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Abstract

Cystic fibrosis (CF) is a genetic disease caused by mutations in the cystic fibrosis trans-

membrane conductance regulator gene that leads to respiratory complications and mortal-

ity. Studies have shown shifts in the respiratory microbiota during disease progression in

individuals with CF. In addition, CF patients experience short cycles of acute intermittent

aggravations of symptoms called pulmonary exacerbations, which may be characterized by

a decrease in lung function and weight loss. The resident microbiota become imbalanced,

promoting biofilm formation, and reducing the effectiveness of therapy. The aim of this study

was to monitor patients aged 8–23 years with CF to evaluate their lower respiratory micro-

biota using 16S rRNA sequencing. The most predominant pathogens observed in micro-

biota, Staphylococcus (Staph) and Pseudomonas (Pseud) were correlated with clinical

variables, and the in vitro capacity of biofilm formation for these pathogens was tested. A

group of 34 patients was followed up for 84 days, and 306 sputum samples were collected

and sequenced. Clustering of microbiota by predominant pathogen showed that children

with more Staph had reduced forced expiratory volume in one second (FEV1) and forced

vital capacity (FVC) compared to children with Pseud. Furthermore, the patients’ clinical

condition was consistent with the results of pulmonary function. More patients with pulmo-

nary exacerbation were observed in the Staph group than in the Pseud group, as confirmed

by lower body mass index and pulmonary function. Additionally, prediction of bacterial func-

tional profiles identified genes encoding key enzymes involved in virulence pathways in the

Pseud group. Importantly, this study is the first Brazilian study to assess the lower respira-

tory microbiota in a significant group of young CF patients. In this sense, the data collected

for this study on the microbiota of children in Brazil with CF provide a valuable contribution

to the knowledge in the field.
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Introduction

Cystic fibrosis (CF) is the most common life-shortening rare disease with an estimated inci-

dence of 1 in every 6000 live births in Euro-Brazilians and 1/14000 in Afro-Brazilians [1]. The

disease is caused by mutations in the CF transmembrane conductance regulator gene (CFTR),

and the homozygous F508del is present in approximately 48% of all CF alleles [2]. Complica-

tions of CF disease begin in early life and over time, a combination of impaired mucociliary

clearance, innate immune responses, inflammatory pulmonary process, chronic infection

leads to bronchiectasis and respiratory failure [3].

The microbiota of the respiratory tract is recognized as an essential factor in the homeosta-

sis of the respiratory system [4]. The respiratory microbiota is linked to progressive CF lung

disease depending on many factors such as the time of diagnosis, patient age, chronic use of

antibiotics, and mutation type of the CFTR gene [5]. Thus, the establishment of a community

composed mainly of typical CF pathogens with other agents such as anaerobic bacteria, fungi,

and viruses may cause dysbiosis of the respiratory system [5]. In addition, the pathophysiology

of CF affects the respiratory microbiota, with the formation of biofilm and mucus plugging,

making the pulmonary distal airways inaccessible by treatment agents [6].

A wide variety of bacterial species can be identified from patients with CF; the most fre-

quently observed include Staphylococcus aureus, Pseudomonas aeruginosa,Haemophilus influ-
enzae, and Burkholderia cepacia complex [7, 8]. Other opportunistic bacterial species that are

less frequently detected in CF patients include Stenotrophomonas maltophilia, Achromobacter
xylosoxidans, Ralstonia spp., Pandoraea spp., Cupriavidus spp., and non-tuberculosis myco-

bacteria [9, 10]. In addition, CF patients experience short cycles of acute intermittent aggrava-

tions of symptoms called pulmonary exacerbations, characterized by a decrease in lung

function and weight loss, generally caused by opportunistic pathogens which can promote bio-

film formation and reduce the effectiveness of therapy [11].

Nevertheless, the composition of respiratory microbiota varies noticeably among individu-

als; some patients show marked changes in the bacterial community with alternating infectious

agents, and others show community resilience [3]. We analyzed the microbiota of 306 sputum

samples of patients with CF and evaluated correlations with clinical variables (mutation type

and patient’s clinical status). In addition, we grouped CF patients in two groups by the domi-

nant respiratory microbiota pathogens, Staph and Pseud, and analyzed these groups by their

clinical variables using Pearson’s correlation analysis and non-metric multidimensional scal-

ing. Furthermore, bacterial functional profiles were predicted for both pathogen groups.

