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BACKGROUND Healthcare-associated infections due to multidrug-resistant (MDR) bacteria such as Pseudomonas aeruginosa 
are significant public health issues worldwide. A system biology approach can help understand bacterial behaviour and provide 
novel ways to identify potential therapeutic targets and develop new drugs. Gene regulatory networks (GRN) are examples of in 
silico representation of interaction between regulatory genes and their targets.

OBJECTIVES In this work, we update the MDR P. aeruginosa CCBH4851 GRN reconstruction and analyse and discuss its 
structural properties.

METHODS We based this study on the gene orthology inference methodology using the reciprocal best hit method. The P. 
aeruginosa CCBH4851 genome and GRN, published in 2019, and the P. aeruginosa PAO1 GRN, published in 2020, were used 
for this update reconstruction process.

FINDINGS Our result is a GRN with a greater number of regulatory genes, target genes, and interactions compared to the 
previous networks, and its structural properties are consistent with the complexity of biological networks and the biological 
features of P. aeruginosa.

MAIN CONCLUSIONS Here, we present the largest and most complete version of P. aeruginosa GRN published to this date, to 
the best of our knowledge.
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Pseudomonas aeruginosa is a ubiquitous and oppor-
tunistic pathogen of which infections can affect the low-
er respiratory tract, skin, urinary tract, eyes, soft tissues, 
surgical wound, and gastrointestinal system, among 
others, leading to bacteraemia, endocarditis, and other 
complications, particularly in health care settings and in 
immunocompromised patients.(1,2,3) This Gram-negative 
bacteria is one of the most difficult to treat,(4) due to its 
intrinsic resistance, acquisition of resistance through 
chromosomal gene mutations, and horizontally acquired 
resistance mechanisms to multiple drugs.(3) Multidrug 
resistance (MDR) imposes the central difficulty in the 
selection of appropriate antibiotic treatment and reduc-
es treatment options, especially in nosocomial settings 
such as healthcare-associated infections (HAI).(5,6)
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HAI is a severe public health issue related to high 
morbidity and mortality rates in hospitalised patients 
and high healthcare costs.(7) Worldwide, P. aeruginosa is 
one of the most prevalent agents of HAI.(8)

In Brazil, the Brazilian Health Surveillance Agen-
cy(9) ranked P. aeruginosa as the third most common 
causative agent of HAI in hospitalised patients in adult 
intensive care units (ICU) and the second in paediatric 
ICU, being nearly 40% of the reported strains resistant 
to carbapenems.(9) This class of beta-lactam antibiotics 
has been widely administered worldwide for treating P. 
aeruginosa infections and other MDR Gram-negative 
bacterial infections.(10) Indeed, a significantly higher 
mortality rate was observed among patients infected 
with MDR P. aeruginosa clones (44.6%) compared to 
those infected with non-MDR (24.8%).(6)

The most epidemiologically important mechanism 
of carbapenem resistance is the production of carbapen-
emases. Among MDR P. aeruginosa clinical isolates 
in Brazil, the most prevalent carbapenemase is the São 
Paulo metallo-β-lactamase (SPM-1).(11) This enzyme is 
encoded by the gene blaSPM-1, located on the P. aerugi-
nosa chromosome,(12) and it confers resistance to almost 
all classes of beta-lactams. The first register of an MDR 
P. aeruginosa strain carrying the blaSPM-1 gene found in 
Brazil is from 2003.(13) Widely disseminated in distinct 
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Brazilian geographic regions, SPM-1-producing P. ae-
ruginosa is associated with the clone SP/ST277 and has 
been isolated from hospital sewage systems, rivers, and 
microbiota of migratory birds.(11,12) The strain P. aeru-
ginosa CCBH4851 belongs to clone SP/ST277, and was 
involved in an endemic outbreak in Brazil in 2008.(14) 
This strain is resistant to most antimicrobials of clinical 
importance, such as aztreonam, amikacin, gentamicin, 
ceftazidime, cefepime, ciprofloxacin, imipenem, me-
ropenem, and piperacillin-tazobactam, being suscep-
tible only to polymyxin B, and has several mechanisms 
of mobile genetic elements.(2,14)

To better understand P. aeruginosa’s behaviour, 
more comprehensive knowledge of gene expression pat-
terns predicted by analysing its gene regulatory network 
(GRN) is of great value. A GRN consists of a set of tran-
scription factors (TF) that interact selectively and non-
linearly with each other and with other molecules in the 
cell to regulate mRNA and protein expression levels.(15)

Mathematical modelling and computational simula-
tions are approaches for analysing the GRN and other 
complex cellular systems influenced by numerous fac-
tors. These models allow the construction of biological 
networks, predict its behaviour under unusual condi-
tions, identify how a disease might develop, and inter-
vene in such development to prohibit cells from reaching 
undesirable states.(16) In addition, due to their lower cost 
and high accuracy, such approaches contribute to devel-
oping new drugs.(17)

The P. aeruginosa PAO1 strain had its genome se-
quence published in 2000, providing information re-
garding genome size, genetic complexity, and ecological 
versatility.(18) It has been extensively studied since then.

