HQN4, FC 48 hpi vs. Control −1.22, FC 48 vs.
12 hpi −1.61, Cluster 1). eIF3 subunits interact with mRNA, eIF4,
and the 40S ribosomal subunit. These results suggest that
CHIKV induces a protein synthesis shutoff of host proteins in
Aag-2 cells, in the same manner as observed before in
human cells.

A Higher Energy Metabolism Demand Is
Required for Chikungunya Virus-Infected
Aag-2 Cells at 48 hpi
Proteomics revealed that proteins related to energy metabolism
processes such as the TCA cycle, glycolysis/gluconeogenesis, and
carbon metabolism were more abundant at 48 hpi rather than
uninfected and 12 hpi in KEGG enrichment (Figure 6).
Supporting this observation, STRING PPI analysis showed four
Ae. aegypti ATP synthesis-related proteins with an elevated
abundance at 48 hpi (Figure 7). The Rieske subunit of the
ubiquinol-cytochrome b-c1 reductase (CIII mitochondrial)
FIGURE 6 | Bubble plot of enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The eight enriched KEGG pathways by Generally Applicable
Gene-set Enrichment (GAGE) analysis (q-value < 0.1) are shown in a bubble plot according to their q-values and level changes, where level changes represent the
magnitude of KEGG pathway variation, and q-value the significance for each gene-set enrichment.
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(Q17EQ1, FC 48 hpi vs. Control +0.43, Cluster 2) acts by
transferring electrons from ubiquinol to cytochrome c (cyt c)
as part of electron transport chain step of oxidative
phosphorylation. This protein complex is essential for the
respiratory chain functioning (Zara and Conte, 2011), and it
allows a proton gradient across the mitochondrial membrane for
ATP production by ATP synthase (Shi et al., 2018). The
mitochondrial ATP synthase (Q1HR38, FC 48 vs. 12 hpi
+0.95, Cluster 3) and ATP synthase gamma subunit (Q16XK3,
FC 48 vs. 12 hpi +0.48, Cluster 3) presented an elevated FC at 48
hpi. Considering the comparison of 48 hpi vs. Control, the ATP
synthase alpha subunit (Q1HRQ7, FC 48 hpi vs. Control +0.18,
Cluster 2) was also more abundant.

Interestingly, two putative mitochondrial RPs were more
abundant at 48 hpi. Although mitochondria have derived from
endosymbiotic bacteria, mitochondrial ribosomes (mitoribosomes)
have strongly diverged in structure and function (Greber and Ban,
2016). Mitoribosomes became specialized in synthesizing
membrane proteins, such as important complexes of the
mitochondrial respiratory chain (Greber and Ban, 2016). In this
study, the putative mitochondrial RP L48 (Q16W93, FC 48 hpi vs.
Control +0.86, 48 vs. 12 hpi +0.89) and the putative mitochondrial
RP S18A (Q172K6, FC 48 hpi vs. control +0.26) were upregulated at
48 hpi. As long as mitoribosomes are specialized in the
mitochondrial protein synthesis, which may include proteins
associated with metabolic pathways, this phenomenon could
support this higher demand of energy production by host cells for
the establishment of CHIKV infection. The mitochondrial
metabolic pathway to generate energy on CHIKV-infected Aag-2
cells is overrepresented over 48 h of infection, in agreement with
previous CHIKV-infected mosquito cell studies (Lee and Chu, 2015;
Vasconcellos et al., 2020; Cui et al., 2020).

