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Chagas disease (CD) affects at least 6 million people in 21 South American

countries besides several thousand in other nations all over the world. It is

estimated that at least 14,000 people die every year of CD. Since vaccines are

not available, chemotherapy remains of pivotal relevance. About 30% of the

treated patients cannot complete the therapy because of severe adverse

reactions. Thus, the search for novel drugs is required. Here we tested the

benznidazole (BZ) combination with the repositioned drug disulfiram (DSF) and

its derivative diethyldithiocarbamate (DETC) upon Trypanosoma cruzi in vitro

and in vivo. DETC-BZ combination was synergistic diminishing epimastigote

proliferation and enhancing selective indexes up to over 10-fold. DETC was

effective upon amastigotes of the BZ- partially resistant Y and the BZ-resistant

Colombiana strains. The combination reduced proliferation even using low

concentrations (e.g., 2.5 µM). Scanning electron microscopy revealed

membrane discontinuities and cell body volume reduction. Transmission

electron microscopy revealed remarkable enlargement of endoplasmic

reticulum cisternae besides, dilated mitochondria with decreased electron

density and disorganized kinetoplast DNA. At advanced stages, the cytoplasm
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vacuolation apparently impaired compartmentation. The fluorescent probe H2-DCFDA

indicates the increased production of reactive oxygen species associated with

enhanced lipid peroxidation in parasites incubated with DETC. The biochemical

measurement indicates the downmodulation of thiol expression. DETC inhibited

superoxide dismutase activity on parasites was more pronounced than in infected

mice. In order to approach the DETC effects on intracellular infection, peritoneal

macrophages were infected with Colombiana trypomastigotes. DETC addition

diminished parasite numbers and the DETC-BZ combination was effective, despite

the low concentrations used. In the murine infection, the combination significantly

enhanced animal survival, decreasing parasitemia over BZ. Histopathology revealed

that low doses of BZ-treated animals presentedmyocardial amastigote, not observed in

combination-treated animals. The picrosirius collagen staining showed reduced

myocardial fibrosis. Aminotransferase de aspartate, Aminotransferase de alanine,

Creatine kinase, and urea plasma levels demonstrated that the combination was

non-toxic. As DSF and DETC can reduce the toxicity of other drugs and resistance

phenotypes, such a combination may be safe and effective.
KEYWORDS

Trypanosoma cruzi, disulfiram, drug combination, repositioning, Chagas disease, chemotherapy,
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Introduction

At least 6-7 million people have Chagas disease (CD), mostly

in Latin America (WHO - World Health Organization, 2021),

where over 10% of the population is at risk of infection (Pérez-

Molina and Molina, 2018). There are at least 4.6 million infected

people in Brazil, which can reach 1.5% of the Brazilian

population. In addition, about 70 million are at risk of

infection by Trypanosoma cruzi (Dias et al., 2016). The

parasitosis, also known as American trypanosomiasis, is

already considered a public health problem on a global scale

(Franco-Paredes et al., 2009; Coura and Viñas, 2010; Parker and

Sethi, 2011).

CD causes economic losses in excess of U$1.2 billion/year to

endemic countries in South America, in addition to more than $7

billion/year at global levels (Lee et al., 2013), including treatment

and loss of productivity, not including the losses caused by

infections by tourists and emigrants to North America, Europe,

and Asia (Coura andViñas, 2010) coming from South and Central

America. Therefore, it can be inferred that effective drugs, besides

promoting the quality of life of patients and their families, can

provide considerable socioeconomic benefit.

Since CD discovery by the Brazilian researcher Carlos

Chagas over a century ago, the disease is intensely studied, but

only two drugs, benznidazole (BZ) and nifurtimox (NFX), are

employed in CD treatment. However, BZ side effects lead to

therapy discontinuation from approximately 30% of the cases up

to eventually reaching 50% of the patients (Guggenbühl Noller
iology 02
et al., 2020). The option is NFX but a recent study (Crespillo-

Andújar et al., 2018) reported that the use of NFX in patients

who had been discontinued from BZ treatment still led to more

than 12% of elevated toxicity, forcing physicians to permanently

discontinue treatment. Therefore, there is pressing demand for

the development of new drugs or therapeutic regimens for CD.

Different chemotherapy targets have been approached

during the last decades (Duschak, 2011; Duschak, 2016;

Beltran-Hortelano et al., 2017; Duschak, 2019; Beltran-

Hortelano et al., 2022), and much was learned about the

biochemistry and cell biology of T. cruzi, but new agents are

still not in clinical use. Drug combinations may be promising for

allowing dosing reduction (Bustamante et al., 2014), hampering

resistance selection (Hill and Cowen, 2015), and enhancing

selectivity (Zimmermann et al., 2007; Lehár et al., 2009a; Lehár

et al., 2009b). In addition, drug combinations can promote

effectivity of repositioning (Sun et al., 2016).

The use of repositioned drugs (approved by the FDA), with

well-established data on bioavailability, safety, etc., allows

accelerating drug development, significantly increasing the

percentage of success, but reducing their costs (Zheng et al.,

2018). Such innovations can be of great value in the therapy of

neglected diseases, highly prevalent in South America, caused by

parasitic protozoa (Müller and Hemphill, 2016), including CD

(Palos et al., 2017).