Material and methods

Study setting

This study was performed at the Pequeno Prı́ncipe Hospital, the largest pediatric hospital in

Brazil. Currently, 390 pediatric beds are available in 32 pediatric specializations. The CF unit

includes 80 pediatric patients who are followed until they are transferred to an adult unit.

Study population and clinical data

In this study, a group of 34 CF patients aged between 8 and 23 years was followed for 84 d

(Fig 1). Patients were diagnosed by a sweat test and CFTR gene screening. After each regularly

scheduled clinic visit or hospital admission, clinical data including the use of broad- and nar-

row-spectrum antibiotics, body mass index (BMI), and lung function parameters such as

forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) were collected.

Lung function was assessed using a JAEGER MasterScope1 Spirometer (VIASYS Healthcare
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GmbH, Hoechberg, Germany) following the standardization of pulmonary function test

(PFT) by ATS/ERS Task Force [12]. Patients with O2 saturation�88% in room air and capac-

ity to perform PFT were included. The clinical conditions were categorized as baseline, exacer-

bation, treatment, and recovery [10]. Baseline condition: no acute respiratory symptoms and

no systemic antibiotic use for >30 d; patients may or may not be on maintenance antibiotics

such as azithromycin or inhaled antibiotics. Exacerbation condition: the initiation of acute

respiratory symptoms and use of antibiotics (oral or intravenous). Treatment condition: the

use of intravenous or oral antibiotics for more than 7 d for pulmonary exacerbation treatment.

Recovery: no systemic antibiotic use for>7 d; patients may or may not be on maintenance

antibiotics and may or may not be back to the baseline clinical condition.

Ethics statement

The Institutional Review Board (IRB) of the participating center (IRB #2.405.167) approved

this study, and informed consent was obtained from the parents or guardians of all partici-

pants. Research was conducted in a manner to ensure the confidentiality for each patient.

Sample collection, processing, bacterial culture, and identification

A triplicate of sputum samples of the patients were collected on days 0, 42, and 84 (a total of

306 samples). Inhalation of hypertonic sterile saline solution (7%) by nebulization was used for

sputum collection, followed by coughing and expectoration of airway secretions. Sputum char-

acteristics ranged from salivary to purulent. The collected sputum samples were transported to

the microbiology laboratory for processing within 2 h. Sputum samples were transferred to 15

mL graduated Falcon tubes, free of DNase and RNase, and sterile phosphate-buffered saline

was added to bring the total volume to 8 mL. After homogenization, 2 mL of purulent sputum

was transferred to new tubes and treated with β-mercaptoethanol and DNase I (Sigma-

Aldrich, St. Louis, United States) to remove proteins and other soluble DNA, such as mito-

chondrial DNA [13]. The obtained pellet after treatment of all purulent samples and 1 mL ali-

quots of saliva samples were stored in a freezer at -80˚C until DNA extraction. The remaining

volume in the initial Falcon tubes was sent to the microbiology laboratory for bacterial culture

identification [14]. S. aureus and P. aeruginosa isolated from sputum samples and identified by

matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF MS) using a

MicroflexTM LT instrument (Bruker Daltonics, Billerica, MA, USA) were stored at -80˚C in

Fig 1. Flowchart of samples analyzed in the study.

https://doi.org/10.1371/journal.pone.0273453.g001
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brain heart infusion broth (HIMEDIA, Mumbai, Maharashtra, India) with 20% (v/v) glycerol

for further analysis [15].

Phenotypic biofilm production detection

Qualitative biofilm production was performed using the tube method previously described

[16]. A loop of microorganisms collected from tryptone soya agar (OXOID, Basingstoke,

Hampshire, England) was inoculated into a polystyrene tube (15 mL Falcon tube) containing

10 mL of tryptone soy broth (OXOID, Basingstoke, Hampshire, England) supplemented with

glucose (final concentration of 8%). Tubes were incubated at 35 ± 2˚C for 24 h, and the broth

was gently aspirated. The tubes were washed thoroughly with phosphate-buffered saline (pH

7.2) and dried. Cells in the dried tubes were stained with 0.1% crystal violet for 7 min, and

excess dye was removed by washing the cells with distilled water [16]. After drying, the tubes

were visually evaluated for biofilm formation (presence or absence). Biofilm formation was

considered positive when a visible film coated the wall and bottom of the tube. The experi-

ments were performed in duplicate, and biofilm production was evaluated independently by

two different observers. The sterile tryptone soy broth supplemented with glucose and the

non-biofilm producer Candida albicans were used as a negative control and the biofilm pro-

ducer Candida tropicalis was used as a positive control in the assay.

