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Abstract: Cryptococcus gattii is a worldwide-distributed basidiomycetous yeast that can infect im-
munocompetent hosts. However, little is known about the mechanisms involved in the disease. The
innate immune response is essential to the control of infections by microorganisms. Toll-like receptor
9 (TLR9) is an innate immune receptor, classically described as a non-methylated DNA recognizer and
associated with bacteria, protozoa and opportunistic mycosis infection models. Previously, our group
showed that TLR9-/- mice were more susceptible to C. gattii after 21 days of infection. However, some
questions about the innate immunity involving TLR9 response against C. gattii remain unknown. In
order to investigate the systemic cryptococcal infection, we evaluated C57BL/6 mice and C57BL/6
TLR9-/- after intratracheal infection with 104 C. gattii yeasts for 21 days. Our data evidenced that
TLR9-/- was more susceptible to C. gattii. TLR9-/- mice had hypereosinophilia in pulmonary mixed
cellular infiltrate, severe bronchiolitis and vasculitis and type 2 alveolar cell hyperplasia. In addi-
tion, TLR9-/- mice developed severe pulmonary fibrosis and areas with strongly birefringent fibers.
Together, our results corroborate the hypothesis that TLR9 is important to support the Th1/Th17
response against C. gattii infection in the murine experimental model.

Keywords: Cryptococcus gattii; toll-like receptor 9; eosinophilia; infection; histopathological analyses

1. Introduction

Cryptococcus gattii is a pathogenic encapsulated basidiomycete widely distributed in
the environment and capable of infecting immunocompetent individuals, mainly affecting
the lungs and central nervous system (CNS) [1–3]. C. gattii is saprophytic and can adapt to
the most diverse environments and was the main etiological agent in the North Pacific out-
break that occurred in 1990s [4–6]. C. gattii and C. neoformans yeasts are the only pathogenic
encapsulated fungi. Glucuronoxylomannan (GXM) and glucuronoxylomannogalactan
(GXMGal) polysaccharides are the main components of the capsule that covers the yeast
and represent two of the most important virulence factors, although other virulence factors
such as melanin production, abnormally sized yeast (titan cells), vesicle release and growth
at 37 ◦C are also important and well-described in the literature [7–13]. The transmission
can occur through the inhalation of basidiospores or yeast cells that are easily deposited
in the alveoli, initially damaging the respiratory system and being able to spread to other
organs, such as the brain [1–3].
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Unlike C. neoformans, C. gattii can infect healthy individuals, and the host Th1 and Th17
effector responses are deficient and do not contribute to the control of fungal spread [14,15].
Some recent studies have shown the importance of the Th1 and Th17 effector response
against Cryptococcus spp. Early and late IL-10 blockade enhanced the Th1 and Th17 effector
response in C57BL/6 mice infected with C. neoformans, leading to fungal clearance [16].
A vaccination model using antigen-primed dendritic cells was able to induce a Th1 and
Th17 effector response against C. gattii, decreasing the fungal spread and improving the
survival rate of mice after pulmonary infection [17]. Dendritic cells seem to be the main
route of antigen presentation for T lymphocyte stimulation against Cryptococcus spp. [18].
Jamil and col. (2020) showed, in vitro, that C. gattii yeasts caused immunoparalysis in
human dendritic cells (DCs) differentiated from monocytes [19]. By preventing phagosome
maturation, yeasts induced low expression of surface and internal markers in DCs such as
CD80, CD86, HLA-2, IFN-γ and IL-8.