Published in 2011 by Galán-Vasquez et al.,(19) the 
first P. aeruginosa GRN was based on the PAO1 strain 
(PAO1-2011). Then, in 2019, Medeiros et al.(2) described 
a GRN reconstruction of CCBH4851 strain (CCBH-
2019). Finally, in 2020, Galán-Vasquez et al.(20) pub-
lished the updated GRN of P. aeruginosa with the PAO1 
strain (PAO1-2020), which was much larger than the 
previous ones, containing new interactions. All works 
analysed the GRNs main structural properties and regu-
latory interactions.

This manuscript describes CCBH-2022, an updated 
GRN of the MDR P. aeruginosa based on the CCBH4851 
strain, using as references both CCBH-2019 and PAO1-
2020. We characterise regulators, target genes (TGs), 
transcription factors (TFs), auto-activation interactions, 
and influential genes of the network.

We analyse the main structural properties of the 
network, such as degree distribution, clustering coef-
ficient, and relative abundance of network motifs. Fi-
nally, we compare the results of our analyses with those 
from previous GRNs.

MATERIALS AND METHODS

In this work we study the P. aeruginosa CCBH4851 
strain, which is deposited at the Culture Collection 
of Hospital-Acquired Bacteria (CCBH) located at the 
Laboratório de Pesquisa em Infecção Hospitalar, In-
stituto Oswaldo Cruz/Fundação Oswaldo Cruz (Fio-

cruz) (WDCM947; 39 CGEN022/2010). The genome 
sequence is available in the GenBank database (Acces-
sion CP021380.2).(14)

CCBH-2019 and PAO1-2020 models were the bases 
for the reconstruction of this GRN. CCBH-2022 GRN re-
sults from the orthology analysis between the P. aerugi-
nosa PAO1 and CCBH4851 gene sequences. CCBH-2022 
model also inherits the orthologs between CCBH4851 
and P. aeruginosa PA7(21) and P. aeruginosa PA14(22) 
strains, which were already present in CCBH-2019 
GRN. The evolutionary histories of genes and species 
reconstruction are based critically on the accurate iden-
tification of orthologs.(23) Orthology refers to a specific 
relationship between homologous characters that arose 
by speciation at their most recent point of origin,(24,25) a 
common ancestor. One of the most common approaches 
to determining orthology in comparative genomics is the 
Reciprocal Best Hits (RBH), which relies on BLAST.(26) 
An RBH occurs when two genes from different genomes 
find themselves the best scoring match in the opposite 
genome.(27,28) Regulatory interactions between TFs and 
TGs in the PAO1 GRN were propagated to CCBH-2022 
GRN if the TF and the TG formed an RBH. Medeiros 
et al.(2) designed and implemented an algorithm using 
the Python programming language to automate and 
generate a list of RBHs in a tabular format (available as 
Supplementary data). All the protein sequences from P. 
aeruginosa CCBH4851 (P1) and P. aeruginosa PAO1 
(P2) were considered. BLAST+(29) was used to query the 
proteins from P1 against those from P2 (forward results) 
and P2 against P1 (reverse results). Each P1 query se-
quence was considered in turns, and its best match from 
P2 was identified from forwarding results (x). Likewise, 
each P2’s query sequence was considered from the re-
verse results, with its best match in P1 (x’). If x = x’, 
then they are RBH. Local BLASTP searches of each 
protein set against the other were executed, with the fol-
lowing cut-off parameters: identity ≥ 90%, coverage ≥ 
90%, and E-value ≤ 1 e-5, showing the results in tabular 
format. If the search returned no hits, the gene was con-
sidered to have no ortholog within the opposite genome. 
Manual BLASTP was used to prevent false negatives, 
aligning these gene sequences with the opposite genome, 
considering the above parameters. If they still returned 
no hits but were present in either PAO1-2020 or CCBH-
2019 models, the results were evaluated with a literature 
search to determine if they were accurate and whether 
they should be part of CCBH-2022.