DNA extraction and 16S rRNA amplicon sequencing

All samples (frozen pellet and saliva) were kept on ice until they were completely thawed when

subjected to genomic DNA extraction. A volume of 750 μL of lysis buffer was added to the pel-

let of each purulent sample and homogenized until the pellet was dissolved. The same volume

of lysis buffer (750 μL) was added to 250 μL of each saliva sample. The total volume of each

mixture was transferred to a ZR BashingBead1 Lysis tube (Zymo Research, CA, USA) for

DNA extraction. DNA extraction was performed using the ZymoBIOMICS1DNA Miniprep

Kit (Zymo Research, CA, USA), according to the manufacturer’s recommendations. The

purity and quality of the DNA were verified using a NanoVue Plus spectrophotometer (GE

Healthcare, Life Sciences, Marlborough, MA, USA). Subsequently, DNA was stored at -80˚C.

Polymerase chain reaction (PCR) and universal primers (F515/R806) were used to amplify

the V4 region of the 16S rRNA gene [17]. PCR consisted of 2.5 μL bovine serum albumin (3

mg/mL), 2.5 μL high-fidelity buffer (10x), 0.63 μL MgCl2 (50 mM), 0.50 μL of dNTPs (10

mM), 0.625 μL primer mix (10 mM), 0.125 μL high-fidelity Taq polymerase (5 U/μL), 10 ng of

template DNA, and 16.12 μL ultrapure water added to obtain a volume of 25 μL. The reaction

conditions were as follows: 5 min at 95˚C, 25 cycles of 40 s at 95˚C, 2 min at 64˚C, 1 min at

72˚C, and 10 min at 72˚C. The amplicons were quantified with Qubit using an HS dsDNA kit

(Invitrogen, Carlsbad, CA, USA), diluted to 500 pM, and pooled. Next, 16 pM of pooled DNA

was sequenced using the MiSeq reagent 600V3 (Illumina, San Diego, CA, USA). Sequencing

was performed using a MiSeq1 sequencer (Illumina) to obtain paired reads of 250 bp [18]. A

negative control for sequencing was used to check contamination.

Sequencing data and statistical analysis

Sequencing data were analyzed using the QIIME2 Core 2021.8 pipeline [19]. Triplicate paired

reads of the same collection of patients were joined in a single file (total of 102 samples). Next,

the merged samples were filtered by quality, chimeras were removed and clustered into ampli-

con sequence variants using the DADA2 algorithm [20] in the QIIME2 program. Subse-

quently, taxonomic assignment was performed using the SILVA database, release 138 [21].
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The reads output was normalized to 51,000 per sample, allowing a comparison of alpha and

beta diversity between the groups.

Analysis of microbiota by the time of collection and clinical and genetic variables was com-

pared using Welch’s t-test (P<0.05) and Bonferroni correction in STAMP software. Next, the

abundance of bacterial taxa was compared for different pathogen groups using Welch’s t-test

(P<0.05) and Bonferroni correction in STAMP software [22]. Clinical variables were analyzed

using the Kruskal–Wallis and Mann-Whitney test (P<0.05). Pearson’s correlation coefficients

and non-metric multidimensional scaling (NMDS) plots were calculated using the psych and

vegan packages included in R software [23], and functional profiles of Staph and Pseud were

obtained using the Tax4Fun program [24]. Only statistically significant results were reported

(P<0.05).

Data accessibility

The dataset was submitted to the National Center for Biotechnology Information (NCBI) data-

base under the BioSample accession code SAMN19760689.

