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The characterization of protein–protein interactions (PPIs)
is of high value for understanding protein function. Two stra-
tegies are popular for identification of PPIs direct from the
cellular environment: affinity capture (pulldown) isolates the
protein of interest with an immobilized matrix that specifically
captures the target and potential partners, whereas in BioID,
genetic fusion of biotin ligase facilitates proximity bio-
tinylation, and labeled proteins are isolated with streptavidin.
Whilst both methods provide valuable insights, they can reveal
distinct PPIs, but the basis for these differences is less obvious.
Here, we compare both methods using four different
trypanosome proteins as baits: poly(A)-binding proteins
PABP1 and PABP2, mRNA export receptor MEX67, and the
nucleoporin NUP158. With BioID, we found that the popula-
tion of candidate interacting proteins decreases with more
confined bait protein localization, but the candidate population
is less variable with affinity capture. BioID returned more likely
false positives, in particular for proteins with less confined
localization, and identified low molecular weight proteins less
efficiently. Surprisingly, BioID for MEX67 identified exclu-
sively proteins lining the inner channel of the nuclear pore
complex (NPC), consistent with the function of MEX67,
whereas the entire NPC was isolated by pulldown. Similarly, for
NUP158, BioID returned surprisingly few PPIs within NPC
outer rings that were by contrast detected with pulldown but
instead returned a larger cohort of nuclear proteins. These
rather significant differences highlight a clear issue with reli-
ance on a single method to identify PPIs and suggest that
BioID and affinity capture are complementary rather than
alternative approaches.

Most proteins function as part of multisubunit complexes,
and identification of protein–protein interactions (PPIs) is
valuable for understanding function. Identification of PPIs can
uncover a wide range of interactions, which include direct,
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indirect, static, or dynamic binding. Furthermore, proteins can
moonlight and engage in multiple different specific complexes,
whereas complex composition can change in a temporal
manner and/or a spatial manner.

Presently, there are two common methods used to identify
PPIs in a cellular context: affinity capture (colloquially pull-
down) (1) and proximity labeling (2). While evidence indicates
that both methods provide valuable insights, there are
considerable differences between them, both in technical re-
quirements and consequently the interactome revealed. Each
method has its adherents and while it would be fallacious to
view one or the other approach as superior, it is unclear what
choice of method implies in terms of the types of PPIs iden-
tified and hence critical assessment of a given dataset.

Affinity capture requires cell rupture with the lysate or
extract then exposed to a solid phase with a specific affinity to
the protein of interest or bait. The solid phase is commonly
coupled to an antibody against the bait, or alternatively, the
bait is genetically fused to a tag and purified using a solid phase
with affinity to the tag. The bait along with copurified inter-
action partners is then eluted, and this eluate is analyzed. A
major disadvantage here is that interactions are determined
from the cell extract and not the true cellular environment,
and thus, some interactions may be lost, whereas spurious and
nonphysiological interactions may occur as a result of mem-
brane breakage and decompartmentalization of protein com-
plexes. Screening of extraction conditions including detergent
solubilization, pH, ionic strength, and other parameters is
therefore necessary. A variation on this approach is cryomil-
ling, which avoids the use of detergents during lysis, but still
disrupts cellular organization (3, 4). In general, affinity capture
requires a lot of optimization for each individual bait, and
results tend to be more variable between experiments and/or
labs because of minor differences in cell harvesting, lysis, and
buffer conditions.

In proximity labeling, some of the pitfalls of affinity isolation
are avoided by capturing interactions in vivo. Here, the bait is
fused to an enzyme that converts a substrate into a reactive
radical that is covalently linked to nearby proteins. Modified
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proteins are purified frequently under extremely stringent
conditions. The most commonly used method is BioID and
variants. The bait is coupled to BirA*, a mutant form of biotin
ligase from Escherichia coli. Wildtype BirA converts biotin to
biotinol-50-AMP, which is retained by BirA until it is trans-
ferred to acetyl-CoA carboxylase. A mutant version, BirA*, is
modified to release biotinol-50-AMP, causing biotinylation of
lysine residues of proteins nearby (5–7). Additional BioID
variants have been developed, one of which is TurboID, which
exhibits greater biotinylation efficiency (8). TurboID bio-
tinylates within minutes after addition of exogenous biotin, in
contrast to other BirA* variants (8), but also has some bio-
tinylation activity in the absence of exogenous biotin, leading
to an increased labeling radius (9).

Given the distinct underlying principles of these two
methods, we have carried out a direct comparison between
them, employing four different proteins from trypanosome
mRNA metabolism that encompass a variation of location and
positional constraints. For affinity capture, we used data pre-
viously published by us (10, 11) and repeated the experiment
for one target, nucleoporin NUP158, for optimal compara-
bility. Cell lysis was performed by cryomilling, where rapid
freezing and mechanical cell disruption at 77 K preserves PPIs
and has been successful for isolating nuclear pore complexes
(NPCs) and many other complexes from many organisms
(3, 12–14). All proteins were expressed as GFP/YFP fusions
from the endogenous locus and captured with an anti-GFP
single-chain nanobody (10, 11). For BioID, we expressed the
same proteins from their endogenous loci fused to the biotin
ligase TurboID and used steady-state biotinylation, facilitated
by biotin in the culture medium.