Additionally, TEM images exhibited at late-stage infection
some mitochondria with an unexpected elongated morphology
(Figure 3F), as observed in mammalian cells infected with
DENV and Zika virus (ZIKV). The same phenomenon was not
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
observed for other Flaviviridaemembers such as West Nile virus
(WNV) and hepatitis C virus (HCV) (Chatel-Chaix et al., 2016).
In healthy cells, mitochondria form a dynamic net with repeated
fission and fusion events that aim to exclude damaged cells by
mitophagy, ensuring homeostasis (Tiku et al., 2020). The virus-
derived mitochondrial elongation causes an imbalance in this
fission and fusion dynamics, allowing damaged or non-efficient
mitochondria to stay active in the net (Kim et al., 2017). It has
also been observed that infections caused by severe acute
respiratory syndrome coronavirus (SARS-CoV) and HIV are
also linked to a shift in mitochondrial dynamics toward fusion
(elongation), while other viruses cause a shift toward fission
(Kim et al., 2017; Tiku et al., 2020). This imbalance could
potentially impair energy metabolism and, consequently, lead
to glycolysis activation in order to reset energy levels.

In Influenza-infected mammalian cells, a mitochondrial
membrane disruption with a consequent decrease in ATP levels
has been observed, requiring glycolysis activation (Ritter et al.,
2010). Moreover, the enhancement of the glycolytic pathway using
drugs allowed for higher Influenza replication levels (Ren et al.,
2021). Other viruses such as DENV, murine norovirus (MNV),
human cytomegalovirus (HCMV), and herpes simplex virus 1
(HSV1) also induce increased levels of glycolysis in their host cells
(Passalacqua et al., 2019; Thaker et al., 2019). Herein, we suggest
that this higher energy demand at a later infection time point could
possibly occur due to CHIKV particle production and release, but
also due to the consequences of the stress-associated attempt of
Aag-2 cells to recover homeostasis. Since energy-related metabolic
pathways are host factors that can determine the outcome of a viral
infection, they are frequently manipulated by viruses, in different
ways, to favor their replication.

Prohibitins Are Likely Important for
Chikungunya Virus Infection in Aag-2 Cells
Prohibitins (PHBs) form a highly evolutionary conserved
family of proteins that can act in different cell compartments,
A B

FIGURE 7 | STRING network interaction analysis of regulated proteins in 48 hpi vs. Control (A) and 48 vs. 12 hpi (B). Interactions of regulated proteins analyzed by
one-way ANOVA with post-hoc Bonferroni multiple test correction (p-value < 0.05) were assessed by STRING without text mining and imported to the Cytoscape,
where overrepresentation analysis of biological terms was performed. The overrepresented terms are indicated by different colors in the legends, and the proteins
that belong to these terms are circled in the respective colors. Log2FC are represented by filled colors (red for upregulated and blue for downregulated), and smaller
node distances correspond to higher protein–protein interaction scores.
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such as the plasmaticmembrane, nucleus, and innermitochondrial
membrane, having specific site-associated functions (Mishra et al.,
2006; Merkwirth et al., 2007). Moreover, these proteins are
ubiquitously expressed in animals, plants, and fungi (Chowdhury
et al., 2014). In this study, two PHBs were upregulated at 48 hpi:
A0A6I8TPE2 (FC 48 hpi vs. Control +0.42), which is generically
classified as membranous in the UniProt database, and Q1HR13 (FC
48 hpi vs. Control +0.28). The second PHB is classified as a
mitochondrial inner membrane protein in the UniProt database. In
addition, it is also listed as an overrepresentedmitochondrion gene set
(orange) of the STRING PPI analysis when comparing 48 hpi vs.
Control (Figure 7A). Mitochondrial PHBs have an important role in
stabilizing the dynamin-related OPA1, a protein that promotes
mitochondrial fusion (Merkwirth et al., 2007; Ban et al., 2017). These
PHBs also contribute to the electron chain transport activity, to
maintain the integrity of the mitochondrial inner membrane (Foo
et al., 2021). Furthermore, previous studies on arboviruses have
identified surface PHB as a receptor for DENV entrance in Ae.
aegypti and Ae. albopictus cells. The same mechanism is observed for
CHIKV concerning different mammalian cell types (Hidari and
Suzuki, 2011; Wintachai et al., 2012). A previous study from our
group also showed that PHB abundance fromMAYV-infected Aag-2
cells was increased over 48 hpi (Vasconcellos et al., 2020). Overall,
PHBs couldhave two relevant roles forCHIKV infection inAe. aegypti
cells: to act as a surface receptor, allowing viral entrance, and to support
the inner mitochondrial membrane and mitochondrial fusion. These
mechanisms could explain the elongated mitochondrial morphology
observed in the 48-hpi TEM image (Figure 3F).