Results

Study population and clinical data

Of the 34 study participants, sputum samples were collected on days 0, 42, and 84 (a total of

102 samples), 17 were male, with a mean age of 15.3 years (range of 8–23 years), and 31 had an

early diagnosis before age 2. All the patients underwent PFT (spirometry) with a wide range of

the impaired pulmonary function with FVC ranging from 31% to 152% (mean = 84.3%) and

FEV1 from 26% to 157% (mean = 75.9%). As for the nutritional status (BMI and Z score), the

most repeated value in three collections was sought: 10 patients were considered eutrophic

[25], 16 patients had grade I malnutrition, 8 patients had grade II malnutrition, and 2 patients

had grade III malnutrition [26]; however, 12 individuals had score differences between collec-

tions for a higher or lower standard deviation according to their clinical condition at the time.

Of the 34 patients, 26 had a negative Z-score (mean = -0.59), and 32 patients had pancreatic

insufficiency. S. aureus was the most frequent microorganism (47%) identified by the culture-

based methods, followed by P. aeruginosa (16%); both microorganisms were present in associ-

ation from different culture media (25%), and in negative culture (14%). The metadata content

of the clinical variables of the patients enrolled in this study is shown in supporting informa-

tion (S1 Table).

Phenotypic biofilm production detection

Sputum samples that showed Staph and Pseud with relative abundance >50% in the 16S

rRNA sequencing were stored in -80˚C for further biofilm production (total 40 samples, 20

samples of each pathogen). Therefore, a total of 13 S. aureus and 10 P. aeruginosa strains were

evaluated for their biofilm production capacity. All of these were in vitro biofilm producers.

Only the dichotomous analysis, presence or absence, was used, considering that by visual anal-

ysis the interpretation of intensity (+/++ and +++) can be subjective, especially without spe-

cific controls for each of these categories.

Taxonomic classification of sputum microbiota

This section presents the results of the analysis carried out at the genera and species levels. The

analysis of the bacterial community at different collection times (days 0, 42, and 84) revealed

226 taxa, distributed among 178 genera and 48 species. The most abundant genera in the
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community were Veillonella, Prevotella,Haemophilus, Pseudomonas, Staphylococcus, Strepto-
coccus, Serratia, Neisseria, and Porphyromonas (S1 Fig). A total of 155 taxa represented the

core microbiota of the community on days 0, 42, and 84; these taxa were identified at all sam-

pling periods and in all samples (S2 Fig).

Analyses of microbiota considering the time of collection, clinical variables or mutation did

not identify any specific pattern in the lower respiratory microbiota of CF patients associated

with the different clinical conditions. Thus, considering this result, the samples were clustered

into two main groups Staph and Pseud, based on culture results and the most abundant patho-

gens identified in 16S rRNA sequencing (abundance >50%). Few samples with great abun-

dance for other genera such as Veillonella andHaemophilus, among others were observed.

Owing to the low number of samples, other microorganisms were not analyzed. The clinical

variables of the patients were correlated with these two pathogen groups. Beta diversity analy-

sis showed an adequate clustering of groups by pathogen type, which was reflected in the

results of the principal component analysis (PCA), which highlighted that each group had a

dominant organism, Staph or Pseud (Fig 2).

Correlations among clinical variables and microbiota

We analyzed the clinical data by grouping patients according to the type of predominant path-

ogen in the sputum microbiota (the selection criterion was patients with pathogen abundance

>50% in microbiota). We identified two dominant groups, Staph and Pseud, with a genetic

mutation frequency of F508del in 67% of alleles, followed by G542x in 20%, 1078delT in 6%,

and others (R334W and 2184delA) in 7% of alleles. The analyses revealed the following results:

Fig 2. Beta diversity of bacterial community, represented by PCA plot. Dots with the same color mean samples of the same group, n = 20 per

group.

https://doi.org/10.1371/journal.pone.0273453.g002
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The BMI was obtained by comparing patients of the same age; the BMI values were 18.09

and 19.41 for the Staph and Pseud groups, respectively. In other words, the patients in the

Staph group were underweight (BMI<18.5 kg/m2 is considered underweight). On the other

hand, the patients in the Pseud group had normal weight (BMI = 18.5–25.0). All patients in

the Pseud group (except one patient) received antimicrobial treatment against Pseudomonas
spp., in other words, chronically inhaled antibiotic to reduce bacterial growth and the fre-

quency of exacerbations. In addition, we chose BMI values because this parameter had positive

values. Besides, BMI Z-scores had negative values, which made it difficult to use Pearson’s cor-

relation analysis or any other statistical analysis.