We found surprisingly little concordance between PPIs
identified from affinity capture and BioID. With their less-
confined cytoplasmic localizations, BioID is error prone for
poly(A)-binding proteins (PABPs), with many false identifica-
tions. In contrast, for the identification of MEX67 interactors,
BioID was more adequate and exclusively identified FG-repeat
nucleoporins, NPC components that line its inner surface,
rather than the entire NPC, which was isolated by the affinity
method. Likewise, NUP158 affinity capture identified most
part of the NPC cellular structure including distant proteins
that are indirectly but stably associated with the bait, which are
outside the BioID labeling radius. Whilst affinity capture de-
livers a snapshot of stable PPIs at the time of lysis, proximity
labeling records a history of protein interactions occurring
during the duration of labeling, which can bias against detec-
tion of a stable “core” complex in favor of dynamic associa-
tions. Altogether, our data indicate that the utility of each
method is context dependent and hence should be viewed as
complementary rather than as alternatives.
Results and discussion

Establishing TurboID in trypanosomes

We selected four trypanosome proteins as bait to establish
BioID with TurboID biotin ligase fusion. PABP1 and PABP2
are cytoplasmic and by light microscopy appear unconfined
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within the cytoplasm under standard culture conditions
(10, 15). The nuclear export receptor MEX67 shuttles between
the nucleus and the cytoplasm with predominant localization
at NPCs (16, 17). The NPC protein NUP158 (ortholog to
Nup145 in Saccharomyces cerevisiae and Nup98/96 in Homo
sapiens) is localized to the outer rings of the NPC (3). We
selected these bait proteins for the following reasons: (i) we
anticipate differential levels of nonspecific background bio-
tinylation dependent on how rigidly a protein is confined, and
including a range of protein localizations (not confined, sem-
iconfined, and confined) allows this to be considered and (ii)
prior work means we have validated cell lines and in some
cases mass spectrometry (MS) data (10, 11).

All four proteins were expressed from their endogenous loci
fused C-terminally to TurboID and hemagglutinin (HA),
replicating the tagging strategy used for cryomill affinity
capture, except that in that case, fusion was to enhanced YFP
(eYFP). We used two control cell lines: unmodified parental
cells and cells expressing eYFP fused to TurboID and HA
(using an inducible expression system). All experiments were
done in procyclic form cells, the Trypanosoma brucei life-cycle
stage in the insect host. Generated lines were subjected to
Western blotting to detect biotinylated proteins by a strepta-
vidin probe (Fig. 1A). Almost no biotinylated proteins were
detected in parental cells, whereas the tagged cell lines,
including the eYFP control, had many biotinylated proteins.
There were major differences in the number of biotinylated
proteins obtained for each bait and also in the identity of the
detected proteins, indicating specificity. Notably, PABP2-
TurboID resulted in a significantly higher number of bio-
tinylated proteins than PABP1-TurboID in both life cycle
stages, consistent with previous findings that PABP2 interacts
with a significantly bigger cohort of proteins compared with
PABP1 (10). In addition, we confirmed correct localization of
the TurboID bait proteins by anti-HA immunofluorescence
and, in parallel, traced biotinylation via a fluorescent strepta-
vidin probe (Fig. 1B). For the cytoplasmic PABPs, we observed
cytoplasmic localization of the two probes and for NUP158
colocalization at distinct structures of the nuclear envelope.
MEX67 TurboID yielded a similar streptavidin labeling pattern
as NUP158 with some additional weak signal from the nucleus,
but immunofluorescence signals were restricted to nucleo-
plasm and nucleolus. The absence of immunofluorescence
from the nuclear envelope can be explained by the phase-
separated environment created by the FG-type nucleoporins,
which presumably prevents antibody binding in this region of
the pore but not streptavidin binding. Altogether, the observed
labeling pattern indicates high spatial labeling selectivity of our
TurboID approach. Hence, we purified biotinylated proteins
by streptavidin affinity for each cell line in triplicate and
analyzed by LC–MS/MS.
Defining confidence intervals

Proteins enriched in the BioID samples were grouped into
confidence intervals (significant classes; SigA, SigB, and SigC)
defined by cutoff curves in volcano plots (Fig. 2) and based on
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Figure 1. Biotinylation in the different BioID cell lines. A, Western blot probed with fluorescently labeled streptavidin to detect biotinylated proteins in
the control cell lines (eYFP = TurboID fused to eYFP) or cell lines expressing the respective bait proteins (PABP1, PABP2, MEX67, and NUP158) fused to
TurboID. The expected molecular weight of all bait proteins fused to TurboID is indicated. B, localization of bait proteins and biotin labeling. Cells were
probed with anti-HA antibody and IRDye 800CW streptavidin to detect biotinylated proteins, and then DAPI stained analyzed by fluorescence microscopy.
DAPI, 40 ,6-diamidino-2-phenylindole; eYFP, enhanced YFP; HA, hemagglutinin; PABP, poly(A)-binding protein.
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Figure 2. Hawaii plot for the statistical analysis of BioID experiments. Hawaii plot (multiple volcano plots) of LFQ results of the BioID experiments for
PABP1, PABP2, MEX67, NUP158, and the GFP-control. All samples were prepared in triplicate. To generate the volcano plots, the −log10 p value was plotted
versus the t test difference (difference between means), comparing each respective bait experiment to the wt control. Potential interactors were classified
according to their position in the plot, applying cutoff curves for “significant class A” (SigA; drawn in red; FDR = 0.01, s0 = 0.1) and “significant class B” (SigB;
drawn in blue; FDR = 0.05, s0 = 0.1), respectively, and, for the GFP control “significant class C” (SigC; drawn in pink; FDR = 0.05, s0 = 2). Bait proteins are
indicated by a green dot. FDR, false discovery rate; LFQ, label-free quantification; PABP, poly(A)-binding protein.
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statistical analysis in Perseus (Max Planck Institute of
Biochemistry, Martinsried) (18) (for details, see the
Experimental procedures section). All BioID samples were
compared with parental cells to identify proteins naturally
biotinylated as well as proteins that nonspecifically bind to the
affinity matrix. A second control, cells expressing a GFP-
TurboID fusion, served to identify proteins biotinylated in a
nonspecific manner.