The repositioning of a low-cost drug such as Disulfiram (DSF,

Antabuse®) can be considered a “salvation” for global health care

(Cvek, 2012). DSF, a drug used for the therapy of alcoholism, is
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widely used and well tolerated in humans (Jørgensen et al., 2011;

Sinclair et al., 2016) and is even considered less toxic than aspirin

(Gessner and Gessner, 1992) and trials employing 200-250 mg/d

daily or 800 mg/twice a week are regularly performed, with no

reports of adverse effects (Sinclair et al., 2016). The DSF first

derivative sodium diethyldithiocarbamate (DETC), also known

as imuthiol, has been successfully used as an immunostimulant

in HIV patients, reducing opportunistic infections (Hersh et al.,

1991). DSF is used for different purposes (e.g. Kona et al., 2011),

such as cancer therapy (Cvek, 2012; Meraz-Torres et al., 2020;

Kannappan et al., 2021; Lu et al., 2021; Lu et al., 2022) and

chemoprevention (Askgaard et al., 2014; Yang et al., 2015;

Harrington et al., 2020). The DSF and/or DETC combination

can enhance antitumoral activities of drugs such as cisplatin

(O’Brien et al., 2012; Nechushtan et al., 2015), but diminish

adverse reactions (Wysor et al., 1982; Elliott et al., 1983;

Bodenner et al., 1986; Roemeling et al., 1986). In addition, DSF

can overcome resistance, via different mechanisms (Schmidtova

et al., 2019; Yang et al., 2019). The data presented here indicate

that the BZ-DSF combination may comprise a promising

alternative for CD therapy.
Materials and methods

Drugs

BZ (Nortec Quıḿica, Rio de Janeiro, Brazil) and DSF (Corden

Pharma Bergamo S.p.A) were provided by Farmanguinhos

(Fiocruz, Rio de Janeiro) and DETC was purchased from

Sigma-Aldrich. Drugs were dissolved in dimethyl sulfoxide

(DMSO) and stored at -20°C until use.
Parasites and mammalian cells

T. cruzi Y and the Colombiana strains epimastigote forms

were maintained in LIT (Liver Infusion Trypticase) medium,

supplemented with 10% fetal bovine serum (FBS), 100 µg/mL

penicillin, and streptomycin at 25°C (dos Anjos et al., 2016).

Cultures were harvested at the exponential growth phase. Then

5x105 parasites were incubated in the presence of the isolated

compounds. Trypomastigote forms were obtained by cardiac

puncture, at the peak of parasitemia of infected Swiss Webster

mice (Sueth-Santiago et al., 2016) and maintained through co-

culture with epithelial cells, VERO, previously in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10%

FBS, at 37°C, 5% CO2, as well as the amastigote form obtained

after 8 days of cell infection (Monteiro et al., 2001). Axenic

amastigotes were obtained from cell cultures of trypomastigotes

in BHT medium incubated at 28°C, being collected after three

passages of 56-64 h, in an initial concentration between 5x106
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cells/mL (Engel et al., 1987). Macrophages from BALB/c mice

were collected by peritoneal lavage in Hank’s balanced solution,

seeded in 24-well plates or bottles (Falcon, New Jersey, USA),

and kept at 37°C in atmosphere of 5% CO2 in DMEM medium

supplemented with 10% FBS.
Parasite-host interaction

Assays were performed using a parasite:cell ratio of 10:1, and

infection quantification was performed by direct counting

cultured cells Giemsa (Laborklin)-stained coverslips under

light microscopy, approximately 1000 cells per coverslip.

Association indices (AI) were obtained by multiplying the

percentage of infected macrophages by the average number of

parasites per host cell, as previously described (Martiny

et al., 1996).
In vitro evaluation of trypanocidal activity
and cytotoxicity

T. cruzi epimastigotes (107 cells/mL) incubated with DETC

and BZ, to determine IC50 values each drug, at 24 h at 28°C,

determined by the Alamar Blue assay at 570 nm and 600 nm. For

the combinations, both for trypanocidal activity and for the

selectivity index (107 Swiss Webster mouse peritoneal

macrophages/mL), six fixed doses were prepared based on the

IC50 value of the isolated drugs, in the proportions 5:0, 4:1, 3:2,

2:3, 1:4 and 0:5 (Fivelman et al., 2004). Concentration-response

curves were plotted and the IC50 and CC50 values of the

compounds (inhibition and cytotoxicity, respectively), alone or

in combination, were calculated using GraphPad Prism, 7.
ROS detection

ROS were detected using the H2-DCFDA probe using a

confocal microscope Fluoview 1000, Olympus.
Lipid peroxidation

Lipid peroxidation was determined by the production of

thiobarbituric acid (TBA) reactive substances (TBARS), by

parasites incubated or not in the presence of the compounds

for 24 h. Subsequently, the cells were centrifuged three times in

phosphate-buffered saline (PBS). After washing, the parasites

were resuspended in 200 mL PBS and 200 mL TBA at a final

concentration of 1%. After homogenization, the material was

incubated at 99°C for a period of 3 h and measured in a

spectrophotometer at 532 nm (Menezes et al., 2006).
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Thiol group measurements

The determination of the concentration of low molecular

weight thiols was carried out using 5,5′-dithiobis (2-nitrobenzoic
acid) (DTNB) and methanol assay after protein removal with