The clinical condition of the patients was as follows: in the Staph group, nine patients were

classified in the baseline clinical condition, five in the exacerbated, six in the treatment, and one in

the recovery group. In the Pseud group, 11 patients were classified in the baseline clinical condi-

tion, one in exacerbated, and five in the treatment group. Due to chronic lung infection, most CF

patients had reduced lung function with significant differences (P<0.05) between the two groups;

in general, the Staph group had reduced FEV1 and FVC compared to the Pseud group (Fig 3).

Pearson’s correlation analysis between clinical variables and microbiota

Pearson’s correlation coefficient showed significant relationship (P<0.05) between microbiota

and clinical variables. In the Staph group, there were significant negative correlations between the

variables (FVC and FEV) and prevalence of Staph and S. aureus (Fig 4). In contrast, positive cor-

relations were observed between clinical variables (BMI and age; FVC and FEV). Similarly, posi-

tive correlations were observed between the pathogens Staph and S. aureus. These results

highlight the veracity of the correlation matrix. On the other hand, in the Pseud group, there was

no significant positive or negative relationship between microbiota and clinical variables.

Non-metric multidimensional scaling (NMDS)

To represent the behavior of the variables in a multivariate system, we used an NMDS plot.

This analysis reveals the pairwise dissimilarity between objects in a two-dimensional space, in

this case, microbiota and clinical variables (plotted as vectors). NMDS results confirmed the

clustering of the pathogens in two groups with different taxonomic compositions. The first
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Fig 3. Comparison between pathogens showing decreased forced vital capacity and forced expiratory volume in patients

in the Staph group. Forced vital capacity = FVC; forced expiratory volume in one second = FVE. Bars represent the average of

the air volume, (��) means significant difference among treatments by Mann-Whitney test (P<0.05), n = 20 per group.

https://doi.org/10.1371/journal.pone.0273453.g003
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group, the Staph group, had higher abundance of Staph and S. aureus, and the second group,

the Pseud group, had higher abundance of Pseud and P. aeruginosa (Fig 5). In addition, vec-

tors in the plot representing the clinical variables of patients were in the opposite direction to

the Staph group, showing an inverse correlation of these parameters with bacteria present in

high quantities in this group (Figs 4 and 5).

Prediction of bacterial functional profiles

Functional profiles were predicted from the 16S rRNA data obtained using the software pack-

age Tax4Fun. The aim of this analysis was to highlight the different profiles among pathogens

groups in an unbiased manner. The complete profiles are shown in the Supporting Informa-

tion (S2 Table). Genes encoding key enzymes involved in virulence pathways were identified

in the resulting profiles using their KEGG orthologs (Table 1). Thus, key genes related to anti-

biotic resistance were identified in the Staph group, such as: K01467, beta-lactamase; K03327,

multidrug resistance protein, MATE family; K08218, MFS transporter-PAT family, beta-lacta-

mase induction signal transducer AmpG, and genes related to horizontal gene transfer, such

as: K07481, transposase, IS5 family; K07485, transposase; and K07489, transposase. In the

Pseud group, key genes related to secretion systems were: K02456, general secretion pathway

protein G; K02459, general secretion pathway protein J; K03195, type IV secretion system pro-

tein VirB10; K07344, type IV secretion system protein TrbL; K11891, type VI secretion system

protein ImpL; K11896, type VI secretion system protein ImpG; and a gene related to biofilm

synthesis: K11937, biofilm PGA synthesis protein PgaD (Table 1).

Discussion

The bacterial taxa detected in the present study are in agreement with previous studies [27,

28]. Khanolkar et al. [29] and Raghuvanshi et al. [30] showed shifts in the composition of

Fig 4. Pearson’s correlation showing significant correlations (P< 0.05) between microbiota and clinical variables in the Staph group. Asterisks represent

significant correlations. The bar in the right shows the correlation type, with positive in blue and negative in red. A positive correlation means that two

variables in the matrix increased, n = 20.

https://doi.org/10.1371/journal.pone.0273453.g004
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respiratory microbiota in patients with CF, such as the enrichment of Staphylococcus spp.,

Haemophilus spp., Pseudomonas spp., Streptococcus spp., Serratia spp., Neisseria spp., and Por-
phyromonas spp. We classified patients into two groups based on the dominant pathogens

observed in the respiratory microbiota: the Staph and Pseud groups. These taxa are consistent

with the results obtained from microbiological cultures, clinical practice, and scientific articles

on CF, especially in our target age range [31]. In older patients, other bacteria, such as Burkhol-
deria spp., and some emerging bacteria, such as Stenotrophomonas spp. and Acinetobacter spp.

are observed [32].