For the abundant cytoplasmic proteins PABP1 and PABP2,
we chose strict parameters to define significance intervals for
both the bait proteins and the GFP control (SigA: false dis-
covery rate [FDR] = 0.01; s0 = 0.1; SigB: FDR = 0.05; s0 = 0.1).
This defined 35 proteins as GFP positive, 13 in SigA and 24 in
SigB (Table S1, A and B, Figs. 2 and 3A), which were removed
from the list of PABP1 and PABP2 candidate interactors. The
usage of less strict parameters for the GFP-control (SigC:
FDR = 0.05; s0 = 2; as used for NUP158 or MEX67 mentioned
later) would have resulted in the subtraction of bona fide
PABP1/2 interactors, as for example, PAB1-binding protein
PBP1 and even the bait PABP1 itself. Among the GFP-positive
proteins were many involved in translation or associated with
cytoskeleton or membranes (19–24), as well as large proteins
(26% > 100 kDa; whole genome: 10% > 100 kDa). Only two of
this cohort were unique to the GFP BioID experiment, likely
reflecting nonspecific interactions, whereas the remaining
proteins were also identified in other BioID experiments
(usually in more than one; nine in all five experiments).

We also applied SigA and SigB cutoffs to the less abundant
proteins with a confined localization at the NPC, NUP158, and
MEX67. However, we chose less strict parameters to define the
GFP control (sigA: FDR = 0.01; s0 = 0.1, SigC: FDR = 0.05; s0 =
4 J. Biol. Chem. (2023) 299(1) 102726
2) (Table S1, A and C, Figs. 2, and 3B). With these parameters,
139 proteins were defined as GFP positive (13 of these in
SigA). About 50% of these 139 proteins were uniquely
enriched in the GFP control. The others were removed from
the list of NUP158- or MEX67-enriched proteins, except for
proteins that were in SigA for the bait proteins and in SigC for
GFP (listed in Fig. 3B). The latter cohort contained an
enrichment in proteins with nuclear localization and even two
proteins with localization to the NPC, including the bona fide
T. brucei NPC component NUP132 (11, 25). In contrast, very
few nuclear-localized proteins were among confirmed GFP-
positive proteins (Fig. 3B).

In conclusion, we determined the appropriate filtering pa-
rameters to define theGFPcontrol data for each individual BioID
bait to exclude obvious false positives, while including known
interaction partners. Notably, being GFP positive does not
necessarily exclude the protein from being a true interacting
protein;MARP2 (TbBBP268)was identified asGFPpositive here
but was identified by BioID with basal body protein TbPAC11
and TbBBP46 as baits. MARP2 localization to the basal body
indicates that this is likely a true interactor (21). Likewise, some
of the translation initiation factors and the RNA helicase within
the cohort of GFP positives may be true PABP interactors,
highlighting the need for careful consideration of the dataset.
Cytoplasmic PABPs

T. brucei has two cytoplasmic PABPs. Both PABP1 and
PABP2 have cytoplasmic localizations under physiological
conditions, but PABP2 localizes to stress granules when cells
are starved (26, 27) and can also localize to the nucleus under
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certain conditions (26, 28). We have previously determined an
interactome for PABP1 and PABP2 by cryomill affinity capture
using GFP single-chain antibodies, from cells expressing C-
terminal fusions of the PABPs to eYFP from endogenous loci
(10). Data from four experiments (two with high and two with
low salt conditions) were analyzed to yield a high confidence
list of PABP PPIs that included only proteins that were at least
twofold enriched in all four experiments, had no more than
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(eIF4E4 and eIF4G3) dominated with extremely high enrich-
ment ratios of >150. PABP2 coimmunoprecipitated 26 pro-
teins (Fig. 4A). All proteins coimmunoprecipitated with either
PABP1 or PABP2 have either a known function in T. brucei
mRNA metabolism, are known mRNA binders (Tb927.7.7460
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and Tb927.11.14750 (29)) or have a localization reflecting
RNA granules (Tb927.4.4940 (20)), suggesting a cohort of
genuine PPIs. In contrast, the number of proteins identified
with BioID was larger and included 178 (PABP1) and 250
(PABP2) proteins in SigA and 263 (PABP1) and 330 (PABP2)
proteins in SigB (Table S2).

We first asked which of the affinity-purified proteins were
also identified with BioID (Fig. 4A). Of 13 proteins identified in
the PABP1 pulldown, four were in SigA of the BioID experi-
ment, including the bait and the two highly enriched proteins
eIF4E4 and eIF4G3. A further three proteins were in SigB. Six
proteins were not enriched in the BioID experiment. Four of
these are low molecular weight proteins (Fig. 4A) and may be
missed because of their lower number of detectable unmodi-
fied peptides, which we recognized as a systematic problem of
BioID (discussed in Conclusion section). The remaining two
proteins, PUF9 and UPF1, were the least enriched proteins in
the PABP1 pulldown and hence may suggest a less stable or
physically more distant and indirect association with PABP1.
Of the 26 proteins identified in the PABP2 pulldown, 15 are
also in BioID SigA, including the bait and six proteins with
highest enrichment ratios in the pulldown. A further six pro-
teins were in the SigB cohort. Of the remaining five, three are
low molecular weight and may not be detected as suggested
previously. The fourth is a large nuclear protein (CBP110) that
possibly remains in the cytoskeleton fraction removed prior to
incubation with the streptavidin beads. The fifth protein is,
again, UPF1.