10% trichloro acetic acid. Subsequently, the supernatant was

read in a spectrophotometer at 412 nm (Hitachi U-1100), as

previously described (Sedlak and Lindsay, 1968).
Dosage of superoxide dismutase

Parasite samples untreated and treated with DETC alone and in

combination with BZ, for 1 and 24 hours, were evaluated using a

colorimetric method for superoxide dismutase (SOD)measurement

(Sigma-Aldrich Kit-WST- SOD Assay), which is based on the

generation of the radial superoxide from the xanthine-xanthine

oxidase (XOD) system, where the superoxide reacts with the sample

and converts the tetrazolium salt to formazan. After reactions, the

measurements spectrophotometrically performed in a VersaMax at

440 nm (Moukdar et al., 2009).
Electron microscopy

Parasites were washed with PBS and fixed in Karnovsky for

24 h, at 4°C. Then, samples were post-fixed in 1% osmium

tetroxide, 5 mM calcium chloride, and 0.8% potassium

ferricyanide in 0.1M sodium cacodylate buffer, protected from

light for 40 min at room temperature. For scanning, electron

microscopy (SEM) samples were dehydrated in ethanol series,

critical point-dried, mounted on stubs, gold-metalized, and

observed in a JEOL 5310 scanning electron microscope. For

transmission, electron microscopy (TEM) samples were

dehydrated in acetone and embedded in Polybed epoxy resin

(Polysciences, Inc). After 72 h at 60°C, the samples were sectioned

on an ultramicrotome (Reichert, Leica), using a diamond knife

(Diatome, Hatfield, PA), and the sections were collected on 300

mesh copper grids and counterstained with 3% lead citrate and 5%

uranyl acetate in water. Samples were observed in a transmission

electron microscope Zeiss EM 109 at 80kV, as previously

described (Vannier-Santos and Lins, 2001).
In vivo infection

Swiss Webster mice were infected with Y or Colombian strain,

intraperitoneally (i.p.), with 104 bloodstream trypomastigotes. The

infected animals were divided into the following groups (15

animals per group): positive control (BZ); negative control (PBS

+ 1% Kolliphor); DETC + BZ combination; DSF + BZ. The

therapy was initiated 5 days from the beginning of the parasitemia

and carried out for 30/60 days, administered through the
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intragastric route (Salomão et al., 2010). Parasitemia was

verified by direct microscopic, slide analysis of parasites in 5 mL
of blood, and mortality rates were checked daily/weekly up to 30

days post-treatment.
Systemic toxicity

Thirty days after the end of the treatment, uninfected mice

blood was collected through the brachial plexus and stored at -80°C

for biochemical analysis of the enzymes: urea, for renal monitoring,

total creatine kinase (CK), for evaluation of cardiac or skeletal

musculature lesions, alanine aminotransferase (ALT) and aspartate

aminotransferase (AST), assessment of liver damage, all being

determined in whole blood by the Reflotron® reactive test strip

system (Roche Diagnostics, F Hoffmann-La Roche Ltd, Basel,

Switzerland) using reflectance photometry (Salomão et al., 2010).
Histopathology

Tissue samples were fixed in formaldehyde solution pH 7.2,

embedded in paraffin, and 5 µm-thick sections were stained with

hematoxylin and eosin (H&E) and picrosirius red to stain

collagen fibers (Andrade et al., 1994).
Statistical analysis

The data obtained are representative of at least three

independent experiments carried out in triplicate. Statistically

significant differences were analyzed using the ANOVA test and

Tukey or Dunn post-tests with p < 0.05, using GraphPad

Prism, 7.
Results

DETC inhibited dose-dependently the axenic proliferation

of epimastigote forms (Figure 1). The IC50 value obtained was

1.48 µM. The BZ IC50 observed was 2.28 mM (Table 1). The

selectivity indexes revealed that the combination selectivity was

increased over an order of magnitude (about 13-fold), as

compared to the drug of choice, BZ. Based on the IC50 values

obtained DETC and BZ were combined at different proportions.

Isobolograms were plotted to analyze the possible synergism

between BZ and DETC on the trypanocidal activity. There was

synergistic activity, particularly at 3:2 and 2:3 concentration

ratios (Figure 2). Afterward, we observed that 5 µM of either BZ

or DETC significantly inhibited parasite growth, whereas the

combination of 2.5 µM of each compound was even more

effective (Figure 3). In order to approach the DETC effects

upon general parasite structure, we employed scanning
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electron microscopy. DETC-treated epimastigotes were often

bizarrely shaped, eventually presenting surface discontinuities

and reduced cell body volume (Figure 4). We used transmission

electron microscopy to determine the DTEC effects on

epimastigote subcellular architecture. DETC-treated parasites

displayed remarkably enlarged endoplasmic reticulum (ER)

cisternae as well as reduced mitochondrial electrondensity

(Figure 5). Morphometric analysis indicate the ER lumen

was enhanced over 1000-fold (not shown). Some parasites

displayed disorganized kinetoplast DNA and loss of cell

ultrastructural compartmentation.

In order to approach reactive oxygen species (ROS)

production in DETC-treated parasites, we used fluorescent
Frontiers in Cellular and Infection Microbiology 05
probes. Incubation with DETC remarkably enhanced

H2DCFDA staining under fluorescence microscopy (Figure 6)

and labeling was found in sub-cellular compartments, rather

than whole cell. To evaluate the oxidative stress consequence, we

measured lipoperoxidation using the TBARS assay (Figure 7).

We observed that both BZ and DETC had little effect (p > 0.05)

on lipid peroxidation, but it was significantly (p < 0.05) increased

by their combination. Since sulfhydryl groups are largely

involved in the redox regulation in trypanosomatid parasites,

we measured thiol expression using the colorimetric Ellman’s

reaction DETC diminished thiol expression in the parasite

(Figure 8). The biochemical colorimetric approach indicates

that DETC produce a dose-dependent effect and that the
A B

D

E F

C

FIGURE 1

Evaluation of the activity of sodium diethyldithiocarbamate (DETC) and benznidazole (BZ) in the in vitro proliferation of Trypanosoma cruzi
epimastigote forms (107 parasites/mL, Y strain). The proportions of the combinations were: 5 x IC50 DETC (A); 5 x IC50 BZ (B), 4 x IC50 DETC +
IC50 BZ (C), 3 x IC50 DETC + 2 x IC50 BZ (D), 2 x IC50 DETC + 3 x IC50 BZ (E) and IC50 DETC + 4 x IC50 BZ (F). After 24h incubation, the
inhibitory effects were determined using Alamar Blue.
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isolated compounds reduced SH levels (p < 0.05), but the

combination was more effective (p < 0.01). As DETC is well-
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known for its SOD inhibiting capacity, we measured SOD

activity in vitro and in vivo, in murine infection, before and

after DETC treatment (Table 2). Interestingly, the combination

was more inhibitory, and the effects in vitro were

more pronounced.