Mitochondrial Elongation May Be Related
to Later Apoptosis During Chikungunya
Virus Infection
In addition to bioenergetic metabolism, mitochondria also play a
central role in innate immune signaling and cell survival (Kim
et al., 2017). The fission and fusion imbalance possibly caused by
the virus in the mitochondrial net can also impair host
homeostasis and progression of the cell cycle, leading to
apoptosis activation (Tiku et al., 2020). In a viral replication
cycle, early activation of programmed cell death may not be
advantageous if higher amounts of viral particles are ready to be
released during later infection time points. Thus, postponing host
cell death is a signal of a well-succeeded infection (Datan et al.,
2016). It has been reported that during CHIKV infection, reactive
oxygen species (ROS)-activated autophagy mediates a signaling
cascade that delays apoptotic cell death in mammalian cells
(Joubert et al., 2012), a scenario that benefits viral propagation.
While DENV and ZIKV also manipulate host autophagy to
improve their replication levels (Datan et al., 2016), apoptotic
blebs containing CHIKV particles have been observed (Joubert
et al., 2012). Furthermore, proteins of viruses such as HCV and
HIV have been shown to interact with host mitochondrial
membranes to increase ROS production and benefit viral
replication (Foo et al., 2021).

Two significant cell sites for ROS production are the
mitochondrial Complexes I and III of the electron transport
chain (Chen et al., 2003; Foo et al., 2021). In the present study,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
the Aag-2 Rieske subunit of the ubiquinol-cytochrome b-c1
reductase (CIII) mitochondrial complex (Q17EQ1, FC 48 hpi vs.
Control +0.43, Cluster 2) wasmore abundant at 48 hpi rather than
at 12 hpi and Control. This complex acts by transferring electrons
to cyt c, another compound well known to trigger apoptosis (Jiang
andWang, 2004).Moreover, cyt c also has dual functions in energy
metabolism and cell death (Cai et al., 1998). When released from
mitochondria, cyt c interacts with the apoptotic protease
activating factor 1 (Apaf1) to form a complex that activates
caspase 9, which is cleaved into caspases 3 and 7 (Bratton and
Salvesen, 2010). Then, this cyt c-dependent release of the caspases
3 and 7 triggers protein degradation and apoptosis in host cells
(Jiang and Wang, 2004). In this study, we propose that CHIKV
might create a mitochondrial net imbalance in Ae. aegypti cells to
delay apoptosis in a ROS-dependent fashion and, consequently, earn
some proliferation time.

