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ABSTRACT Since the introduction of the Zika virus (ZIKV) into Brazil in 2015, its trans-
mission dynamics have been intensively studied in many parts of the country, although
much is still unknown about its circulation in the midwestern states. Here, using nano-
pore technology, we obtained 23 novel partial and near-complete ZIKV genomes from
the state of Goiás, located in the Midwest of Brazil. Genomic, phylogenetic, and epide-
miological approaches were used to retrospectively explore the spatiotemporal evolu-
tion of the ZIKV-Asian genotype in this region. As a likely consequence of a gradual
accumulation of herd immunity, epidemiological data revealed a decline in the number
of reported cases over 2018 to 2021. Phylogenetic reconstructions revealed that multiple
independent introductions of the Asian lineage have occurred in Goiás over time and
revealed a complex transmission dynamic between epidemic seasons. Together, our
results highlight the utility of genomic, epidemiological, and evolutionary methods to
understand mosquito-borne epidemics.

IMPORTANCE Despite the considerable morbidity and mortality of arboviral infections
in Brazil, such as Zika, chikungunya, dengue fever, and yellow fever, our understanding
of these outbreaks is hampered by the limited availability of genomic data to track and
control the epidemic. In this study, we provide a retrospective reconstruction of the
Zika virus transmission dynamics in the state of Goiás by analyzing genomic data from
areas in Midwest Brazil not covered by other previous studies. Our study provides an
understanding of how ZIKV initiates transmission in this region and reveals a complex
transmission dynamic between epidemic seasons. Together, our results highlight the
utility of genomic, epidemiological, and evolutionary methods to understand mosquito-
borne epidemics, revealing how this toolkit can be used to help policymakers prioritize
areas to be targeted, especially in the context of finite public health resources.
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The Zika virus (ZIKV) is a mosquito-borne flavivirus that was first identified in
Uganda in 1947 (1). Outbreaks of ZIKV infection have already been recorded in

Africa, Asia, the Pacific, and the Americas (2, 3). The first confirmed case of ZIKV infec-
tion in the Americas was reported in Northeast Brazil in May 2015 (4), although phylo-
genetic studies indicate virus introduction much earlier (2013 to 2014) (5). Since then,
the virus has spread throughout the Americas, probably due to a combination of sev-
eral factors, including a completely susceptible population, favorable climatic condi-
tions for the adequability of the Aedes aegypti mosquitoes as main vectors for its trans-
mission, and sustained human mobility (6–8). Between January 2016 and December
2018, the Brazilian Midwestern region, which covers an area of 1.6 million km2 and is
inhabited by about 14 million people in 467 municipalities, reported a total number of
54,457 Zika cases (9–14). Most of these cases (55%) were reported in the states of Mato
Grosso and Goiás, across several epidemic seasons (9–14). Despite some work done
over the large epidemic between 2015 and 2016, there is still a paucity of studies
directly investigating the circulation and genetic diversity of the ZIKV in this region. In
this study, using our experience with mobile laboratory (15), we used nanopore
sequencing to generate ZIKV genomes from infected patients residing in Goiás and
provide a retrospective reconstruction of its transmission dynamics in that state.

RESULTS

The 23 sequenced samples obtained in this study were collected from females
(65%) and males (35%) (Table S1) with a median age of 30 years (range: 19 to 57). All
sequenced samples were collected from different municipalities in the state of Goiás
(Table S1, Fig. 1A) and contained sufficient viral genetic material ($2 ng/mL) for library
preparation. Cycle threshold (CT) values were on average 27.96 (range: 25 to 32), and
sequences presented a median genome coverage of 82.5% (range: 56.1 to 93.2).
Epidemiological data and sequencing statistics are detailed in Table S1.