As the Y strain is sensitive to BZ, we decided to test the

DETC susceptibility of axenic amastigotes of both Y and

Colombiana strains. Although the Colombiana strain,

naturally resistant to BZ, was less sensitive to DETC at 0.8-3

µM (p < 0.05), the effects were highly significant (p < 0.01) at 5

µM. Both strains showed significantly decreased parasite survival

in a dose-dependent manner (Figure 9).

In order to test the effects of the combination in intracellular

parasites, we infected murine macrophages with blood

trypomastigotes in the presence or in the absence of DETC

(Figure 10). We noticed that 10 µM DETC remarkably reduced

the monolayer parasite load, and a DETC-BZ combination at 5 µM

concentration was equally or even more effective.
TABLE 1 Trypanocidal activity, cytotoxicity, and selectivity indexes of the DETC + BZ combination after 24 h of treatment.

Combination ratio (DETC : BZ) Cytotoxicity (peritoneal cells) Trypanosoma cruzi (Y) epimastigotes Selectivity indexes

CC50 (µM) IC50 (µM)

5:0 2.09 1.48 1.41

4:1 20.06 0.67 29.94

3:2 147.00 1.48 99.32

2:3 0.58 0.30 1.93

1:4 1.03 1.68 0.61

0:5 17.54 2.28 7.69
The CC50 and IC50 values of the combination were calculated from the cytotoxicity and inhibition assay, respectively, using Alamar Blue.
FIGURE 2

Representative isobologram demonstrating the synergistic
interaction between DETC and BZ upon T. cruzi (Y strain)
epimastigote forms, cultured for 24 h, based on IC50 values.
FIGURE 3

Evaluation of the in vitro proliferation of T. cruzi epimastigote forms (Y strain), challenged with DETC and BZ combined or alone. 105 parasites
were incubated for 5 days with 5 µM DETC, 5 µM BZ and the combination of 2.5 µM each compound. The effects of the compounds were
evaluated by daily quantitation of parasites by light microscopy. Inset displays 72-120 h data in a different scale. The combined drugs effectivity
was significant, (*p < 0.05; **p < 0.01), despite the reduced concentrations, as compared to the parasites treated with BZ by the 2-way ANOVA.
Data represent the mean ± SD (n = 3).
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To approach the activity of the combination in vivo, we

tested the murine infection for 30-60 days. The parasitemia of

animals infected with both Y and Colombiana strains was

reduced by the BZ-DSF combination (Figure 11) as compared

to BZ low concentrations (20/50 mg/kg). The cumulative

survival of the animas treated with the 10 mg/kg/day (each)

DETC-BZ combination was increased by circa 6-fold (p < 0.01)

as compared to BZ alone (Figure 12). We used histopathology

to evaluate the murine infection. Contrary to animals treated

with low BZ concentration (10 mg/kg/d) the ones incubated

with the combination (10 mg/kg/d BZ + 10 mg/kg/d DETC)

showed no amastigote nests in myocardium (Figure 13). The

Sirus red staining was employed to assess tissue fibrosis.

Animals treated with the combination displayed less, and

focal fibrosis, whereas mice treated with BZ alone showed

intense fibrosis staining. To evaluate the systemic toxicity of

the treatments we measured the plasma levels of ALT, AST,

CK, and urea. Measurements demonstrated (Figure 14) that
Frontiers in Cellular and Infection Microbiology 07
the combination at 10 mg/kg/day (each) was not as toxic than

the isolated drugs at 20 mg/kg/day.
Discussion

CD remains a major public health problem, as most of the

infected people and domestic animals such as dogs, important

reservoir hosts (Enriquez et al., 2014; Castillo-Neyra et al., 2015),

are not treated or diagnosed (Dias et al., 2016). Since both drugs

employed in CD chemotherapy are remarkably toxic (Castro

and Diaz de Toranzo, 1988; Castro et al., 2006), therapy is

frequently associated with severe adverse reactions, often

causing treatment suspension (Levi et al., 1996; Olivera et al.,

2017; Guggenbühl Noller et al., 2020; Pérez-Molina et al., 2021).

Development of new safe and low-cost therapeutic alternatives is

urgently required. Drug repositioning and combinations
FIGURE 4

Scanning electron microscopy of T. cruzi epimastigote forms (Y strain). (A) Untreated control, showing normal parasite morphology. B–F)
Parasites treated with 200 µM DETC for 24 h, showing cellular disorganization (B, C) and plasma membrane discontinuities (D–F, arrowheads),
associated with cell body rounding and volume reduction. Bars correspond to 1 µm.
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comprise valuable tools for overcoming CD monotherapy

limitations (e.g., Aguilera et al., 2019).

Both DETC and DSF express antiparasitic activities upon T.

cruzi (Lane et al., 1996; de Freitas Oliveira et al., 2021; de Freitas

Oliveira et al., 2022) and Leishmania (Khouri et al., 2010; Celes

et al., 2016; Mazur et al., 2019). In macrophage cultures, DETC

caused destruction of intracellular amastigotes with little effect

on macrophage spreading pattern. Similarly, in the murine

infection, the combination reduced parasitemia and

significantly (p < 0.001) enhanced animal survival by circa 6-

fold. Synergistic combinations can enhance selectivity

(Zimmermann et al., 2007; Lehár et al., 2009a; Lehár et al.,

2009b). In fact, the BZ + DETC combination was synergistic in

vitro and in vivo and produced over 10-fold selectivity index

increase. Such synergistic activities may be caused by the

prooxidant effects of BZ (Pedrosa et al., 2001; Rigalli et al.,

2016), associated with the antagonism of antioxidant defenses of

DSF and that can allow dosing reduction (Bustamante et al.,

2014), presumably leading to decreased adverse reactions.