In Brazil, the diagnosis of CF follows the Brazilian guidelines for the diagnosis and treat-

ment of cystic fibrosis [33]. Thus, the algorithm of newborn screening for cystic fibrosis used

in Brazil is based on two tests of immunoreactive trypsinogen levels, the second of which is

performed within 30 days of life. If screening is positive (i.e., two positive tests), sweat testing

is performed to confirm or rule out cystic fibrosis. Sweat chloride concentrations� 60 mmol/

L, as measured by quantitative methods, in two samples, confirm the diagnosis. Diagnostic

alternatives are detection of two cystic fibrosis-related mutations and CFTR functional tests.

Children in the Staph group showed lower BMI than the Pseud group (18.09 versus 19.41);

that is, children in the Staph group were underweight. Overall, children and young patients

infected with Pseudomonas usually have a lower BMI than children infected with genus Staph-
ylococcus, but this does not occur when the patient is already being monitored and receiving

medication; in Pseud patients, treatment includes chronic use of inhaled antibiotics, such as

tobramicyn (TOBI1) and azithromycin, which have immunomodulatory and antiviral effects

[34]. However, it is not common to use prophylactic treatment in patients with chronic infec-

tion by Staphylococcus spp.; those patients use “off label” antibiotics [35]. This could explain

Fig 5. Non-metric Multidimensional Scaling (NMDS) plot showing significant correlations (P< 0.05) between microbiota and clinical variables in the

Staph group. The ellipses encompass different groups, with the Staph group in green and Pseud group in orange. Taxa are shown in black and clinical variables

in red and blue vectors (red means significant). The direction of the vectors FEV and FVC indicates an inverse relationship with bacteria present in high

quantities in the Staph group, n = 20 per group.

https://doi.org/10.1371/journal.pone.0273453.g005
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the decreased BMI in patients with Staphylococcus spp.; however, this information should be

used with caution because S. aureus is more prevalent at an earlier age and there are no reliable

tools to measure lung function in children under six years of age.

Our results showed that patients’ clinical condition agreed with the results of pulmonary

function (FVC and FEV1). In clinical practice, this observation reflects the definition of disease

exacerbation, which means worsening of symptoms, changes in sputum color, loss or cessation

of weight gain, and worsening of lung function [10]. Greater patient numbers were observed

in the Staph exacerbation group than in the Pseud group, a finding that was confirmed by the

lower values of BMI and pulmonary function. Limoli et al. [36] observed that co-infection

with S. aureus and P. aeruginosa was associated with decreased lung function and increased

numbers of pulmonary exacerbations. Polymicrobial dynamics may be a better indicator of CF

patient outcomes, as opposed to the presence of a single pathogen [37, 38]. Pearson’s correla-

tion analysis revealed significant relationships between the Staph group and parameters of pul-

monary function (FVC and FEV).

In this study, biofilm formation capacity was observed in S. aureus and P. aeruginosa iso-

lates. Thus, there is increasing evidence that biofilm-mediated infections facilitate the

Table 1. Prediction of bacterial functional profiles.

KEGG functions

Staphylococcus group

K01467; beta-lactamase

K02028; polar amino acid transport system ATP-binding protein

K02029; polar amino acid transport system permease protein

K02030; polar amino acid transport system substrate-binding protein

K03327; multidrug resistance protein, MATE family

K06994; putative drug exporter of the RND superfamily

K07481; transposase, IS5 family

K07485; transposase

K07489; transposase

K07668; two-component system, OmpR family, response regulator VicR

K08138; MFS transporter, SP family, xylose: H+ symportor

K08191; MFS transporter, ACS family, hexuronate transporter

K08218; MFS transporter, PAT family, beta-lactamase induction signal transducer AmpG