The final GRN table is available as Supplementary 
data and is organised into six columns: Regulatory gene, 
Ortholog of the regulatory gene, Target gene, Ortholog 
of the target gene, Mode of regulation, and Reference. 
The first column lists the regulatory genes of P. aeru-
ginosa CCBH4851, while the second column contains 
orthologs of regulatory genes in the reference strain 
(PAO1 and PA7 or PA14 from the exclusive interactions 
in CCBH-2019; the same applies to TG’s orthologs). The 
third column refers to the target gene in P. aeruginosa 
CCBH4851, while the fourth column lists orthologs of 
TGs in the reference strain. Finally, the fifth column 
describes the mode of regulation, and the sixth column 
indicates the corresponding data source.
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The interactions between transcription factor pro-
teins and the genes they regulate in an organism define 
a directed graph. For the computational analysis, the 
structure of GRN can be represented as a directed graph, 
formed by a set of vertices (or nodes) connected by a 
set of directed edges (or links). Basic network measure-
ments are related to vertex connectivity, the occurrence 
of cycles, and the distances between pairs of nodes, 
among other possibilities.(30)

The degree of vertices is the most elementary char-
acterisation of node i, and k(i) is defined as its number 
of edges. In directed networks, there are incoming (k-
in degree) edges and outgoing (k-out degree) edges.(31) 
The degree distribution can follow a functional form 
P(k) = Ak -γ, called power-law distribution, where P(k) 
is the likelihood that a randomly chosen node from the 
network has k direct interactions, A is a constant that 
ensures that the P(k) values add up to one, and γ is the 
degree exponent.(32,33,34,35,36) According to Albert,(37) this 
function indicates high diversity of node degrees, with 
the P(k) value decaying as a power law that is free of a 
characteristic scale, resulting in the absence of a typical 
node in the network that could be used to characterise 
the rest of the nodes. Most real networks with structural 
information available exhibit this scale-free behaviour, 
deviating from a Poisson distribution expected in a clas-
sical random network.(38,39)

Studies have shown a scale-free structure in cellular 
metabolic networks,(32,40) protein interaction networks, in-
cluding in cancer,(41,42) transcription regulatory networks, 
and GRN.(20,43,44,45) Following the literature,(36,37,46,47,48) 
there are some qualitative and quantitative characteris-
tics to ensure that a network is scale-free: the power-law 
distribution appears as a straight line on a log-log plot; 
the γ value usually is in the range 2<γ<3; and the pres-
ence of high-degree nodes, called hubs, the most highly 
connected nodes,(47) with most nodes clustered around 
them. The hubs demonstrate the absence of a uniform 
connectivity distribution in the network, presenting the 
80-20 rule (also referred to as the Pareto principle), with 
small-degree nodes being the most abundant. However, 
the frequency of high-degree nodes decreases slowly.(37) 
Hubs are fundamental for determining therapeutic tar-
gets against an infectious agent.(2) Scale-free networks 
are heterogeneous,(49) so random node disruptions gener-
ally do not lead to a significant loss of connectivity. How-
ever, the loss of the hubs causes the breakdown of the 
network into isolated clusters.(50) Some studies validate 
these general conclusions for cellular networks.(51,52,53)

In the GRN, determining the vertices with the high-
est k-out degrees is a method for identifying a hub,(2) 
The degree threshold is the exact number of interactions 
that characterise a hub, and this criterion differs from 
one study to another.(54) The degree threshold adopted 
in this work was the average number of connections of 
all nodes having at least two edges, resulting in a cut-off 
value of 16 connections.

Motifs are connectivity patterns, a small set of re-
curring regulation patterns from which the networks 
are built(55,56) that are associated with specific functions.
(57) A triangle, i.e., three fully connected vertices, is the 

simplest type of motif.(47) These genes are a regulator, X, 
which regulates Y, and gene Z, which is regulated by both 
X and Y.(58) Triangles can be closed (three connections 
within the set) or open (two edges).(38) This 3-genes mo-
tif is the feedforward loop (FFL) and the most common 
in GRN, appearing in gene systems in bacteria and other 
organisms,(59,60) with the possibility of either activation or 
repression in each of the three regulatory interactions.(61) 
The coherent type-1 FFL and the incoherent type-2 FFL 
occur more frequently in transcriptional networks.(58)

The clustering coefficient is the probability that two 
genes with a common neighbour in a graph are also in-
terconnected.(19) This measure has two popular defini-
tions: the local and global clustering coefficient. The lo-
cal clustering coefficient of vertex i, Ci, is defined as Ci = 
2ei / ki (ki - 1), where ei is the number of edges connecting 
node i with degree ki, and ki (ki - 1) / 2 is the maximum 
number of edges in the neighbourhood of node i.(36) In 
GRNs, the local clustering coefficient C(i) is interpreted 
as the interaction between genes forming the regulatory 
groups.(2) The clustering coefficient of a network, C, is 
calculated by the average of Ci over all vertices.(19,62) Not 
considering the directionality of the edges, the global 
clustering coefficient is the ratio between the number of 
closed triangles and the total number of triangles (open 
or closed) in the network.(2) C(k) represents the mean 
clustering coefficient over the vertices with degree k.(36) 
Some biological networks tend to present high clustering 
coefficient values, e.g., in the protein-protein interaction 
network of S. cerevisiae, <C> ≈ 0.18.(30,47)