Besides, DSF and DETC were shown to reduce adverse

reactions of other drugs (vide supra). Here we observed that

reduced combined drug concentrations did not impair

effectivity. Therefore, such combinations may lead to the

development of safe and effective medications.
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Since one of the major problems in CD therapy is the

prompt rise of resistance, we tested the combination in axenic

amastigotes as well as in infected macrophages, not only of the Y

strain but also of the Colombiana one, highly drug-resistant

(Andrade et al., 1985). Interestingly, both strains were sensitive

to the thiocarbamates at low µM range. Drug combinations were

employed for overcoming drug resistance rising but were not

effective in leishmaniasis (Garcıá-Hernández et al., 2012) or

malaria (Wongsrichanalai et al., 2002) and drug combinations

were not effective upon drug-resistant T. cruzi (Bustamante

et al., 2014).

CD treatment is confronted with growing frequencies of

refractory cases. Over 60% of T. cruzi strains isolated in

Colombia display some degree of BZ resistance (Mejı ́a-
Jaramillo et al., 2012) and strains isolated in the Brazilian

Amazon show natural resistance to this drug (Teston et al.,

2013). The rise of readily acquired (Neal and van Bueren, 1988;

Mejia et al., 2012) or natural resistance (Zingales, 2018)

significantly limit the therapeutic success of CD. Thus, a major

relevance of the DSF + BZ stems from the potential revert drug

resistance phenotypes, by inhibiting both activity (Loo et al.,

2004; Sauna et al., 2004) and expression (Loo and Clarke, 2000)

of p-glycoproteins, which are involved in T. cruzi drug resistance

(Campos et al., 2013).
A B D

E F G

C

FIGURE 5

Transmission electron microscopy of T. cruzi epimastigotes (Y strain) incubated with 200 µM DETC for 24 h. Contrary to control cells (A, arrows –
endoplasmic reticulum cisternae; m- mitochondria; N- nuclei), DETC treated (B–G) displayed remarkably enlarged endoplasmic reticulum cisternae
(B–E*), often replacing an even distorting nuclei (B, C). Some parasites displayed electroluscent nuclear matrix with aggregated peripheral dense
chromatin (C, arrow). Mitochondria were enlarged and generally presented reduced electrondensity (D–F) and eventually presenting kinetoplast (k) DNA
(kDNA) disorganized fibers (F- arrows). Some cells displaying condensed mitochondria presenting swollen cristae (C, G-arrows) were also observed. In
the final stage of treatment, parasites showed loss of normal compartmentation (G).
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FIGURE 6

Detection of cellular reactive oxygen species (ROS) in T. cruzi epimastigote forms (Y strain) using the H2DCFDA probe accessed by fluorescence
microscopy (B, D). (A, B) - Control and (C, D)- 10µM DETC-treated. (A, C) - phase contrast images. Note intense and compartmented staining
in DETC-treated parasites. Magnification - 400X.
FIGURE 7

Measurement of lipid peroxidation in T. cruzi epimastigote forms (Y strain) by determination of thiobarbituric acid reactive substances (TBARS).
Parasite cells treated with 10 µM DETC and 10 µM BZ combination for 24 h presented a significantly (*p < 0.05, ANOVA and Dunn’s post-test)
increased lipoperoxidation. Bars represent mean ± SD (n = 4).
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Besides ABC cassette pumps (Zingales et al., 2015), natural

resistance may rely on aldo-keto reductase and alcohol

dehydrogenase (González et al., 2017). In this regard, it is

important to notice that DSF inhibits alcohol dehydrogenase

activity (Carper et al., 1987) and decreases the expression of

aldo-keto reductase accessed by proteomic analysis (Yoshino

et al., 2020). In addition, glutathione (GSH) forms conjugates

with different drugs that are extruded by ABC transporters

(Jedlitschky et al., 1994; Loe et al., 1998), so GSH and

trypanothione (TSH) are implicated in detoxication of both

NFX and BZ (Repetto et al., 1996). DSF can act as a

glutathionylation agent (Hirschenson and Mailloux, 2021).

Similarly, DETC derivatives form conjugates with GSH via

carbamoylation (Ningaraj et al., 1998) and this reaction inhibits

glutathione reductase (Miller and Blakely, 1992). T. cruzi ABC

proteins externalize thiol-drug conjugates (da Costa et al., 2018)

and inhibition of GSH and so TSH synthesis by buthionine

sulfoximine (Maya et al., 2004; Faúndez et al., 2005; Vázquez

et al., 2017) augments the effectivity of trypanocidal agents BZ and

nifurtimox (Faúndez et al., 2005; Faúndez et al., 2008).

Interestingly, DSF/DETC can diminish reduced GSH levels

(Strömme, 1963; Ohno et al., 1990; Nagendra et al., 1994; Mittal

et al., 2014) and GSH/TSH depletion can trigger T. cruzi

programmed cell death (Piacenza et al., 2007). Here we

observed reduced low mol. wt. thiol levels in DETC-treated
A B

FIGURE 8

Effect of DETC and BZ on the concentration of low mol. wt. thiols of T. cruzi epimastigote forms (Y strain), determined colorimetrically by the
Ellman reaction. DETC reduced thiol levels dose-dependently (A). The DETC + BZ combination significantly potentiated thiol depletion (B). Data
represent mean ± SD. *p < 0.05 and ***p < 0.001 (ANOVA and Dunn’s post-test; n = 5).
TABLE 2 Evaluation of T. cruzi superoxide dismutase (SOD) activity in presence of DETC in vitro and DSF in vivo isolated and combined to BZ.