Different Aag-2 RNA Helicases
Were Modulated
We have observed 8 host RNA helicases that presented a
differential abundance in the proteomic dataset. Three of them
were upregulated over time points: Q0IEJ1 (FC 12 hpi vs.
Control +1.19, Cluster 2), A0A1S4EZS3 (FC 12 hpi vs. Control
+0.55 and FC 48 hpi vs. Control +0.66, Cluster 2), and Q178X5
(FC 12 hpi vs. Control +0.49 and FC 48 hpi vs. Control +0.69).
The rest of them were downregulated over time points:
A0A1S4F0V4 (FC 12 hpi vs. Control −0.43 and FC 48 hpi vs.
Control −0.71), Q16XX4 (FC 48 hpi vs. Control −0.62), Q16RY3
(FC 48 hpi vs. Control −0.81 and FC 48 vs. 12 hpi −0.48, Cluster
1), A0A6I8TAB4 (FC 48 vs. 12 hpi −0.28, Cluster 1), and
Q17CT5 (FC 48 vs. 12 hpi −0.91) (Supplementary Table 2).
In agreement with UniProt database predictions, six RNA
helicases (Q0IEJ1, A0A1S4EZS3, Q178X5, A0A1S4F0V4,
Q16XX4, and Q16RY3) presented three conserved motifs: Q-
motif, helicase ATP-binding, and helicase C-domain. The
remaining two RNA helicases (A0A6I8TAB4 and Q17CT5)
have no Q-motif. From these predictions, it was also observed
that all RNA helicases in our study are classified as members of
the DEAD/DEAH box helicases family (Schmid and Linder,
1992; Tanner and Linder, 2001; Caruthers and McKay, 2002;
Tanner et al., 2003). Recent reports have shown that DEAD/
DEAH box RNA helicases are also important for the recognition
of foreign nucleic acids and modulation of viral infection,
possibly acting as sensors for innate immune mechanisms that
will influence viral replication (Fullam and Schröder, 2013;
Taschuk and Cherry, 2020; Ali, 2021).

Frequently, DEAD/DEAHbox RNAhelicases are also referred
to as DDX (Fullam and Schröder, 2013; Ali, 2021). For hepatitis B
virus (HBV) in human cells, DDX3 binds to HBV reverse
transcriptase, activating a signaling cascade that impairs IFN-
regulatory factors (IRF) and IFN-b promoter activity, facilitating
viral replication (Wang and Ryu, 2010). However, at later
infection stages, DDX3 is required to contain HBV reverse
transcription, therefore hampering its replication (Wang et al.,
2009). These proviral and antiviral patterns related to DDX are
similarly found during infection by other arboviruses. Ae. aegypti
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DDX6 has antiviral properties against ZIKV and WNV. In both
cases, DDX6 binds to the 3′ UTR subgenomic flavivirus RNA
(sfRNA), inhibiting viral replication in Aag-2 cells (Göertz et al.,
2019).DuringDENV infection,DDX3Xsupposedly interactswith
viral capsid to inhibit DENV replication (Kumar et al., 2018). For
CHIKV infection, theAe. aegyptiDEAD-box helicase RM62Fwas
found to interact with the viral protein nsP3 inAag-2 cells, leading
to suppression of RNAi pathway for gene silencing (Kumar et al.,
2021). It is noteworthy to mention that the interfering RNA
mechanism for post-transcriptional gene silencing is an antiviral
conserved hallmark for hosts such as nematodes, insects, fungi,
and plants (Chang et al., 2012; Gammon et al., 2017; Vogel et al.,
2019; Schuster et al., 2019).

Overall, different classes of host DEAD/DEAH box RNA
helicases can contribute to immune-modulatory mechanisms
or even be hijacked by viruses to support their replication.
Therefore, these proteins may act in a proviral fashion and as
antiviral effectors (Ali, 2021). It is tempting to suppose that the 8
DEAD/DEAH box RNA helicases that displayed a differential
abundance could support both cellular mechanisms in CHIKV-
infected Aag-2 cells. Possibly, a preparation phase for CHIKV
viral particle production before programmed cell death would
require the three DEAD/DEAH box RNA helicases found as
upregulated in our dataset (Q0IEJ1, A0A1S4EZS3, and Q178X5).
However, once CHIKV infection is established, the five
remaining downregulated RNA helicases (A0A1S4F0V4,
Q16XX4, Q16RY3, A0A6I8TAB4, and Q17CT5) could reflect a
suggestive inhibition strategy of antiviral mechanisms, such as
RNAi, to support viral replication. In fact, it has been already
shown that Ago2, a component of the RNAi machinery, was
downregulated at 48 hpi in CHIKV-infected Aag-2 cells (Kumar
et al., 2021). Since we have observed a significant count of viral
particles in the Aag-2 cells at 48 hpi (Figure 3G) and an
increasing abundance percentage of CHIKV peptides
throughout the infection (Figure 4), we suggest that DEAD/
DEAH box RNA helicases could be involved in both pro- and
antiviral host strategies to promote the propagation.