The network density measure is the number of edges 
of the network over the maximum possible number of 
edges, measuring the interconnectivity between vertices, 
and is strongly correlated to the potential to generate gene 
expression heterogeneity.(63) The network diameter is the 
path length between the two most distant nodes.(36) The 
average path length is the measure that indicates the dis-
tances between pairs of vertices (the average of the short-
est path length over all pairs of nodes in the network).(46)

Several genes are connected in the GRN. When the 
nodes interact through a direct or an indirect link (inter-
mediate connections), they are considered part of a con-
nected component. These associations are the concept of 
network connectivity, and for this analysis in the present 
work, network interactions were considered undirected.(2)

Analysing the structural characteristics (connected 
components, hubs, and motifs) can help determine the 
best approach to disturb a network to promote a desired 
phenotype in the cell.(64)

For CCBH-2022 structural analyses, the R program-
ming language and RStudio were used.(65) Scales, dplyr, 
tibble, readr and igraph packages were used for data ma-
nipulation and plotting the structural analyses.(2,20,66) The 
igraph library was used to compute most properties de-
scribed above: the in and out degrees, centrality, cluster-
ing coefficients, feed-forward loop motifs, connectivity, 
cycles, paths, and hierarchical levels analyses.(67)

The illustrations of the GRN, the hub’s network, and 
the connectivity analysis were made in Cytoscape.(68) 
All figures are presented with higher resolution in the 
Supplementary data.
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The codes for the structural analysis in R and for 
finding RBH in python, implemented by Medeiros et 
al.,(2) and the CCBH-2022 file in CSV format are avail-
able as Supplementary data in our Github repository 
(https://github.com/FioSysBio/CCBH2022).

RESULTS

CCBH-2022 consists of 5452 regulatory interactions 
among 3186 gene products, of which 218 were identified 
as regulatory genes and 2968 as target genes. Of the 218 
regulatory proteins, 87 are TFs, 19 are sigma factors 
(SF), and 13 are RNAs. Of these 13 RNAs, 11 are SF as 
well. The tables containing their relations are presented 
in the Supplementary data.

Given the 6577 predicted protein-coding genes of 
P. aeruginosa CCBH4851, the model organism in this 
study, the current network represents roughly 50% of the 
genome, against 16.52% from CCBH-2019.

Specific regulatory genes and their interactions were 
kept as described in CCBH-2019, such as the ones result-
ing from the P. aeruginosa PA7 and P. aeruginosa PA14 
orthology, and in dedicated biological databases and sci-
entific literature, e.g., IHF (integration host factor). This 
bacterial DNA-bending protein, essential in gene expres-
sion regulation, is absent in the CCBH4851 genome. How-
ever, Delic-Attree et al.(69) demonstrated that P. aerugino-
sa contains the IHF protein composed of the products of 
the himA and himD genes. These genes act in combination 
as a TF for several TGs,(2) and all were listed as regulatory 
genes in CCBH-2019. Consequently, equivalent annota-
tions to the previous CCBH4851 GRN were maintained.

CCBH-2022 has 5452 edges, and these interactions 
were classified into activation (“+”), repression (“-”), 
dual (“d”, when, depending on the conditions, the regu-
latory gene act as an activator or a repressor), and un-
known (“?”), as described in biological databases and 
scientific literature. An illustration of CCBH-2022 is 
presented in Fig. 1.

Regarding the structural measurements of the updated 
network, the summarised statistical results are presented 
in Table I. It contains the standard measures (the num-
ber of nodes and edges, number of autoregulatory motifs, 
network diameter, and average path length), the number 
of feed-forward motifs, and clustering coefficients. Also, 
Table I presents a comparison with data from PAO1-2011, 
CCBH-2019, PAO1-2020, and CCBH-2022.

Since both CCBH-2022 and PAO1-2020 contain sig-
nificant updates from their previous counterparts, the 
comparison between CCBH-2022 and PAO1-2020 is 
most relevant. CCBH-2022 had a density of 5.99e-04, 
slightly lower than the density of PAO1-2020 (6.07e-04) 
but showed the same order of magnitude. The diameter 
was 12, the same as CCBH-2019 and PAO1-2020 and 
higher than PAO1-2011, which was 9. The average short-
est path distance was 4.67, higher than PAO1-2020 (4.01) 
but slightly lower than CCBH-2019 (4.80). Similar to the 
previous GRN, CCBH-2022 was disconnected, show-
ing one large connected component (3102 genes) and 20 
small connected components.

The degree distributions of the four networks can be 
seen in Fig. 2A-D, with A and B being the incoming and 
C and D the outcoming degree distribution. Fig. 2B, D is 

on a log-log axis, and the straight line is consistent with a 
power-law distribution. For k-in, the estimated value for γ 
was 2.79, within the range 2<γ<3, consistent with a power 
law distribution. For PAO1-2020, the corresponding value 
was 2.67, 2.89 for CCBH-2019 and 2.71 for PAO1-2011.