Assay
SOD activity (U/mL)

Untreated (1% kolliphor) BZ (100 µM) DETC (100 µM) BZ + DETC (50:50 µM)

In vitro1 1h 2.975 2.821 3.056 2.103**

In vitro1 24h 0.896 0.705 0.773* 0.734*

Untreated (1% kolliphor) BZ (50 mg/kg) DSF(100 mg/kg) BZ + DSF (50:50 mg/kg) BZ + DSF (50:100 mg/kg)

In vivo2 0.059 0.059 0.058 0.063 0.052
frontiersin.
1T. cruzi epimastigote forms (Y strain), treated or not with DETC isolated or in combination with BZ, spectrophotometrically measured.
2SOD activity of trypomastigote (Y strain)-infected mice treated for 3 consecutive days. * p < 0.05 and ** p < 0.01 ANOVA and Dunn’s post-test (n = 3).
A

B

FIGURE 9

Inhibitory effect of DETC on the proliferation of T. cruzi amastigote
forms in Y (A) and Colombiana (B) strains, after incubations of 120 h
and 24 h, respectively. * p < 0.05, **p < 0.01 and *** indicates p < 0.001
ANOVA andDunn’s post-test. Bars represent themean ± SD (n=3).
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A B C

FIGURE 10

Effect of DETC alone or combined with BZ on the T. cruzi-macrophage interaction. BALB/c mice peritoneal macrophages were infected with
Colombiana strain bloodstream trypomastigote forms 1:10 phagocyte/parasite ratio. Control cultures (A) showing several parasitized
macrophages as well as larger number of intracellular forms per phagocyte (arrowheads) than cells treated with the combination 5 µM DETC +
5 µM BZ (B). Magnification 200X. The association index in cultures treated with 10 µM BZ or the 5 µM DETC + 5 µM BZ combination after 24
hours of incubation (C) was significantly (***p < 0.001, ANOVA and Dunn’s post-test) reduced. A slightly greater inhibition was observed in
cultures incubated with the combination, despite the reduced concentrations. Bars represent mean ± SD.
A B C

FIGURE 11

Parasitemia of Swiss Webster mice infected with T. cruzi blood trypomastigotes, Y strain (A, B) and Colombiana (C). The animals were infected with
104 blood trypomastigotes/mL, strain Y, treated for 60 days with vehicle; low doses of BZ (20 mg/kg); DETC (20 mg/kg) or a combination of BZ +
DETC (20:20 mg/kg), orally. *p < 0.05 and **p < 0.01 ANOVA test and Dunn’s post-test (A). Parasites treated with vehicle; BZ (50 mg/kg); DSF (50 mg/
kg); combination of BZ + DSF (50:50 mg/kg); and BZ + DSF (50:100 mg/kg), administered for 10 consecutive days (B, C, p > 0.05). Insert shows data
in a different scale. The parasites were counted daily (A) or weekly (B, C) on Neubauer chambers and the graphs were plotted in GraphPad Prism, 7.
FIGURE 12

Monitoring the cumulative survival of mice infected intraperitoneally with 104 T. cruzi blood trypomastigote/mL (Y strain) of and treated with 10 mg/
kg/day of DETC and BZ alone or in combination, p.o. daily for 60 consecutive days. Note that animals treated with the combination had a survival
rate of 60%, whereas the group treated with BZ was 10% and the control group died on the 14th day. ***p < 0.001 ANOVA and Tukey post-test.
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D E F

C

FIGURE 13

Histopathological analysis (H&E) of murine myocardium T. cruzi (Y strain)-infected mice, treated for 60 consecutive days, p.o. with vehicle (A);
10 mg/kg/d BZ-treated and (B) treated with the of 10 mg/kg/d DETC combined to 10 mg/kg/d BZ (C). Amastigote nests were observed in A and
B (arrowheads). Skeletal muscle of mice infected with Colombiana strain, for 100 d and treated for 30 consecutive days orally with 20 mg/kg/d
BZ (D), 20 mg/kg/d DSF (E) or combination of 10 mg/kg/d each (F). Picro Sirius red staining was employed to demonstrate fibrosis. The
combination using lowered concentrations was associated with reduced fibrosis (F). Magnification: 200X.
A B

DC

FIGURE 14

Systemic toxicity of mice treated with DSF and BZ, alone and in combination, by determining blood levels of creatine kinase (A), urea (B), alanine
aminotransferase (C) and aspartate aminotransferase (D); after 20 mg/kg BZ or DSF and the 10 mg/kg/d BZ + 10 mg/kg/d DSF. Contrary to
isolated drugs, the combination, employing lowered dosages, did not increase plasma levels.
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T.cruzi, by colorimetric and cytometric approaches, presumably

by the formation of DS/DETC thiol-mediated conjugates with

GSH (Jin et al., 1994). Similarly DSF reducing GSH levels,

potentiate antiparasitic activity in malaria experimental models

(De Jongh, 1953a; De Jongh, 1953b; Deharo et al., 2003).

Therefore, the use DSF may overcome T. cruzi drug-resistance

via different mechanisms.

The ultrastructural analysis performed here revealed surface

membrane discontinuities, which may be explained by lipid

peroxidation, corroborated by TBA determination, and the cell

surface damage may lead to loss of cytoplasmic content

culminating in necrosis and cell collapse observed by SEM.

The analysis by TEM revealed remarkable damage on parasite

ER and mitochondria, redox-active organelles. Oxidative stress

induces ER stress (Liu et al., 2019; Esmaeili et al., 2022) and DSF

triggers ROS-dependent ER stress (Shah O’Brien et al., 2019).

The ER stress is related to the mitochondrial one (Wang et al.,

2016; Kim et al., 2022; Yuan et al., 2022) and the latter can be

promoted by the DETC-mediated SOD inhibition as well as by

the reductions in GSH levels.

DSF causes ER stress associated with ROS production (Shah

O’Brien et al., 2019). ER stress may cause the organelle cisternae

dilation (Montalbano et al., 2013), which are not as conspicuous

as the remarkable enlargement observed in T. cruzi here, i.e., up

to over 1000-fold, revealed by ultrastructural morphometry (not

shown) and much higher than observed on mammalian cells.