Conclusions
The present report brings an analysis of the molecular aspects
of Ae. aegypti cells infected with CHIKV, by which 196 Aag-2
proteins were modulated upon CHIKV infection. Mainly, our
study has shown that these host proteins are associated with
protein synthesis, signaling pathways, energy metabolism, and
apoptosis. The notorious viral count produced by mosquito
cells over 48 h observed by our TEM analysis probably has
influenced the host energy metabolism, in order to produce
more ATP, as revealed by the label-free quantitative proteomic
analysis. It would be interesting to study if glycolysis in Aag-2
cells could be activated upon viral infection to increase cell ATP
levels and sustain virus replication, by analyzing the effect of
glycolysis inhibitors, such as 2-deoxy-D-glucose (2DG).
Moreover, the mitochondrial elongated morphology observed
at 48 hpi may reflect a mitochondrial net imbalance that could
affect energy metabolism and regulate apoptosis timing. It is
widely accepted that different virus species modulate
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
mitochondrial bioenergetics to enhance viral replication. As
part of a central role in the viral replication and oxidative stress,
the (dys)function of host mitochondria seems to be an essential
element for many viruses (El-Bacha and Da Poian, 2013). For
instance, an enhanced level of ROS inhibits DENV infection
(Khan et al., 2021). In the ZIKV, this ROS imbalance is
associated with mitochondrial and DNA damage in human
astrocytes (Ledur et al., 2020). In both cases, the use
of fluorescent probes against free radicals , such as
2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) and
dihydroethidium (DHE), were respectively used (Ledur et al.,
2020; Khan et al., 2021). Perhaps novel studies regarding free
radicals production upon CHIKV infection could cast a glance
on whether the same phenomena could take place in Aag-2
insect cells. Based on what is observed in other vector-borne
viruses, these classes of proteins may be acting in a pro- and
antiviral fashion to support the balance between viral
propagation and the survival inside host cells, leading to the
persistent infection. Additionally, metabolomics studies would
provide complementary information regarding subtle
metabolic shifts (Tounta et al., 2021). Overall, our data may
contribute to a better comprehension of the adaptive molecular
mechanisms of Ae. aegypti concerning CHIKV infection.
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Supplementary Figure 1 | Optical microscopy of infection tests using Vero cells.
Vero cells were mock-infected (A) and infected with Dengue virus 2 (DENV2) (B),
Mayaro virus (MAYV) (C) and Chikungunya virus (CHIKV) (D), separately, using MOI
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1. Visually, the CHIKV isolate was more virulent, leading to a higher degree of
cytopathic effect (formation of syncytia and cell death) than DENV2 and MAYV
isolates. Vero cells are fixed in culture and produce an extracellular matrix that is
degraded after cell death. Then, cells become rounded.

Supplementary Figure 2 | Quality control of protein group identification and
quantification. (A) Boxplot of log2 protein group abundances. (B) Histogram of log2
protein groups abundances. (C) Number of valid values according to the number of
replicates, cut-off of three replicates was used in this analysis, represented by the
dashed line. (D) filter for ANOVA and g-test analysis, only ANOVA filter was used,
set by two replicates per group, represented by the dashed line. (E) robust
Mahalanobis distance analysis considering Correlation, median absolute deviation,
skewness and proportion of missing values, suggesting the absence of extreme
outliers (p-value = 1e-04). (F) probabilistic principal component analysis of protein
group abundances according to each replicate.

Supplementary Figure 3 | Bubble plot of enriched biological process GO terms
in VSclust clusters. GO terms enrichment values are represented by colored
circumferences. A clear predominance of translation GO terms can be seen in the
enriched terms of Cluster 1, mainly in those with eneRatio values.
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