The distribution of local clustering coefficients can 
be seen in Fig. 2E. CCBH-2022 had a global clustering 
coefficient equal to 4.42e-03, higher than PAO1-2020 
(3.03e-03). The scatter plot in Fig. 2F shows the corre-
lation between the local clustering coefficient C(i) and 
the degree k(i).

The most frequent mode of regulation in CCBH-
2022 is activation, occurring in 70,2% of the total in-
teractions in the network, followed by roughly 12% of 
repression mode and 17.8% of dual or unknown mode. 
Autoregulation occurs when a gene regulates its ex-
pression, and the prevalence in CCBH-2022 is of nega-
tive autoregulatory motifs.

The most abundant motif in all four networks was 
the coherent type I FFL, with 239 in CCBH-2022 (PAO1-
2011: 82; CCBH-2019: 79; PAO1-2020: 226). In addition, 
there were 10 incoherent type II FFL motifs in CCBH-
2022 (PAO1-2011: 3; CCBH-2019: 4; PAO1-2020: 8).

Table II shows the 30 most influential hubs in CCBH-
2022 and PAO1-2020.

An analysis was performed to determine whether 
the hubs are interconnected through direct interactions 
(Fig. 3).

DISCUSSION

The reconstruction and analysis of the P. aerugino-
sa GRN contribute to a better understanding of its an-
tibiotic resistance mechanisms. It also contributes to a 
greater knowledge of related cellular behaviours, such as 
adaptation and pathogenicity, mainly based on an MDR 
strain such as CCBH4851.

In this work, we have good coverage of roughly 50% 
of the genome on this updated network. The genome of 
reference strain PAO1 has 6.2Mbp, and PAO1-2020 has 
a coverage of 50% as well, with 5040 interactions and 
3006 genes.(20) However, considering that the CCBH4851 
genome has 6.8Mbp and has 5452 edges, and 3186 nodes, 
we can affirm that, to the best of our knowledge, this 
study presents the largest GRN of P. aeruginosa that has 
been assembled to date.

On the structural aspects, the charts in Fig. 2 and 
data in Table I make clear that CCBH-2022 represents a 
substantial improvement in terms of network complete-
ness and complexity when compared with the previous 
P. aeruginosa GRNs since it includes more nodes, edg-
es, and network motifs, and when comparing clustering 
coefficients (Fig. 2E-F). For the in silico approach, the 
network structural analysis is essential to understand the 
network architecture and performance.

The structural differences between CCBH-2022 and 
PA01-2020 results from additional information available 
due to the new version of PAO1 and recent experimental 
work on characterising the complete closed genome of P. 
aeruginosa CCBH4851.(104)

The structural measures of CCBH-2022, such as 
node degree distribution and clustering coefficient, are 
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consistent with a qualitative description of a scale-free 
network type. Indeed, the degree distribution followed 
the power-law distribution (Fig. 2B, D): a small num-
ber of nodes had many connections (the hubs) and many 
nodes had few connections.

The local clustering coefficient and node degree cor-
relation (Fig. 2F) showed that nodes with lower degrees 
had greater local clustering coefficients than nodes with 
higher degrees. These characteristics are representative 
of several biological processes, e.g., RNA binding.(105,106)

Fig.1: visualisation of CCBH-2022. Yellow circles indicate regulatory genes, light blue circles indicate target genes (TGs), black lines indicate an 
unknown mode of regulation, green lines indicate activation, and red lines indicate repression. Purple lines indicate a dual-mode of regulation. 
A: the gene regulatory networks (GRNs) large highly connected network component; B: all regulatory and TGs with no connections with A.
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CCBH-2022 showed a lower density value than 
PAO1-2020. The density of both GRNs was low due to 
the dynamic and structural flexibility of the networks, 
a characteristic typical of natural phenomena-based 
networks,(107) and because the nodes were not all inter-
connected.(2) However, CCBH-2022 density was lower 
probably because it has 20 small connected components 
disconnected from the larger one (Fig. 1), while PAO1-
2020 had 12 separated components. The variation in 
the number of connected components is plausible due 
to their size difference and the biological information 
about interactions available for the reconstruction.