Recently, our group demonstrated that BALB/c X-linked immunodeficient mice (XID)
were more susceptible to C. gattii, indicating an important role of B cells during experi-
mental infection, producing lower amounts of anti-GXM antibodies, IL-17 and IFN-γ in
comparison to WT infected mice [20]. In addition, we also showed that cryptococcal cap-
sular polysaccharides can induce macrophage apoptosis [21] via FasL and downregulate
NET production in vitro [22]. However, type 2 alveolar epithelial cells and eosinophils
may play an important role in cryptococcal pneumonia [23–26]. Type 2 alveolar epithelial
cells are a major source of IL-33, amplifying the Th2 immune response and supporting
prolonged and disseminated cryptococcal pneumonia in the course of experimental in-
fection using C. neoformans [23,27,28]. Many works have demonstrated that cryptococcal
pneumonia leads to an intense and prolonged pulmonary Th2 inflammatory response.
The “allergy” response is like other chronicle inflammatory diseases, such as asthma and
allergic bronchopulmonary mycosis (ABPM) [29–32].

TLR9 is an innate immune receptor expressed and coupled to endosomal vesicles,
mainly on plasmocytoid dendritic cells and B cells. Classically, TLR9 can recognize CpG
motifs in non-methylated single-stranded DNA (ssDNA), which is commonly found in
bacteria and protozoa [33,34]. The presence of repeated sequences of non-methylated CpG
dinucleotides allows the interaction of TLR9 with ssDNA, leading to translocation from the
endoplasmic reticulum towards lysosomes and the Golgi complex [35]. The intracellular
pathway activates dendritic cells, macrophages and B cells through recruitment and interac-
tion with MyD88, leading to cytokine, chemokine and immunoglobulin production. Some
studies have shown that TLR9 plays an important role in the control of fungal infections
caused by Aspergillus fumigatus [36], Candida albicans [37] and C. neoformans [38,39]. Pre-
viously, our group showed that in vitro C. neoformans-infected DCs were able to produce
IL-12 and IL-6, inducing the differentiation of naïve T cells into Th1 and Th17 effector
T cells [40]. More recently, we demonstrated that TLR9-deficient mice were more suscepti-
ble to C. gattii hypervirulent strain R265 in an intratracheal infection model [41]. However,
the mechanisms involved in the TLR9 response against C. gattii are still poorly understood.

In the current study, we compared C57BL/6 and C57BL/6 TLR9-/- mice infected with
C. gattii hypervirulent strain R265 21 days after inoculum. Some studies have demonstrated
a Th2/allergic immune response in detriment of a protective Th1/Th17 immune response
in experimental cryptococcosis. Therefore, we evaluated aspects related to a Th2/allergic
immune response in the presence or absence of TLR9 during experimental infection with
C. gattii. Our results suggest that TLR9-/- infected mice had intense pulmonary fibrosis,
hypereosinophilia and type 2 epithelial alveolar cell hyperplasia.

2. Results
2.1. Intratracheal Infection by C. gattii Causes a Severe Lung Injury with Epithelial Destruction

Both WT and TLR9-/- mice had their lungs severely injured after 21 days of C. gattii
infection. Atelectasis, alveolar congestion, hemorrhage, increased macrophage aggregation,
cellular infiltrate and thickening of alveolar walls were observed in the lungs of both
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infected groups 21 days after C. gattii inoculum (Figure 1B,H). However, TLR9-/- mice
showed generalized alveolar destruction, intense cellular infiltrate and epithelial disinte-
gration with loss of bronchial epithelial cells (Figure 1D,H). Curiously, in a previous study,
our group showed that there was no difference between TLR9-/- and WT mouse lung CFU
21 days post C. gattii infection, as well as a higher frequency of titan cells in the lungs,
evidencing an increased susceptibility to C. gattii [41]. Recently described, titan cells are
frequently associated with the Th2 immune response and the increased susceptibility of
mice in cryptococcal experimental models, as well as with in vitro infection assays that have
shown the immunomodulatory function of these cells [42–45]. As described in our previous
research, C. gattii titan cells were observed in the lungs of both WT and TLR9-/- mice
(Figure 1J,L).
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Figure 1. Pulmonary impairment during experimental C. gattii infection. WT and TLR9-/- mice
intratracheally received 104 C. gattii yeasts suspended in 30 µL of PBS. A total of 21 days after
inoculum, both groups were euthanized, and the organs were collected and prepared for histology as
described in Methods. Lung histological sections from Sham WT mice (A) (n = 3), C. gattii-infected WT
mice (B) (n = 4), Sham TLR9-/- mice (C) (n = 3) and C. gattii-infected TLR9-/- mice (D) (n = 3) stained
with hematoxylin and eosin. Infected WT mice had a higher frequency of alveolar wall thickening (B).
Severe bronchiolitis was observed in the lungs of infected TLR9-/- mice (D). Lung histological sections
from Sham WT mice (E), C. gattii-infected WT mice (F), Sham TLR9-/- mice (G) and C. gattii-infected
TLR9-/- mice (H) stained with hematoxylin and eosin. Histological sections at higher magnification
show alveolar congestion and cellular infiltrate in both infected WT (F) and TLR9-/- (H) mice,
although the TLR9-/- infected mice had a robust cellular infiltrate. Lung histological sections from
Sham WT mice (I), C. gattii-infected WT mice (J), Sham TLR9-/- mice (K) and C. gattii-infected TLR9-/-