We next asked how many proteins identified by BioID were
also present in the pulldown datasets (Fig. 4B). Of the 178
proteins identified in the PABP1 BioID (SigA), 25 were present
in at least two replicates of the pulldown, 30 were enriched in
one replicate, 50 were not enriched but detected, and 73 were
not detected. Of the 250 proteins from the PABP2 BioID
(SigA), we detected 72 in at least two of the replicates of the
pulldown, a further 31 in one replicate, 44 not enriched but
detected, and 103 proteins undetected. PABP-interacting
proteins are expected to be mainly involved in mRNA meta-
bolism. To evaluate these data further, we manually assessed
evidence for involvement in mRNA metabolism for each
protein, based on conserved domains, known homologs, and
published data. About 40 and 49% of PPIs identified by BioID
in confidence group SigA for PABP1 and PABP2, respectively,
had evidence for a role in mRNA metabolism. As expected, the
number of proteins with a role in mRNA metabolism was
highest (>75%) among the BioID proteins that were also
identified by affinity capture and lowest (<25%) among the
BioID proteins undetected by affinity isolation.

While there is overlap between BioID and pulldown PPI
datasets, BioID identifies a significantly larger number of
potential interactors, partly explained by the complexity of
PABP interactions and the dynamic nature of ribonucleo-
protein complexes in which the PABP function. Consistent
with this, a recent study (30) applied BioID to elucidate the
PPIs of two T. brucei RNA-binding proteins, RBP9 and
RBP10, uncovering a similar number (>200) of high-
confidence interactors.
BioID appears to have a false-positive rate among the high-
confidence SigA cohort of about 50%. This is likely because of
the less-confined (cytoplasmic) localization of PABP1 and
PABP2 and perhaps in addition by their function: PABPs are
mobile and interact with many complexes that themselves may
have peripheral proteins not obviously involved in mRNA
metabolism. Moreover, PABPs are involved in translation and
thus in close proximity to many nascent proteins that they
potentially biotinylate despite the absence of direct interaction.
Note, however, that ribosomal proteins were not found bio-
tinylated, excluding random biotinylation of the entire poly-
somal complex.
MEX67

MEX67 forms a heterodimer with Mtr2, and this complex is
the major mRNA export complex and is conserved across
most eukaryotes (31, 32). MEX67 binds its mRNA targets both
directly or indirectly via adaptor proteins and mediates mRNA
export to the cytoplasm by interacting with FG-type nucleo-
porins. While mRNA export in trypanosomes differs in several
aspects from the pathway described in opisthokonts (33),
TbMEX67 (Tb927.11.2370) has been well studied in the past
and appears to have a conserved function in mRNA export (17,
33–35). Two datasets from pulldowns are available for
T. brucei MEX67. A classical immunoprecipitation with a C-
terminal PTP (Protein C- tobacco etch virus protease cleavage
site - Protein A) tag identified Mtr2 and importin 1, a transport
receptor for nuclear import (35), whereas a cryomill affinity
capture using a C-terminally GFP-tagged MEX67 as bait
identified many nucleoporins (11). We reanalyzed the latter
affinity capture data (11) for three different extraction condi-
tions to generate a list of enriched proteins (Table S4B). We
have then performed BioID with MEX67 to compare the PPIs
identified by these different methods.

In contrast to the PABP1 and PABP2 datasets, the number
of MEX67 PPIs identified with BioID (99) was similar to the
number of PPIs identified by pulldown (118 proteins) (Fig. 5A).
We suggest that this is likely a consequence of the more
confined localization of the MEX67 protein, which results in
less bystander labeling.

MEX67 BioID identified only nine proteins with a non-
nuclear localization, spread over both SigA and SigB cohorts,
and the majority of proteins were localized to the nucleoplasm
(69 proteins) or the NPC (17 proteins) (Fig. 5A). SigA con-
tained 15 core nucleoporins, whereas SigB showed enrichment
of proteins localized to the nucleoplasm. Proteins with nuclear
localization only identified by BioID could be proteins that
interact with nuclear proteins only transiently, preventing their
detection in the pulldown experiment.

Pulldown-identified PPIs differ from the corresponding
BioID PPIs in containing a larger number of nucleoporins and
a smaller number of nucleoplasmic proteins, and, in particular,
for confidence group B, a higher number of non-nuclear
proteins. Also specific to the pulldown PPIs were proteins
localized to the endoplasmic reticulum (ER) and nuclear en-
velope: these likely coprecipitated with the NPCs but are not in
J. Biol. Chem. (2023) 299(1) 102726 7
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close contact with MEX67 and hence not sampled with BioID
(Fig. 5A). However, it should be considered that any trans-
membrane, vesicular, or intralumenal (perinuclear cisterna)
proteins might also be inaccessible to the BioID labeling but
not to direct physical connection–mediated affinity capture.