All the previous P. aeruginosa GRNs are disconnect-
ed graphs, showing one large connected component and 
a separated few small connected components, and there 
may be several reasons for this disconnection in specific 
points. According to Medeiros et al.,(2) interactions among 
all genes are not expected since some genes in an organ-
ism are independent of each other, compartmentalised or 
global, constitutive or growth phase-dependent, and are 
triggered in different growth phases, thus resulting in a 
disconnected network, which corroborates with the ob-
served low density. The reason can also be from loss of 
existing interactions or a gain of interactions still not fully 
described from additional strain-specific blocks of genes 

acquired by horizontal gene transfer.(108) The large number 
of connected components found in CCBH-2022 results 
from connectivity parameters and the global clustering 
coefficient. Both structural measures are affected by the 
same biological behaviours.(107)

CCBH-2019 presented more negative regulations 
than PAO1-2011, a trend that continued between CCBH-
2022 and PAO1-2020. Also, the most frequent regula-
tory activity in CCBH-2022 is activation, but ~50% of 
the autoregulation was negative, which may be a con-
sequence of the increase in negative autoregulation in 
the overall network interactions compared to the previ-
ous ones. Negative auto-regulation in biological systems 
is commonly observed.(109) The Escherichia coli GRN 
exhibited the same pattern, with negative autoregula-
tion prevailing concurrently with the positive regulation 
in the overall network.(110) The continuity of biological 
processes is ensured by positive autoregulation.(111) For 
example, quorum sensing, biofilm formation, secretion 
of toxins, virulence, and resistance factors production, 
once initiated, must reach a final stage to have the ex-
pected effect.(2) In CCBH-2022, genes involved in these 
processes, such as lasR,(80) rhlR,(90) pvdS,(83) algU,(72) 
dnr(102) and anr,(88) have positive autoregulation (and are 
amongst the 30 principal hubs).

TABLE I
Comparison of structural statistic measures between PAO1-2011, CCBH-2019, PAO1-2020, CCBH-2022

PAO1-2011 CCBH-2019 PAO1-2020 CCBH-2022

Vertices 690 1046 3009 3186
Edges 1020 1576 5040 5452
Regulatory genes 76 138 173 218
Target genes 593 908 2709 2968
Positive regulation 779 772 3851 3829
Negative regulation 218 454 390 649
Dual regulation 11 13 10 19
Unknown regulation 12 337 789 955
Autoregulation (total) 29 72 50 91
Positive autoregulation 16 21 24 29
Negative autoregulation 13 39 15 46
Unknown autoregulation - 12 11 17
Feed-forward loop motifs (total)a 137 208 702 968
Coherent type I
feed-forward loop motifsa 82 79 226 239

Incoherent type II
feed-forward loop motifsa 3 4 8 10

Density 2.12e-03 1.44e-03 6.07e-04 5.99e-04
Diameter 9 12 12 12
Average shortest path length 04.08 4.80 04.01 4.67
Global clustering coefficient 2.28e-02 3.2e-02 3.03e-03 4.42e-03
Local clustering coefficient 2.5e-01 1.92e-01 1.63e-01 1.87e-01

a: number of feed-forward loop motifs determined using the igraph package.
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Negative cycles are also crucial for life-sustaining 
cyclic processes such as metabolic processes(112) and cel-
lular homeostasis.(113) In CCBH-2022, genes involved in 
arginine metabolism (iscR, desT, lexA, hutC, and mvat)
(110) showed a predominance of negative mode of auto-
regulation. Negative autoregulation is associated with 
cellular stability.(114) It rapidly responds to variations in 
concentrations of proteins, toxins, and (or) metabolites 
to avoid undesired effects such as the energy cost of un-
needed synthesis.(115) In CCBH-2022, algZ (transcrip-
tional activator of AlgD, involved in alginate produc-

tion),(116) lexA (involved in the SOS response),(117) metR 
(involved in swarming motility and methionine synthe-
sis),(118,119) ptxR (affects exotoxin A production)(120) and 
rsaL (quorum-sensing repressor)(121) presented negative 
autoregulatory interactions. Autoregulation is common 
among genes positioned upstream in GRN with crucial 
developmental functions.(122,123)

The FFL motifs are essential for the modulation of 
cellular processes according to environmental conditions.
(124) CCBH-2022 has 968 FFL motifs, which are patterns 
of structural structures, while PAO1-2020 has 702. There 

Fig. 2: graphical representation of structural measurements of CCBH-2022 (red) compared to the previously published networks: PAO1-2011 
(purple), CCBH-2019 (orange), and PAO1-2020 (green). (A-B) incoming degree distribution of the four gene regulatory networks (GRNs); (C-D) 
outgoing distribution of the four GRNs. The distributions are plotted on a linear (A, C) and on a logarithmic scale (B, D); (E) local clustering 
coefficient distribution; (F) clustering coefficient by degree.
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are 239 coherent type I FFL motifs in CCBH-2022, an 
abundant presence. According to Mangan and Alon(61) 
these motifs act as sign-sensitive delay elements, i.e., a 
circuit that responds rapidly to step-like stimuli in one 
direction (ON to OFF) and as a delay to steps in the op-
posite direction (OFF to ON); the temporary removal 
of the stimulus ceases transcription, so the activation 

of expression requires a persistent signal to carry on. 
The incoherent type II FFL motif was less represented 
but also found in all the GRNs, with a total of 10 in 
CCBH-2022. Contrastingly with the coherent FFL, the 
type II FFL acts as a sign-sensitive accelerator, i.e., a 
circuit that responds rapidly to step-like stimuli in one 
direction but not in the other.(61)