mice (L) stained with Alcian Blue. Black arrows indicate C. gattii titan cells. Magnification ×10 (A–D);
magnification ×20 (E–L).
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2.2. TLR9-/- Infected Mice Have Hypereosinophilia in Mixed Inflammatory Infiltrate

Polymorphonucleated (PMN) cell infiltrates are a common feature of lung infections
caused by microorganisms, such as C. neoformans and C. gattii [24,25,46–48]. Neutrophils
and eosinophils are the most important leukocytes in asthma and allergic bronchopul-
monary mycosis (ABPMs) [32]. Although they are few in number in circulating blood and
lungs of healthy individuals [49], eosinophils are more frequent in allergic asthma and
allergic bronchopulmonary aspergillosis (ABPA), as well as the Th2 cytokine repertory,
comprised principally by IL-5 and IL-13 [50]. Additionally, the Th1/Th17 immune response
was reduced in a murine model of C. gattii experimental infection, while expression of Th2
profile cytokines was increased [15]. PMN cells, as expected, were present in large numbers
in the lungs of both infected mice groups. However, eosinophils were more frequent in the
lungs of infected TLR9-/- mice. A total of 21 days after C. gattii infection, TLR9-deficient
mice had a large number of PMN cells on the mixed inflammatory infiltrate, as well as
close to the vessel wall (lumen) and bronchioles—indicating bronchiolitis (Figure 1H). Fur-
thermore, in order to determine the frequency at which neutrophils and eosinophils appear
in the cellular infiltrate, we stained the histological sections with Congo red (Figure 2).
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Figure 2. Hypereosinophilia in TLR9-/- during C. gattii infection. WT and TLR9-/- mice intratracheally
received 104 C. gattii yeasts suspended in 30 µL of PBS. A total of 21 days after inoculum, both groups
were euthanized, and the organs were collected and prepared for histology as described in Methods.
Representative lung histological sections from Sham WT mice (A) (n = 3), Sham TLR9-/- mice (B) (n = 3),
C. gattii-infected WT mice (C,E) (n = 6) and C. gattii-infected TLR9-/- mice (D,F) (n = 6) stained with Congo
red. TLR9-/- infected mice had a higher frequency of eosinophils (D,F) than WT infected mice (C,E).
Magnification ×10 (C,D); magnification ×20 (A,B); magnification ×40 (E,F). Frequency of neutrophils and
eosinophils in pulmonary mixed infiltrate (G). Each neutrophil and eosinophil were counted to estimate the
frequency as described in Methods. Student’s t-test: ** p ≤ 0.001; *** p ≤ 0.0001.