While MEX67 coprecipitated essentially the entire NPC,
MEX67 BioID selectively identified six of nine FG-repeat
proteins exposed to central channel (Fig. 5B). The only non-
FG-repeat NUP identified by BioID is NUP132, which is also
enriched with the GFP-bait control (SigB) and may thus have
higher exposure to random biotinylation. Thus, for MEX67,
BioID captured only proteins directly interacting with MEX67,
whereas the pulldown identified the entire NPC, likely driven
by high-affinity interactions between individual nucleoporins.

Similar to PABPs, there was little concordance between the
PPIs identified by the two different methods, and only 15
proteins of 202 were common (Fig. 5C and Table S3B).
Additional to MEX67, there were 12 proteins with localization
to the NPC or nuclear envelope, namely (i) eight nucleoporins
(compare Fig. 5B), (ii) Tb927.6.890, unique to kinetoplastida,
but possessing a SAC3/GANP/THP3 domain at its N termi-
nus; Sac3 from yeast is a well-known interactor of MEX67-
Mtr2 that localizes to the cytoplasmic side of the NPC (36),
(iii) Tb927.7.2330 and Tb927.11.5560, two proteins of un-
known function, and finally (iv) Tb927.10.7680, a GTPase-
activating protein (RabGAP-TBC domain, TBC-RootA (37));
TBC-RootA is likely involved in the GTP-dependent mRNA
transport via the small GTPase Ran (11). Ran, Ran-binding
protein, and MEX67b (38), all high-confidence interactors in
the pulldown, were also enriched in the BioID PPI dataset but
below a significance cutoff. Two further proteins common to
both BioID and pulldown are cyclophilin (localization to the
nucleolus, unknown function) and KMP11 (a protein of the
basal body and flagellum attachment zone) (20, 39), both likely
contaminants. Surprisingly, the major MEX67 interactor,
Mtr2, was only identified by pulldown, likely because of the
low molecular weight of Mtr2 (15.8 kDa).

About 103 proteins were unique to the pulldown, 61 of these
in confidence group A. Most (40 proteins) of these localized to
the NPC or nuclear envelope and included most nucleoporins
(compare Fig. 5B), (putative) transport proteins including Ran-
binding protein 1, importin 1, importin beta, Ran RTB2, and
many hypothetical proteins. Four proteins localized to the
nuclear envelope and ER. Seven had nuclear localizations,
including the RBPs DRBD4, DBP2B, and DRBD18, whereas 10
had non-nuclear or unknown localizations.

In contrast, of 84 proteins unique to the BioID dataset, 68
had a nuclear localization, four with NPC and only 12 had
non-nuclear or unknown localization. NPC-associated pro-
teins unique to the BioID were exportin-1 (XPO1), NMD3,
and Ran-binding protein RanBPL. Interestingly, NMD3 is
implicated in nuclear export of mRNA of procyclin-associated
genes, a process shown to be disrupted by silencing of NMD3,
Only three of these proteins were identified in the BioID experiment (red asteris
MEX67 BioID experiment are listed in Table S3B. A corresponding color-code
complex; NPC, nuclear pore complex; PABP, poly(A)-binding protein; TRAMP,
XPO1, or MEX67 (40). This finding extended the prototypic
function of NMD3 and XPO1 in rRNA export and is sugges-
tive of overlapping and interdependent nuclear export routes
for mRNA and rRNA, for which there is also evidence in yeast
(41). While the absence of NMD3 and XPO1 in the pulldown
argues against a stable interaction with MEX67, their high
enrichment in BioID datasets suggests transient interactions
with MEX67.

Among the nuclear-localized proteins were many RBPs and
proteins with functions in nuclear mRNA processing,
including spliceosomal factors (U5-200K, RBSR4/U2AF65,
splicing factor 3B, U4/U6 small nuclear ribonucleoprotein
PRP3), an exosome subunit RRP6, the noncoding poly(A)
polymerase NPAPL, the cap guanylyltransferase-
methyltransferase 1 (CGM1), and proteins involved in tran-
scription. However, the majority of proteins known to be
involved in nuclear mRNA metabolism (33) was not identified
with either method (Fig. 5D).

To summarize, both BioID and pulldown detected the ex-
pected interactions of MEX67 with FG-type nucleoporins. In
fact, these are likely the major interactions; as in yeast, MEX67
can be fused to such a nucleoporin and still fulfill its essential
functions (42). Apart from these FG-type nucleoporins, there
was little coincidence between the PPIs identified by the two
methods. While the pulldown mainly coimmunoprecipitated
the entire NPC, BioID identified nuclear proteins involved in
mRNA metabolism and many RBPs, potentially reflecting
transient interactions between MEX67 and its mRNA sub-
strates that are missed in the pulldown.

Altogether, BioID is a valuable tool for interrogation of
MEX67 function as it clearly discriminates components of the
NPC engaging in direct interaction, as the subset NUPs
exposed the inner pore channel. On the other hand, the
pulldown detects many indirect interactions because of high
stability of NPC subunit interactions. The latter provides
equally meaningful information, as MEX67 indeed, is consid-
ered to exhibit some of the characteristics of a mobile nucle-
oporin, because of its significant presence at the NPC (42).
Furthermore, BioID appears to identify transient interactions,
as indicated by the enrichment of proteins with a function in
mRNA binding and nuclear localization, albeit requiring
validation.
The nucleoporin NUP158