TABLE II
The 30 most influential hubs of CCBH-2022 and PAO1-2020

CCBH-2020 PAO1-2020

Gene

Total number 
of connections 

(k-out) Function Gene

Total number 
of connections 

(k-out)

rpoD 740 Control of expression of housekeeping genes(70) rpoD 749

rpoN 650 Nitrogen metabolism, adhesion, quorum sensing (QS), biofilm formation(71) rpoN 658

algU 353 Positive regulation of response to oxidative stress(72) algU 357

sigX 298 Positive regulation of cell growth(73) sigX 319

rpoS 278 QS, Biofilm, virulence, antibiotic resistance(74) fliA 281

fliA 270 Adhesion, flagellin biosynthesis(75) rpoS 271

rpoH 184 Heat-shock response(76) rpoH 194

gacA 121 Monolayer and biofilm formation(77) gacA 128

algR 119 Cell motility, biofilm formation(78) algR 122

amrZ 109 Cell motility, biofilm formation(79) amrZ 115

lasR 106 QS, regulation of elastin catabolic process(80) lasR 95

fleQ 92 Regulation of mucin adhesion and flagellar expression(81) pvdS 91

fur 88 Control of expression of siderophores and exotoxin A(82) sphR 90

pvdS 87 Iron metabolism, pyoverdine, virulence(83,84) fleQ 85

sphR 74 Sphingosine catabolic process(85) fur 69

mvfR 65 QS, regulation of lyase activity, control production of virulence factors(86) vqsM 65

vqsM 61 QS, control production of virulence factors(87) mvfR 62

anr 58 Regulation of oxidoreductase activity(88) pchR 57

rhlR 56 QS, regulation of lipid biosynthetic and proteolysis(89,90) anr 53

mexT 53 Antibiotic efflux pump(91) mexT 51

pchR 47 Regulation of pyochelin siderophore, ferripyochelin receptor synthesis(92) argR 46

argR 46 Controls arginine uptake and metabolism(93) fecI 44

gbdR 44 Regulation of cellular amino acid metabolic process(94) gbdR 42

pmrA 43 Antibiotic efflux pump(95,96) rhlR 40

fecI 41 Regulation of iron ion transport(97) phoB 40

soxR 40 Antibiotic efflux pump(98) pmrA 40

phoB 40 Cell motility, regulation of cellular response to phosphate starvation(99,100) soxR 39

vfr 37 QS, exotoxin A regulator, cell motility(101) dnr 34

dnr 34 Regulation of nitrogen compound metabolic process(102) himA 30

rsaL 34 QS, biofilm formation, regulation of virulence factors(103) himD 30
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One last characteristic revealed by the structural anal-
ysis was the presence of hubs. The hub’s network (Fig. 3) 
shows the connection among their interactions; they are 
all interconnected and belong to the largest connected 
component of the GRN (Fig. 1A). This connectivity re-
flects the importance of the influential genes. The hubs 
can be considered the basis of the GRN. They are crucial 
in searching for potential drug targets for developing new 
drugs, as in direct interaction with their specific targets 
or for an indirect interaction with the subsequent process 
regulation triggered by them. CCBH-2022 hubs are main-
ly associated with efflux pump mechanisms (mexT, pmrA, 
soxR),(91,95,98) alginate biosynthesis (algU, algR, rpoN),(125) 
and biofilm formation (rpoN, rpoS, gacA, amrZ).(126)

Table II shows the 30 hubs of PAO1-2020. They are 
very similar to CCBH-2022 hubs, with some changes in 
the k-out connections. However, two CCBH-2022 hubs 
were not in the 30 most influential hubs of PAO1-2020: 
vfr, a global virulence factor regulator(127) that directly 
regulates 37 genes, and rsaL, associated with bacterial 
tolerance to antibiotics, including ciprofloxacin and car-
benicillin(128) which directly regulates 34 genes. In PAO1-
2020, vfr directly regulates only 12 target genes, while 
rsaL regulates 19, being one of these an exclusive PAO1-
2020 interaction. There are 25 exclusive vfr interactions 
in CCBH-2022 and 16 exclusive rsaL interactions com-
pared with PAO1-2020. These distinctions can be ex-
plained by the fact that the P. aeruginosa CCBH4851 