Figure 1B shows the ZIKV weekly cases normalized per 100,000 individuals notified
between 2015 and 2021 in the Brazilian Midwest region (Federal District and the states
of Mato Grosso, Goiás, and Mato Grosso do Sul). This weekly reported incidence
revealed a major outbreak in the Midwest region during 2015 to 2016, after which ever
smaller epidemics took place over the years but the virus persisted through year-round
transmission cycles. Overall, the state of Goiás reported the lowest incidence in recent
years (2020 to 2021). Interestingly, the Federal District, which experienced the smallest
initial outbreaks in 2015 to 2016, later presented a temporary resurgence in 2019 to
2020 (Fig. 1B). Over this period, the cumulative number of cases per 100,000 was 17 for
the state of Goiás, 36 for the state of Mato Grosso, and 35 for the state of Mato Grosso
do Sul. Although we did not assess the factors dictating the general trend in decreas-
ing incidence over the years, it is likely to have been mediated by the accumulating
herd immunity in the region since the virus’s introduction (16). Indeed, some studies
have demonstrated this effect in other Brazilian states (16, 17).

To accurately establish evolutionary relationships among the newly generated
sequences and other known ZIKV isolates, we subjected a combined data set to phylo-
genetic inference. A regression of genetic divergence from root to tip against sampling
dates confirmed sufficient temporal signal (coefficient correlation = 0.70, r2 = 0.50). Our
maximum clade credibility (MCC) tree showed that the newly sequences obtained in
this study are scattered throughout the tree and clustered together with viral strains
isolated in other Brazilian regions (northeastern and southeastern), suggesting that
those regions have likely acted as steppingstone spots for the dissemination of the vi-
rus into the state of Goiás (Fig. 1C), which might have been influenced by the increased
human mobility and vector suitability. From our time-measured tree, we estimated the
time of the most recent common ancestor (TMRCA) to have occurred between mid-
February 2014 (95% highest posterior density ranging from 10 February 2014 to 10
October 2014) for the first introduction event and late November 2016 (95% highest
posterior density ranging from 30 May 2016 to 1 January 2017) for the last event,
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suggesting the persistence of the initially introduced virus for the period of 2 years in
which reported incidence was highest (2015 to 2016).

DISCUSSION

To retrospectively explore the retrospective spatiotemporal evolution of ZIKV
through the Midwestern Brazilian region, we generated 23 partial and near-complete
genome sequences from the 2016 to 2018 ZIKV epidemic. Epidemiological data
revealed that epidemic waves from the Brazilian Midwest region displayed their largest
sizes between 2015 and 2017 (Fig. 1B). This was followed by a reduction in the number
of reported cases over 2018 to 2021, likely a consequence of an expected, gradual
accumulation of herd immunity, but the persistence of the initially introduced virus lin-
eage through year-round transmission cycles was still indicated.

We found that the ZIKV epidemic in Goiás was ignited by multiple independent
introduction events which we infer to have occurred between February 2014 and
November 2016, most likely from northeastern and then later from southeastern Brazil,
where the virus had already been circulating since late October 2013 (2, 5). Those find-
ings are in line with previous studies that suggested that northeastern Brazil played a
significant role in the establishment and dissemination of ZIKV in the Americas (2, 5,
18) and further reveal complex transmission dynamics within Brazilian regions. Since

FIG 1 Genomic epidemiology of ZIKV in Midwest Brazil. (A) Map of Brazil showing the spatial area under investigation. (B) Weekly notified Zika cases
normalized per 100,000 individuals in in the Brazilian Midwest region (Federal District and the states of Mato Grosso, Goiás, and Mato Grosso do Sul)
between 2015 and 2021. Epidemic curves are colored according to geographical locations. Incidence (cases per 100,000 population) is presented in log10

for visual purposes. (C) Time-scaled maximum clade credibility tree of ZIKV-Asian lineage in Brazil, including the 23 new genomes generated in this study
plus n = 479 reference strains sampled worldwide. Tips are colored according to the sample source location. Values around nodes represent posterior
probability support of the tree nodes inferred under Bayesian evolutionary analysis using a molecular clock approach.
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the first ZIKV confirmed case in Goiás was detected on 4 January 2015, our findings fur-
ther highlight that the virus was cryptically circulated in this region for a period of
11 months, following a pattern that had been observed before during other Zika and
dengue epidemics (5, 18).