NUP158 is an FG-NUP/alpha-solenoid and ortholog of
outer ring nucleoporins ScNup145 and HsNup98-96. Cryo-
mill affinity capture was repeated as described (11) but sub-
jecting the entire elution to triplicate LC–MS/MS analysis.
We detected coprecipitated 23 nucleoporins, eight falling into
SigA and five into SigB (Figs. 6B, S1 and Table S3). Among
these are NUP109, Sec13, NUP41, NUP82, NUP89, NUP132,
and NUP152; together with NUP158, these eight proteins
k) in significance group A (black, bold) or B (black, regular). Full details on the
scheme is shown on the left. CBC, cap binding complex; EJC, exon junction
Trf4–Air2–Mtr4, polyadenylation; TREX, couples transcription and export.
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form the outer ring complex (11). Further significant inter-
actors are the nuclear basket protein NUP110, NUP76,
NUP48 and inner ring proteins NUP65, NUP96, and
NUP225. Many additional NPC-associated proteins such as
NUP140, the inner ring proteins NUP62, NUP53b, and
10 J. Biol. Chem. (2023) 299(1) 102726
NUP119, the FG NUPs NUP64 and NUP98, and the lamina
protein NUP-1 were also enriched but fall outside the SigA/B
cutoff. About 18 additional proteins were identified as sig-
nificant interactors (Table S3), of which five localize to the
NPC and further five to the nucleus (20).
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NUP158 BioID identified 53 proteins (Fig. 6A and Table S3):
10 proteins in SigA (including five nucleoporins), a further 12
in SigA that also appear in the GFP-control SigC detections,
and 31 proteins in SigB. In comparison to the PABP and
MEX67 BioID experiments, this is the shortest list of bio-
tinylated proteins, likely reflecting the highly confined locali-
zation of NUP158. Of these 53 proteins, 13 localized to the
NPC, 16 to the nucleus, and five to the ER/nuclear envelope
(20).

Concordance between BioID and pulldown PPIs was once
again poor (Fig. 6B). Many nucleoporins identified as inter-
action partners in the pulldown were not identified in the
BioID (NUP140, NUP76, NUP41, NUP89, SEC13, NUP82,
NUP152, and NUP110) and, vice versa, others were unique to
the BioID (NUP144, NUP149, and NUP53a) or outside the
pulldown SigA/B cutoff (NUP98 and NUP64). The only
nucleoporins in common were FG-NUPs NUP109 and
NUP13, and there was just one additional interactor
Tb927.11.13080 shared between pulldown and BioID datasets
(Table S3). This latter is a protein of unknown function but
localizes to the NPC (20)). Hence, both methods identify
meaningful, but significantly different, PPIs for NUP158. The
pulldown identifies adjacent outer ring proteins that are partly
absent in BioID. A potential reason for the absence could be
that NUP158, located within the rigid structure forming the
outer rings of the NPC, has a limited labeling radius because of
immobility, steric constraints, or even the local biochemical
environment. Therefore, although pulldown is superior iden-
tification of PPIs for a strictly localized nucleoporin, additional
valuable data can be obtained with BioID.
Conclusions

Collectively, we found surprisingly little concordance be-
tween proteins identified by BioID and by affinity capture. This
strongly suggests that these methods should be viewed as
providing a distinct PPI for a given bait rather than offer
equivalents or alternatives. A similar comparative interactomics
study to the one here has been performed for several chromatin-
associated protein complexes in human cell lines (43, 44) with
broadly similar outcome; BioID generally produced larger
interactomes, and the concordance between pulldown and
BioID was poor, albeit that both techniques identified mean-
ingful PPIs. Our dataset however analyzed a cohort of bait
proteins with considerably greater variation of location and
positional constraints to provide additional insight.

For soluble and unconstrained cytoplasmic proteins with a
high potential for nonspecific interactions, BioID has a sig-
nificant level of bystander labeling. By contrast, BioID with
MEX67, a more restricted bait, identified exclusively FG-NUPs
of the inner pore channel, whereas pulldown coprecipitated
the entire NPC. Thus, the optimal method depends on the
localization of the protein of interest. Ideally, both methods are
used in parallel, and recently, a hybrid tag was introduced
combining both biotin ligase and an epitope tag for pulldown
(45). Several variants of BioID aiming to overcome some of the
pitfalls of BioID are available and include an inducible system
with target-specific biotinylation only occurring when the
biotin ligase is attached to the bait using a dimerizing agent
(46) and a split BioID, where biotinylation can only occur once
two proteins carrying partial BioID tags interact (conditional
biotinylation) (47).

A major weakness of BioID beyond bystander identifications
is that many low-molecular weight proteins are unidentified.
Most strikingly, here was the absence of Mtr2 from the
MEX67 BioID data. In general, small proteins are harder to
detect by MS than large proteins as there are simply less
peptides to detect, but this applies to both pulldown and
BioID. However, first, BioID relies on surface-exposed lysine
residues, and probability of occurrence depends on protein
size amongst other parameters. Second, in pulldown analysis,
peptides of the entire protein are potentially available for MS,
as proteins are fully, or near fully, eluted from the beads, but in
BioID, peptides are eluted from beads by trypsin digestion, and
any biotinylated peptides remain attached to the beads
(Table S4). For low-molecular weight proteins, the likelihood
that lysine residues are inaccessible is lower than for larger
proteins, as small proteins are less likely to “bury” lysine res-
idues in their core. This can explain the systematic absence of
expected interactors with a low molecular weight from BioID
but not from the pulldown. One potential way to increase
elution of biotinylated peptides would be to add excess biotin
before the proteolytic digest to saturate all biotin-binding sites
and hence restrict rebinding of biotinylated peptides to the
beads after their release by the protease. There is also an
alternative approach for purification: trypsination of cell ly-
sates prior to purification followed by purification of bio-
tinylated peptides using a biotin-antibody rather than
streptavidin has been shown to result in a higher recovery rate
of biotinylated peptides (48, 49). However, this approach
comes at the cost of increased background from nonspecific
binding, excluding the use of stringent washes as facilitated by
the strong biotin–streptavidin interaction.