Eosinophils were more frequent in mixed inflammatory infiltrate from TLR9-/- infected
mice than WT infected mice 21 days after infection. Histological sections showed that
TLR9-/- mice had pulmonary hypereosinophilia 21 days after inoculum (Figure 2D,F). In
addition, TLR9-/- infected mice had a higher frequency of eosinophils than neutrophils in
mixed cellular infiltrate (Figure 2G). Some studies have already shown that IL-33 plays an
important role in the pulmonary Th2 profile, activating type 2 innate lymphoid cells (ILC2)
and increasing eosinophilia [51,52]. Interestingly, Heyen and col. (2016) showed that type
2 alveolar epithelial cells are the main source of IL-33 in the lungs during C. neoformans
infection. However, the role of IL-33 during C. gattii infection is still poorly understood.
Our results showed a high frequency of hyperplasic type 2 alveolar epithelial cells in both
WT and TLR9-/- mice 21 days after C. gattii infection (Figure 3C,D). This result may indicate
a crucial role of type 2 alveolar epithelial cells during C. gattii infection.
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Figure 3. Type 2 alveolar epithelial cell hyperplasia during C. gattii infection. WT and TLR9-/-

mice intratracheally received 104 C. gattii yeasts suspended in 30 µL of PBS. A total of 21 days after
inoculum, both groups were euthanized, and the organs were collected and prepared for histology
as described in Methods. Representative lung histological sections from C. gattii-infected WT mice
(A,B) (n = 4) and C. gattii-infected TLR9-/- mice (C,D) (n = 3) stained with hematoxylin and eosin.
Large number of epithelial alveolar cells clustered in thickened alveolar walls. In addition, PMN
cells, alveolar macrophages and C. gattii titan cells were observed. Histological sections at higher
magnification showed type 2 alveolar epithelial cells from both infected WT (B) and TLR9-/- (D) mice.
Black arrowheads indicate type 2 alveolar epithelial cell hyperplasia. Magnification ×40 (A,C).

2.3. Large Fibrosis in the Lungs of TLR9-/- Infected Mice

Fibrosis is another aspect resulting from chronic lung inflammation. To investigate
fibrosis in the lungs of C57BL/6 mice infected by C. gattii, we stained the histological
sections with picrosirius red. We observed areas with a predominance of fibrous elements
in the lungs of both WT and TLR9-/- infected groups 21 days after inoculum (Figure 4).
However, thick red, strongly birefringent fibers were clearly observable in the lungs of
TLR9-deficient mice (Figure 4D,H). Areas with large fibrosis were concentrated around
vessels, arterioles and bronchioles of both WT and TLR9-/- infected mice (Figure 4A,B,E,F).
In addition, TLR9-/- infected mice had small sites where weakly birefringent orange-green
fibers were concentrated (Figure 4D). Interestingly, type 2 alveolar epithelial cell hyperplasia
was associated with idiopathic pulmonary fibrosis [53].
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Figure 4. TLR9-/- mice had large fibrosis during C. gattii infection. WT and TLR9-/- mice intratra-
cheally received 104 C. gattii yeasts suspended in 30 µL of PBS. A total of 21 days after inoculum, both
groups were euthanized, and the organs were collected and prepared for histology as described in
Methods. There was a predominance of fibrous elements stained in red. Intense pulmonary fibrosis
was seen in the lungs of TLR9-/- infected mice, especially around the arterioles and bronchioles.
Representative lung histological sections from C. gattii-infected WT mice (left column) (n = 3) and
C. gattii-infected TLR9-/- mice (right column) (n = 3) stained with picrosirius red and viewed by
bright-field microscopy (A,B,E,F) or with linear polarization (C,D,G,H). Magnification ×10 (A,D);
magnification ×20 (E,H).
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3. Discussion

In this work, we demonstrated that pneumonia caused by experimental infection with
C. gattii was more severe in C57BL/6 TLR9-/- mice than C57BL/6 WT mice. Although WT mice
were also susceptible to C. gattii, TLR9-deficient mice had severe bronchiolitis and vasculitis,
greater cellular infiltrate with eosinophils prevalence, diffuse interstitial pulmonary fibrosis
and generalized alveolar destruction, indicating an important role of TLR9 for the protective
immune response against C. gattii.