Such difference may be explained at least in part by a selective

mechanism of action. It is noteworthy that ER stress was shown

to be implicated in the CD cardiomyopathy in a murine model

(Ayyappan et al., 2019). DETC can enhance ER stress in a kidney

model (Kang et al., 2020), whereas its derivative DETC-MeSO

(S-methyl-N, N-diethylthiocarbamate sulfoxide) can decrease

ER stress markers in a stroke rat model (Mohammad-

Gharibani et al., 2014).

The ubiquitin system comprises therapy target in diverse

disorders (Wertz and Wang, 2019), and proteasome can be

exploited as chemotherapy target for parasitic protozoa (Cromm

and Crews, 2017; Xie et al., 2019). Parasite COP9 signalosomes

comprise potential targets for chemotherapy (Ghosh et al.,

2020). Interestingly DSF inhibits the ubiquitin-proteasome

system (Cvek and Dvorak, 2008; Kona et al., 2011). The ER

stress-associated cisternae dilation can be detected by EM (Riggs

et al., 2005; Akiyama et al., 2009), so we employed the

ultrastructural approach to help elucidating antiparasitic

agents’ mechanisms of action (Vannier-Santos and De Castro,

2009). The inhibition of proteasome function causes the

accumulation of precursor proteins within ER cisternae

(Hoefer and Groettrup, 2021) and accumulation of misfolded

proteins may cause ER dilation (Sun et al., 2014) and trigger

oxidation-reduction futile cycles producing H2O2 and depleting

reduced GSH pools in the ER (Malhotra et al., 2008).

The T. cruzi intracellular Ca2+ homeostasis is an important

therapeutic target (Benaim et al., 2020) and calcium can be
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transferred from the ER to mitochondria during stress via

mitochondria associated membranes (MAM), also termed ER–

mitochondria encounter structure (ERMES), and the Ca2+

overload may be implicated in mitochondrial damage (Mohsin

et al., 2020). We have previously described the ER-mitochondria

connection in Leishmania braziliensis treated with histone

deacetylase (HDAC) inhibitors, including the nuclear envelope

in the trypanosomatid parasite (Ângelo de Souza et al., 2020).

HDAC inhibitors cause ER stress (Chen et al., 2017) and lead to

the formation of mitochondria-ER tight binding, associated with

ER cisternae enlargement, but it was much less pronounced than

reported here. A similar mitochondria-ER association was

detected here (Figure 5E), but since both compartments were

remarkably enlarged, an eventual connection interpretation

could be misleading.

Like the ER alterations, the DETC mitochondrial effects

observed on the parasite cells were not detected on the

mammalian cells, as previously reported in Leishmania-

infected macrophage (Khouri et al., 2010). Remarkably

enlarged mitochondria with washed out matrix were

previously observed in both T. cruzi (Menezes et al., 2006) and

Leishmania amazonensis (Vannier-Santos et al., 2008) exposed

to 1,4-diamino-2-butanone a biocide that impairs the T. cruzi

redox homeostasis (Soares et al., 2012) and induces

lipoperoxidation (Menezes et al., 2006; Vannier-Santos et al.,

2008). This putrescine analogue can inhibit polyamine transport

and biosynthesis, affecting numerous parasite cell functions

(Vannier-Santos and Suarez-Fontes, 2017), therefore involving

different pharmaceutical targets (Roberts and Ullman, 2017).

Polyamines play a pivotal role in trypanosomatid parasites,

including the antioxidant protection from lipid peroxidation

(Hernández et al., 2006). Also, this polycation metabolism is

important for the antioxidant role of the spermidine-GSH

adduct Trypanothione (N1, N8-Bis(glutathionyl)spermidine,

TSH). TSH metabolism and SOD are drug targets for T. cruzi

infection (Beltran-Hortelano et al., 2017; Piñeyro et al., 2021).

Both NFX and BZ interfere with TSH metabolism (Maya et al.,

1997; Maya et al., 2007), and TSH confers T. cruzi resistance to

BZ and NFX (Maya et al., 2004; Faúndez et al., 2005; Mesıás

et al., 2019). TSH and tryparedoxin take part in BZ-resistance

(González-Chávez et al., 2019) and the enzyme comprises a drug

target (González-Chávez et al., 2015).

The fluorescent probe H2DCFDA labeling indicates the ROS

production and the oxidative stress triggering may be due both

to SOD inhibition by DETC (Heikkila et al., 1976; Heikkila et al.,

1978) as well as to lowering reduced glutathione levels (vide

supra). The DSF-mediated glutathionylation enhances the O2
●-

and H2O2 production in mitochondria (Hirschenson and

Mailloux, 2021) and SOD inhibition was previously shown to

reduce T. cruzi parasitemia in murine infection (Olmo et al.,

2015). The SOD inhibition observed here was significant on the

parasite in vitro, but not in vivo, again possibly indicating a

selective mechanism. Interestingly, the T. brucei SOD gene sodb1
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deletion increases sensitivity to NFX and BZ (Prathalingham

et al., 2007) and SOD inhibition enhances NFX antitumoral

activity (Koto et al., 2011). In this regard, the DSF and DETC

strongly inhibit T. cruzi SOD (Giulivi et al., 1988), and is

trypanocidal (de Freitas Oliveira et al., 2021), also exerting

leishmanicidal effects (Khouri et al., 2010). Interestingly, the T.

cruzi Fe-SOD is found within parasite mitochondria, preventing

programmed cell death (Piacenza et al. , 2007). The

immunofluorescence labeling of TcSOD in the parasite

kinetoplast is relevant since it can preclude DNA

fragmentation (Piacenza et al., 2007). In the TEM images

shown here, we observed DETC-treated parasites with kDNA

disorganization as well as mitochondrial damage. In this regard,

arginase inhibition, causing redox imbalance, lead to kDNA

disorganization in Leishmania (Cruz et al., 2013). SOD

downmodulation may pose a dual advantage in CD therapy,

since the enzymes are involved in intracellular survival, as scape

mechanism from macrophage production of superoxide

(Martıńez et al., 2019), but also drug resistance (Nogueira

et al., 2006; Campos et al., 2014; Campos et al., 2017). In this

regard, the Sirtuin TcSir2rp3 induces the overexpressing

TcFeSOD-A activities increasing T. cruzi resistance to BZ and

NFX (dos Santos Moura et al., 2021).