Altogether, this study offers guidance for choosing the most
appropriate method for protein complex characterization,
dependent on localization and positional constraints.
Furthermore, it highlights potential pitfalls concerning
experimental design and data interpretation. Overall, BioID
and affinity capture are complementary with each approach
elucidating a unique subset of PPIs for a given target protein.
Hence, combination of both methods can be leveraged for
more complete interactome mapping.
Experimental procedures

Cell culture and genetic manipulation

T. brucei Lister 427 procyclic cells were cultured in SDM-79
(50). The generation of transgenic trypanosomes was done
using standard methods (51). All fusion proteins were
expressed from their endogenous locus as described (52),
modified to result in fusing TurboID and one HA tag to the C
terminus of the protein. eYFP was expressed fused to
TurboID-HA using an inducible expression system based on
tetracycline (52).
J. Biol. Chem. (2023) 299(1) 102726 11
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Western blot

Western blotting was performed using standard methods.
Detection of biotinylated proteins was done with Streptavidin-
IRDye680LT (LI-COR) (1:10,000 dilution). Binding immuno-
globulin protein (BiP) was detected using anti-BiP (1:200,000
dilution) (kind gift of James D. Bangs, University at Buffalo).

Immunofluorescence

About 1 × 107 cells at 5 × 106 cells/ml were washed once in
1 ml SDM79 without hemin and serum and resuspended in
500 μl PBS. For fixation, 500 μl of 8% paraformaldehyde was
added for 20 min while rotating. About 7 ml PBS with 20 mM
glycine were added, cells were pelleted, resuspended in 150 μl
PBS, and spread on polylysine-coated slides (in circles drawn
with a hydrophobic pen). After 15 min, cells had settled to the
slide, surplus PBS was removed, and cells were permeabilized
with 0.5% Triton X-100 in PBS. Slides ware rinsed in PBS, and
cells were then blocked in 3% bovine serum albumin (BSA) in
PBS for 30 min, followed by 60 min incubation with rabbit-
mAb-anti-HA C29F4 (1:500 dilution; Cell Signaling Technol-
ogy) and with Streptavidin-Cy3 (1:200 dilution; Jackson
Laboratories) in PBS/3% BSA. Slides were washed in PBS
(three times for 5 min) and incubated with anti-rabbit Alexa
Fluor Plus 488 (1:500 diluiton) in PBS/3% BSA for 1 h; the last
10 min were done in the presence of 40,6-diamidino-2-
phenylindole (DAPI) (0.1 μg/ml). Slides were washed 3 ×
5 min in PBS and embedded into ProLong Diamond Antifade
Mountant (Thermo Fisher Scientific). Images were recorded as
Z-stacks (100 images with 100 nm distance) on a custom build
TILLPhotonics iMic microscope equipped with a Sensicam
camera (PCO AG, 6.45 m/pixel) und 100× oil immersion
(numerical aperture = 1.4) objectives (Olympus). Filter sets
were (i) excitation (ex): 320 to 380 nm, dichroic (dc): 400 to
430 nm, and emission (em): 438 to 486 nm (DAPI), (ii) ex: 430
to 474 nm, dc: 585 nm, and em: 489 to 531 nm (Alexa Fluor
Plus 488) and (iii) ex: 540 to 580 nm, dc: 585 nm, and em: 592
to 664 nm (Cy3). For each image, the exposure times were
50 ms for DAPI and 500 ms for all other fluorophores. Images
were deconvolved using Huygens Essential software (Scientific
Volume Imaging BV) and are either presented as a single plane
or as a Z-stack projection (sum slices), as indicated.

Affinity enrichment of biotinylated proteins and on-bead
tryptic digests

Cells were maintained at a density of 1 × 106 to 107 cells per
ml and harvested at a cell density of 5 × 106 cells per ml. The
eYFP control was induced by addition of tetracycline at a
concentration of 1 μg/ml 24 h prior to harvesting. No extra
biotin was added for induction of labeling, as we found the
biotin concentration in the SDM79 medium (827 nM) to be
sufficient for high-level biotinylation.