In summary, our data reveal a complex pattern of ZIKV transmission between epi-
demic seasons, highlighting that the virus’s interregional spread might have been
driven by a combination of several factors, including: (i) a completely susceptible pop-
ulation, (ii) favorable climatic conditions, and (iii) a sustained human mobility, as dis-
cussed elsewhere (7, 16). Together, those results highlight the utility of genomic, epi-
demiological, and evolutionary methods to understand mosquito-borne epidemics.

MATERIALS ANDMETHODS
Molecular screening. Serum samples from 23 individuals presenting symptoms compatible with

ZIKV infection were submitted to nanopore sequencing during a mobile genomic surveillance activity,
which took place in Midwest Brazil in May 2019, under the scope of the ZIBRA-2 project (https://www
.zibra2project.org/). Viral RNA was extracted and submitted to a real-time PCR protocol adapted from
reference 19 to confirm the previous diagnosis. Samples were selected for local sequencing based on a
PCR cycle threshold (CT) of,32 to maximize genome coverage of clinical samples by nanopore sequenc-
ing (20) (Table S1).

cDNA synthesis and multiplex tiling PCR. Samples were submitted to a cDNA synthesis protocol
described previously (20), a multiplex tiling PCR using Q5 high fidelity hot-start DNA polymerase (New
England Biolabs), and a ZIKV sequencing primers scheme (20). The thermocycling conditions involved
40 cycles, and reaction conditions were as reported previously (20).

Library preparation and nanopore sequencing. Amplicons were purified using 1� AMPure XP
beads, and cleaned-up PCR products concentrations were measured using Qubit dsDNA HS assay kit.
DNA library preparation was carried out using the ligation sequencing kit and the native barcoding kit
(NBD104 and NBD114, Oxford Nanopore Technologies, Oxford, UK) (20). Sequencing libraries were
loaded into an R9.4 flow cell (Oxford Nanopore Technologies). In each sequencing run, we used negative
controls to prevent and check for possible contamination with less than 2% mean coverage.

Generation of consensus sequences. Raw files were basecalled using Guppy, and barcode demulti-
plexing was performed using qcat. Consensus sequences were generated by de novo assembling using
Genome Detective (https://www.genomedetective.com/) (21).

Phylogenetic and Bayesian analysis. The 23 new genomic sequences reported in this study were
initially submitted to a genotyping analysis using the phylogenetic arbovirus subtyping tool, available at
http://genomedetective.com/app/typingtool/zika (22). Genomic data generated in this study were
aligned with a worldwide, larger, and updated data set of ZIKV genome sequences (n = 479). Sequences
were aligned using MAFFT (23), and preliminary ML-tree was inferred using IQTREE2 (24). Prior to tempo-
ral analysis, our data set was also assessed for molecular clock signal in TempEst v1.5.3 (25) following
the removal of any potential outliers that may violate the molecular clock assumption. To estimate a
time-calibrated phylogeny, we used the Bayesian software package BEASTv.1.10.4 (26), with the
Bayesian Skyline tree prior (27) with an uncorrelated relaxed clock and the lognormal distribution (28).
Analyses were run in duplicate in BEASTv.1.10.4 (26) for 100 million Markov chain Monte Carlo (MCMC)
steps, sampling parameters and trees every 10,000th step. Convergence of MCMC chains was checked
using Tracer v.1.7.1 (29). Maximum clade credibility trees were summarized using TreeAnnotator after
discarding 10% as burn-in.

Epidemiological data assembly. Data of weekly notified ZIKV cases in Brazil, available at the
Sistema de Informação de Agravos de Notificação (SINAN) (https://portalsinan.saude.gov.br/), were sup-
plied by Brazilian Ministry of Health and were plotted using the R software version 3.5.1.

Data availability. Newly generated ZIKV sequences have been deposited in GenBank under acces-
sion numbers OL423647 to OL423669.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 0.01 MB.
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