Thiocarbamates chelate copper and trigger its accumulation

and lipid peroxidation (Tonkin et al., 2004; Valentine et al., 2009;

Viquez et al., 2009). Besides, copper-containing nanoparticles

trigger oxidative stress and ER stress (Liu et al., 2021). Copper

chelated by DSF induces cancer cells apoptosis in a ROS and

mitochondria-dependent manner (Ren et al., 2021).

Ferroptosis is a programed cell death mechanism (Stockwell

et al., 2017) characterized by mitochondria with enhanced

matrix electron density and swollen cristae (Dixon et al.,

2012). Such alterations were observed by TEM here, so this

mechanism may be triggered by DSF. It should be kept in mind

that different cell death mechanisms such as necrosis, apoptosis,

and autophagy may be triggered simultaneously (dos Anjos

et al., 2016). Interestingly, in a murine model of sepsis, the

induction of pyroptosis and ferroptosis is associated with

downregulation of the mitochondrial aldehyde dehydrogenase

(Cao et al., 2022) and since DSF and DETC inhibit this enzyme

(Deitrich and Erwin, 1971) may also trigger ferroptosis on

parasite cells.

Inhibition of cystine uptake, employed in GSH (Badgley

et al., 2020) synthesis, transport causes ER stress associated with

ferroptosis in cancer cells (Dixon et al., 2014) and tryparedoxin

peroxidase-deficient Trypanosoma brucei parasites undergo

ferroptosis (Bogacz and Krauth-Siegel, 2018). Mitochondria

are involved in cysteine-deprivation leading to ferroptosis

(Gao et al., 2019).

The drug combination using DSF offers important

advantages, which may be both economical (Cvek, 2012; Soave

et al., 2016) and pharmacological, since this compound protects

normal cells (Jia and Huang, 2021), can diminish the toxicity of
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different drugs such as cis-diamminedichloroplatinum (Wysor

et al., 1982), including myocardial protection (Sonawane et al.,

2018) and circa 30% of the CD patients develop heart disease,

characterized by arrhythmias among other cardiac

manifestations (Saraiva et al., 2021). It is worth mentioning

that DSF can suppress cardiac arrhythmogenesis (Sander et al.,

2021). Nevertheless, DETC and DSF were reported to cause

neuropathies (Worner, 1982; Frisoni and Di Monda, 1989). In

addition, BZ and NFX may cause neuropsychiatric reactions

(Jackson et al., 2020). In this regard, it is noteworthy that DSF

and its derivatives were also reported to act as neuroprotective

agents (Zhao et al., 2000; Ningaraj et al., 2001; Libeu et al., 2012;

Mohammad-Gharibani et al., 2014; Prentice et al., 2015). The

eventual neurotoxic activity may be due at least in part to high

dosages used in the past (Gessner and Gessner, 1992) and

oxidative stress produced by copper accumulation leading to

lipid peroxidation (Tonkin et al., 2004), although DSF may exert

antioxidant effects (Kyle et al., 1989). This property is relevant

since both BZ (Pedrosa et al., 2001; Rigalli et al., 2016) and CD

(de Oliveira et al., 2007; Gupta et al., 2009) are associated with

oxidative stress.

Histopathological samples revealed no amastigote nests

detected in tissues of animals treated with low doses of the

DSF-BZ combination, which showed mild inflammatory

infiltrates and did not display significant fibrosis as assessed a

by the picrosirius red staining. CD is an inflammatory infection

(Talvani and Teixeira, 2011) associated with fibrosis and

pyroptosis (Cerbán et al., 2020). The T. cruzi infection leads to

ROS formation in the mitochondria, triggering PARP-1 and NF-

kappaB activation, culminating in the production of pro-

inflammatory cytokines such as Il-12 and IFN-g (Ba et al.,

2010), involved in cardiomyopathy pathophysiology (Cunha-

Neto et al., 1998). In this regard, DSF is anti-inflammatory

(Kanai et al., 2011), of potential use for inflammatory disorders

(Guo et al., 2022), inhibiting oxidative stress and inflammasome

activation, preventing cardiac damage (Wei et al., 2022),

suppressing fibrosis (Zhang et al., 2021) and pyroptosis (Hu

et al., 2020; Li et al., 2022; Zhou et al., 2022). The immune

response to T. cruzi infection associated with myocardial fibrosis

involves TGF-b (Chaves et al., 2019), and this cytokine

comprises a therapeutic target in the CD cardiac damage

(Waghabi et al., 2022). In this regard, DSF can inhibit TGF-b
receptor signal transduction (Jiang et al., 2021).

Systemic toxicity assays based on the measurement of

plasmatic CK, AST, ALT, and urea indicate decreased or

insignificant toxicity. DSF was shown to reduce toxicity of

several drugs such as cis-diamminedichloroplatinum, a

property termed “disulfiram rescue” for saving the treated

organism (Wysor et al., 1982; Roemeling et al., 1986). DETC is

also considered a rescue agent (Gandara et al., 1990).

Because of promising in vitro and in vivo results, we are

starting a clinical trial with the DSF-BZ combination (Saraiva

et al., 2021), comprising a bona fide translational approach.
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Taken together, the present data and the cytoprotective capacity

of DSF/DETC as well as the resistance reversion potential, such a

combination may be safe and effective, even in refractory

CD cases.
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Pérez-Molina, J. A., and Molina, I. (2018). Chagas disease. Lancet 391 (10115),
82–94. doi: 10.1016/S0140-6736(17)31612-4
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