About 5 × 108 cells were used in each replicate. Cells were
harvested at 1400g, washed once with serum-free medium, and
pellets were rapidly frozen in liquid nitrogen and stored
at −80 �C. For isolation of biotinylated proteins, each cell
pellet was resuspended in 1 ml lysis buffer (0.5%
12 J. Biol. Chem. (2023) 299(1) 102726
octylphenoxypolyethoxyethanol, 0.1 M Pipes-NaOH (pH 6.9),
2 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N0,N0-tet-
raacetic acid, 1 mM MgSO4, 0.1 mM EDTA, complete EDTA-
free protease inhibitor cocktail [Roche]) and incubated for
15 min at room temperature (RT) in an orbital mixer. Soluble
and nonsoluble fractions were separated by centrifugation
(14,000g, 5 min, 4 �C) and the soluble fraction was incubated
with 100 μl streptavidin-linked Dynabeads (MyOne Strepta-
vidin C1; Thermo Fisher Scientific) for 1 h at 4 �C under gentle
mixing. Beads were washed twice in 1 ml buffer 1 (2% [w/v]
SDS in water) once in 1 ml buffer 2 (0.1% [w/v] deoxycholate,
1% Triton X-100, 1 mM EDTA, 50 mM Hepes [pH 7.5], and
500 mM NaCl), once in 1 ml buffer 3 (250 mM LiCl, 0.5%
octylphenoxypolyethoxyethanol, 0.5% [w/v] deoxycholate,
1 mM EDTA, 10 mM Tris–HCl [pH 8.1]), and once in 1 ml
buffer 4 (50 mM Tris–HCl [pH 7.4], 50 mM NaCl); each
washing step was 8 min at RT under orbital shaking. Beads
were then prepared for tryptic digestion by washing three
times in 500 μl ice-cold 50 mM NH4HCO3, resuspension in
40 μl of the same buffer supplemented with 10 mM dithio-
threitol, and incubation in a thermomixer at RT for 1 h.
Iodoacetamide was added to a concentration of 20 mM, fol-
lowed by incubation in the dark at RT for 30 min. Finally,
5 μg/ml proteomics-grade trypsin (SOLu-Trypsin; Sigma–
Aldrich) was added to the beads. The digest was done over-
night at 30 �C in a thermomixer (1000 rpm). After removal of
the first eluate, beads were resuspended in 50 μl 50 mM
NH4HCO3 supplemented with 10 mM dithiothreitol and 5 μg/
ml MS-grade trypsin and incubated in a thermomixer at 37 �C
for 1 h. The eluate was combined with the first eluate, and
both were lyophilized in a Speed-vac (Christ alpha 2–4).
LoBind tubes (Eppendorf) were used throughout.
MS and proteomics analysis

BioID-eluted peptides were resuspended in 50 mM
NH4HCO3 and passed over C18 stage tip columns as described
(53) and then analyzed by LC–MS/MS on an Ultimate3000
nano rapid separation LC system (Dionex) coupled to an LTQ
Q-exactive mass spectrometer (Thermo Fisher Scientific).
Resulting spectra were processed using the intensity-based
label-free quantification (LFQ) in MaxQuant, version 1.6.16
(Max Planck Institute of Biochemistry, Martinsried) (54, 55).
Minimum peptide length was set at six amino acids allowing a
maximum of two missed cleavages, and FDRs of 0.01 were
calculated at the levels of peptides, proteins, and modification
sites based on the number of hits against the reversed
sequence database. Data from TurboID were in addition
searched for lysine biotinylated peptides (+226.078 Da). LFQ
data were analyzed using Perseus (18). For statistical analysis,
LFQ values were log2 transformed, and missing values were
imputed from a normal distribution of intensities around the
detection limit of the mass spectrometer. These values were
subjected to a Student’s t test comparing an untagged control
(wt cells) triplicate sample group to the TurboID-tagged pro-
tein triplicate sample groups, including the GFP
control. −log10 t test p values were plotted versus t test
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difference to generate multiple volcano plots (Hawaii plot,
Fig. 2). Potential interactors were classified according to their
position in the Hawaii plot, applying cutoff curves for “sig-
nificant class A” (SigA; FDR = 0.01, s0 = 0.1), “significant class
B” (SigB; FDR = 0.05, s0 = 0.1), and “significant class C” (SigC;
FDR = 0.05, s0 = 2), respectively. The cutoff is based on the
FDR and the artificial factor s0, controlling the relative
importance of the t test p value and difference between means
(at s0 = 0 only the p value matters, whereas at nonzero s0, the
difference of means contributes).

Cryomill affinity capture

For affinity capture of PABP1, PABP2, and MEX67, we used
data from our previous studies (10, 11). MEX67 data were
reanalyzed for three different extraction conditions (higher
stringency buffer 1: 20 mMHepes, pH 7.4, 250 mMNaCl, 0.5%
Triton, plus protease inhibitors, and two low stringency sta-
bilizing buffers: buffer 2A—20 mM Hepes, pH 7.4, 250 mM
sodium citrate, 0.5% Tween-20, plus protease inhibitors; buffer
2B—20 mM Hepes, pH 7.4, 20 mM NaCl, 50 mM sodium
citrate, 0.5% Tween-20, plus protease inhibitors) and
compared with a negative control, omitting the GFP tag. Po-
tential interactors were assigned to two confidence intervals
termed confidence A (confidence group A) for proteins
enriched greater than twofold under all three conditions and
confidence B for proteins enriched greater than twofold in at
least one condition. The NUP158 cryomill affinity enrichment
purification analysis was repeated essentially as described (11)
but subjecting the entire elution to triplicate LC–MS/MS
analysis. In brief, NUP158 endogenously tagged with eYFP at
the C terminus was extracted in buffer 3 (20 mM Hepes [pH
7.4], 250 mM NaCl, 0.5% CHAPS, complete EDTA-free pro-
tease inhibitor cocktail), captured on magnetic anti-GFP
nanobody beads (GFP-Trap Magnetic Agarose; Chromotek)
and washed four times with buffer 3. Proteins were eluted by
on-bead tryptic digest and analyzed by LC–MS/MS on an
Ultimate3000 nano rapid separation LC system (Dionex)
coupled to an Orbitrap Fusion mass spectrometer (Thermo
Fisher Scientific). Data were analyzed as described (56) and
detailed previously.

Data availability

All proteomics data have been deposited at the Proteo-
meXchange Consortium via the PRIDE partner repository (57)
with the dataset identifier PXD031245. The proteomics data
for the PABP1 and PABP2 pulldown have the dataset identifier
PXD008839.

Supporting information—This article contains supporting informa-
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