Some works have shown the importance of TLR9 activation in opportunistic fungi, as
well as C. neoformans, C. albicans and Aspergillus fumigatus [36–39,54,55], but the importance
of this receptor in the infection caused by C. gattii is still poorly understood.

Many works have already demonstrated a large cellular infiltrate in experimental
cryptococcosis [15,24–26]. A high frequency of PMN cells close to vessels, arterioles and
bronchioles for a prolongated and intense inflammatory response has been frequently asso-
ciated with pneumonia caused by Cryptococcus spp. [24,25,29,30]. Pulmonary eosinophilia
caused by cryptococcal infection has been associated with inefficiency in controlling or
resolving the pulmonary infection, culminating in a Th2 allergic response [29–31]. Al-
though C. gattii-infected WT mice had chronic cryptococcal pneumonia and pulmonary
eosinophilia 21 days after inoculum, we found hypereosinophilia in TLR9-/- pulmonary
mixed infiltrate. TLR9-deficient mice had a high frequency of eosinophils in the lungs in
comparison to WT mice 21 days post infection, while neutrophils were more frequent in
the lungs of WT infected mice. High amounts of eosinophils in the lungs have already been
described in murine experimental models using C. neoformans infection [24,25,29–31]. In
addition, the IL-4, IL-5 and Th2 responses associated with eosinophilia have been described
in C. neoformans pneumonia [24–26], but little is known about these populations during
C. gattii infection. Eosinophilia in TLR9-/- infected mice could be associated to the Th2
profile induced by C. gattii. Human PBMC produced large amounts of IL-4 after in vitro
stimulation by heat-killed C. gattii [56]. C57BL/6 mice infected by the C. gattii hypervirulent
strain had reduced Th1/Th17 cytokine expression and enhanced Th2 immune response [15].
CD1, BALB/c and C57BL/6 mice have shown different cytokine profiles when infected by
C. neoformans or C. gattii [20,41,57]. Probably, this immune response polarization is the key
to host susceptibility.

Recently characterized, cryptococcal titan cells are an important virulence factor and
are associated with host susceptibility [42,43,58]. Many environmental factors linked to
host immune response could be necessary for cryptococcal yeast enlargement. In the
present study, we showed that cryptococcal titan cells were observed in both WT and
TLR9-/- mice 21 days after infection by C. gattii. Previously, we demonstrated that TLR9-/-