K11068; hemolysin III

K11070; spermidine/putrescine transport system permease protein

K11071; spermidine/putrescine transport system permease protein

K15342; CRISP-associated protein Cas1

Pseudomonas group

K02456; general secretion pathway protein G

K02459; general secretion pathway protein J

K02657; twitching motility two-component system response regulator PilG

K03195; type IV secretion system protein VirB10

K03808; paraquat-inducible protein A

K07344; type IV secretion system protein TrbL

K11891; type VI secretion system protein ImpL

K11896; type VI secretion system protein ImpG

K11937; biofilm PGA synthesis protein PgaD

K12516; putative surface-exposed virulence protein

K13735; adhesin/invasin

https://doi.org/10.1371/journal.pone.0273453.t001
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development of chronic infectious diseases and recurrent infections [39]. Biofilms are often

considered a survival strategy for bacteria, which are facilitated by numerous factors in CF

lungs, including mucus accumulation [11]. Previous studies have suggested that antibiotic

resistance of bacteria in CF lungs is due to biofilm formation [40]. In addition, multiple species

of lung biofilm producers such as Pseud in CF patients are affected by specific treatments;

thus, competitiveness among different species is harmful, promoting the survival of the most

abundant pathogen [41]. However, the clinical significance of in vitro biofilm production

remains unclear and biofilm detection by laboratory techniques does not necessarily indicate

in vivo production because biofilms are a community of multiple bacterial species that coexist

in a specific environment [42].

Functional inference of communities showed that the presence of key genes in each patho-

gen group was possible because of the low biodiversity of each group, which was dominated by

a single bacterial genus (Staph or Pseud). Thus, in the Staph group, a functional profile deter-

mined by antimicrobial resistance genes was observed. In the case of our isolates, this resis-

tance profile was not identified, and all S. aureus isolates were sensitive to oxacillin and

vancomycin. As in Voronina et al. [32], the presence of themecA gene in sputum samples

from pediatric patients with CF was not identified in this study; themecA gene confers resis-

tance to methicillin in S. aureus strains. The in silico inference profile is based on genomes

deposited in the database; thus, these genomes may represent strains that carry genes of antibi-

otic resistance, and the result will depend on the database used as a comparison [43]. In the

Pseud group, a dominant profile by secretion systems was identified which is expected because

gram-negative bacteria carry several of these systems [44].

There are some limitations in this study. First, the cohort size is too small and heteroge-

neous. However, it represents the largest pediatric hospital in Brazil, and thus is an interesting

clinical cohort from Brazil. In addition, this work is novel, as the only published work on the

respiratory microbiota of Brazilian CF patients was recently published by Vasco et al. [45],

where the authors evaluated the microbiota of 10 children under 6 years old with pancreatic

insufficiency who underwent pancreatic enzyme replacement therapy with Creon1. In this

sense, this preliminary work is totally different from ours.

The second limitation is regarding the over-simplification of the microbiota data. Initially,

we used longitudinal data and triplicates, but this information was not used at all in the manu-

script. This information would be relevant to answer important questions such as the longitu-

dinal relationship between microbiome and lung function or the heterogeneity of sputum at a

single timepoint. However, analyses of microbiota by the time of collection or by related clini-

cal variables did not identify any specific microbiota pattern from the respiratory tract of the

patients. Thus, considering this result, the microbiota was clustered into two main groups,

Staph and Pseud. Microbiota samples with abundance >50% of either Staphylococcus or Pseu-
domonas were further analyzed. This grouping parameter may seem to skew the data to the

expected result. However, this approach, using a cutoff in the data, yielded results that had not

been observed in previous studies. Using a cutoff in the data allows the creation of a reference

for future studies, and, importantly, this approach helped us to better understand the relation-

ship between opportunistic microbiota pathogens and lung function.

Finally, in patients with CF, the composition of respiratory microbiota varies noticeably

between individuals; some patients show marked changes in the bacterial community with

alternating infectious agents. Besides, different types of CF mutation did not show unique

microbiota. Thus, some points require further research: (i) How can we promptly identify the

agent in patients with acute exacerbation with negative classical culture? (ii) How can we make

better use of next-generation sequencing and other techniques to identify low-abundance

microorganisms that are likely to be responsible for exacerbation in patients?
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