mice had a higher frequency of cryptococcal titan cells and produced lower amounts of
IFN-γ and IL-17 than WT infected mice [41]. It was already shown that the appearance
of C. neoformans titan cells is associated with high levels of Th2 cytokines and IgE [57],
while the Th1/Th17 immune response is critical to control infection [15–18]. The abnor-
mal growth of yeasts is considered an important fungal escape mechanism, since their
phagocytosis by immune cells is hampered [44], in addition to increasing virulence [45].
Recently, Trevijano-Contador and colleagues (2022) showed that IL-17 played an important
role in C. neoformans experimental infection [59]. Curiously, C57BL6 IL-17-/- had less cryp-
tococcal titan cells than WT infected mice 9 days after inoculum with the hypervirulent
C. neoformans strain, H99. Furthermore, TNF-α intraperitoneal administration was able
to attenuate the growth of cryptococcal yeasts in the lungs 48h after inoculum of the H99
strain. Apparently, the Th1/Th17 balance is fundamental for the establishment of infection
by C. neoformans. Immunopathological aspects are different between C. neoformans and
C. gattii infection in murine models. In a previous study of our group, we demonstrated
that lower amounts of IFN-γ and IL-17 were associated with high titan cell frequency
and severe lung impairment [41]. Furthermore, C57BL/6 mice had suppressed Th1 and
Th17 immune responses and increased Th2 immune response as the C. gattii inoculum was
increased during C. neoformans coinfection [15].
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The importance of alveolar epithelial cells and Th2 response during a chronic inflam-
matory response is already well-described. The role of alveolar epithelial cells has been
extensively explored in murine models of cryptococcal pneumonia. Heyen and colleagues
(2016) demonstrated that type 2 alveolar epithelial cells were the major source of IL-33
during experimental infection using C. neoformans [23]. Type 2 alveolar epithelial cells
support prolonged and disseminated pulmonary C. neoformans infection through IL-33
signaling [27,28]. Some research has demonstrated that type 2 alveolar epithelial cells
constitutively express IL-33 and can be an amplifier of type 2 immune response [60,61].
Surfactant protein D (SPD) and IL-5 are also very important during C. neoformans infec-
tion. SPD exacerbates the cryptococcal pathogenicity and drives a non-protective host
immune response associated with pulmonary eosinophilia [25]. However, little is known
about IL-5, IL-33 and type 2 alveolar epithelial cells in the course of C. gattii experimental
infection. In our model, we observed hyperplasia of type 2 alveolar epithelial cells (main
source of SPD in the lung) in both WT and TLR9-/- infected mice 21 days after C. gattii
inoculum, which is associated with a mice model of pulmonary fibrosis [62] and idio-
pathic pulmonary fibrosis [53]. Apparently, the Th2 allergic response and type 2 alveolar
epithelial cell hyperplasia are linked and constitute the complex immunopathology of
cryptococcal infections.

Fibrosis in murine experimental infection with Cryptococcus spp. is little explored.
However, chronic diseases with a pulmonary Th2 immune response, such as asthma, may
help in identifying possible mechanisms involved in cryptococcal pneumonia. Pulmonary
eosinophilia and high amounts of IL-4, IL-5, IL-13 and IgE in the lungs and serum are
also characteristic of asthma [32]. The importance of IL-33 and alveolar epithelial cells in
asthma is well-described [63–65]. Furthermore, some studies have shown that alveolar
epithelial cells and IL-33 play an important role in wound healing and tissue repair [63,66].
Pulmonary fibrosis was observed in C. neoformans-infected IFN-γ-/- mice. The Th1 immune
response compromised in IFN-γ absence during C. neoformans infection led to Th2 immune
response predominance, pulmonary eosinophilia, high levels of serum IgE and pulmonary
fibrosis [29]. In the present study, our histological sections stained with picrosirius red
evidenced a greater amount of thick fibrous elements in the lungs of infected TLR9-/- mice
compared to infected WT mice after 21 days after inoculum. Large areas with intense bire-
fringence were observed in histological sections of TLR9-/- infected mice. Little is known
about lung fibrosis during cryptococcal infection, but our results showed that eosinophilia
and fibrosis were associated with TLR9-/- absence in the course of C. gattii infection.

Together, our results indicate that TLR9-/- mice were more susceptible to C. gattii
experimental infection in comparison to WT. A high number of eosinophils in pulmonary
mixed cellular infiltrate, large interstitial pulmonary fibrosis and type 2 alveolar epithelial
cell hyperplasia support the hypothesis that TLR9 plays an important role in controlling
the infection at the primary site.

4. Materials and Methods
4.1. Cryptococcus Strain

Cryptococcus gattii R265 strain (Serotype B), hypervirulent, VGIIa molecular type, with
alpha mating type, was kindly provided by Professor Leonardo Nimrichter (Instituto de
Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Brazil). Yeasts were
cultured in a liquid defined medium (Sabouraud’s medium) at 30 ◦C with continuous
shaking (100 rpm) for 2 days in 10 mL. A total of 500 µL was collected and cultivated in
20 mL of Sabouraud’s liquid medium for 2 days. After, they were cultured for more 5 days
in liquid minimal medium [67].

4.2. Inoculum Preparation

Fungal culture in liquid medium (1 mL) was collected and centrifuged at 10,000 rpm
for 3 min. The pellet was resuspended in 30 mL of sterile PBS and centrifuged twice under
the same conditions. The pellet was resuspended once more in 1 mL of sterile PBS. After,
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we counted the yeasts on a Neubauer chamber. An infection inoculum of 104 yeast in 30 µL
of PBS was used [68].

4.3. Mice and Infection Model

Isogenic mice of the C57BL/6 (WT) and C57BL/6 TLR9-/- (TLR9-/-) [69] strain, male,
aged 8–10 weeks, weighing between 25 g and 30 g, were used in this study. The C57BL/6
TLR9-/- mice were kindly donated by the Laboratório de Imunofarmacologia, Centro de
Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio
de Janeiro, RJ, Brazil, and the C57BL/6 WT line was kindly donated by the Instituto de Vet-
erinária, Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal
Rural do Rio de Janeiro, RJ, Brazil. The animals were maintained in sterile (grouped) cages,
under standardized conditions of temperature (22–23) ◦C and light (cycles of 12 h of light
and 12 h of dark), with commercial feed and drinking water provided ad libitum. The use
of the animals in this study was approved by the Ethics Committee on the Use of Animals
(CEUA) at UFRJ (Nº:092/21). The mice were sacrificed according to the criteria approved
by CEUA at the time of the study. All animal work was performed in accordance with
Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines and regulations.

4.4. Anesthesia and Analgesia

Prior to intratracheal infection, anesthesia and analgesia of the animals were performed
intraperitoneally with Xylazine (10 mg/kg) and Ketamine (20 mg/kg) in each animal.

4.5. Intratracheal Infection

The animals were subjected to intratracheal infection with 104 encapsulated yeast cells
of C. gattii (R265 strain) in a total volume of 30 µL/animal, with sterile PBS as the vehicle.
Uninfected (Sham) groups were given 30 µL of sterile PBS only.

4.6. Histological Sections

After euthanasia, the lungs were excised. Both lungs were placed in identified cassettes
and immersed in formaldehyde (Sigma-Aldrich, St. Louis, MO, USA) at 10% for 24 h. After,
they were placed in 70% ethanol and processed. Initially, for the diaphanization stage,
tissues were transferred to two baths of 100% alcohol. They were then immersed in two
xylol baths followed by two baths in liquefied paraffin. Thick cuts of 5–6 µm of the tissues
in paraffin molds were obtained with the aid of a microtome. The sections were stained
by picrosirius red [70], Congo red [71], hematoxylin–eosin or Alcian Blue, pH 2.5 [72].
The slides were mounted on Enthelan (Sigma-Aldrich). The slides were analyzed under
light microscopy (Leica DM750, Wetzlar, Germany), and the images were captured using a
Leica DFC425 digital camera. For histological sections, four infected WT and three infected
TLR9-/- mice were used; three mice for each Sham group (WT and TLR9-/-) were also used.

4.7. Eosinophils and Neutrophils Frequency

Eosinophils and neutrophils were counted in random fields of histological sections
stained with Congo red. Each lung (right and left) was divided into four quadrants,
and a random field was used to count 100 polymorphonucleated cells (eosinophils and
neutrophils). After counting the cells in random fields of the four quadrants, the arithmetic
mean was calculated, and the value referring to the cell frequency of each lung was
obtained. The mean represents the arbitrary value referring to the frequency of eosinophils
and neutrophils (in 100 cells) of each mouse.

4.8. Statistical Analysis

Statistical analyses were performed using the GraphPad Prism 5.0 program, with the
Student’s t-test and Mann–Whitney U test (as appropriate). Values of p ≤ 0.05 indicate
statistical significance, with significant differences designated as *** p ≤ 0.001, ** p ≤ 0.01
and * p ≤ 0.05.
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