Fig.3: connectivity relationships among the 30 most influential hubs of CCBH-2022. Yellow circles indicate regulatory genes considered hubs, 
light blue circles indicate target genes, black lines indicate an unknown mode of regulation, green lines indicate activation, and red lines indicate 
repression. Purple lines indicate a dual-mode of regulation.
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strain is more virulent and multidrug-resistant and also 
because CCBH-2022 is 7.6% larger in the number of reg-
ulatory interactions (5452) than PAO1-2020 (5040), and 
20,7% larger in the number of regulatory genes (218) than 
PAO1-2020 (173). The tables containing these exclusive 
interactions are in the Supplementary data. These facts 
strongly indicate that the operation of the main network 
hubs is not identical. The functioning of CCBH4851 is 
different, probably due to the greater influence of these 
two critical genes associated with multi-drug resistance 
and antibiotic tolerance mechanisms.

The Vfr gene’s role in regulating virulence factor 
production is related to the production of exotoxin A, 
a toxin that modifies specific target proteins within 
mammalian cells and induces necrosis in different tis-
sues and organs in MDR P. aeruginosa infections.(129,130) 
The Vfr gene also regulates the las and consequently the 
rhl quorum-sensing system, two systems that together 
control the expression of several genes associated with 
virulence factor production,(131) including alkaline pro-
tease, exotoxin A, pyocyanin, and rhamnolipid, as well 
as critical genes such as rpoS (the 5th most influential 
gene in CCBH-2022).(132) The signal receptor (R gene) is 
one of the essential components of the las and rhl QS 
systems. It is necessary for coding the transcriptional 
activator protein (R protein).(133) The lasR and rhlR genes 
are among the 20 principal hubs. In interactions present 
only in CCBH-2022, vfr regulates genes associated with 
virulence and alginate production.(134)

The rsaL gene has an important role in P. aeruginosa 
as a global regulator of quorum sensing, virulence, and 
biofilm formation.(103,135) Fan et al.(128) showed that the 
mutation of rsaL increased bacterial tolerance to cipro-
floxacin and carbenicillin. In interactions present only 
in CCBH-2022, rsaL regulates mostly genes of the phz1 
and phz2 clusters, showing the control that rsaL has 
on phenazine expression in P. aeruginosa, driving the 
production of phenazine-1-carboxylic acid (PCA) which 
is further converted in the virulence factor pyocyanin.
(136,137) The pyocyanin production contributes to bacterial 
tolerance to ciprofloxacin and carbenicillin.(128)

Pseudomonas aeruginosa evades antimicrobial 
activity during treatment and exerts antimicrobial re-
sistance by mainly intrinsic resistance mechanisms. 
Examples of resistance mechanisms are multi-drug ef-
flux pumps, biofilm synthesis, enzymatic inactivation/
degradation, drug permeability restriction, production 
of beta-lactamases, acquired resistance by a mutation 
in drug targets, and acquisition of resistance genes via 
horizontal gene transfer.(138)

There is a directed regulatory connection from algi-
nate biosynthesis to iron metabolism and some antibiotic 
resistance mechanisms.(139) The algU, algR, rpoN, pvdS, 
and fecI genes are related to these processes(140,141) and 
are among the most influential hubs.

Pseudomonas aeruginosa has multiple efflux pump 
systems that prevent the antimicrobial agents from accu-
mulating in adequate concentration to cause an effect in 
the cell, extruding the drug out.(138) Efflux pump systems 
are associated with resistance to beta-lactams, fluoroqui-
nolones, tetracycline, chloramphenicol, macrolides, and 

aminoglycosides.(142) Differential expression or mutations 
of efflux system genes are also contributing factors for 
carbapenem and aminoglycoside resistance.(143) The mexT, 
pmrA, soxR genes, related to multidrug antibiotic efflux 
pumps, are also amongst the most influential hubs.

The fleQ gene is also among the hubs and affects psl 
(polysaccharide synthesis locus) genes and regulates the 
efflux pump genes, mexA, mexE, and oprH, by brlR.(2,144) 
The psl cluster comprises 15 exopolysaccharide biosyn-
thesis-related genes organised in tandem that are impor-
tant for biofilm formation.(145)

The mexT and soxR genes positively regulate an ef-
flux pump system, and several virulence factors,(146,147) 
and pmrA regulate efflux pumps and the polymyxin B 
and colistin resistance.(95,148,149)

Efflux pumps also help biofilm formation.(150) Bio-
films are also related to protection from the host immune 
system and antibiotic penetration and tolerance, prevent-
ing them from entering the microbial population and 
inhibiting its action as a first-line defense mechanism.
(123,151,152) The rpoN, rpoS, gacA, algR and amrZ hubs par-
ticipate in the regulation of P. aeruginosa biofilm.

This system biology approach to characterise the 
MDR P. aeruginosa CCBH4851 regulatory network 
may lead to the development of strategies to disrupt the 
connectivity of these essential processes, thus, possibly 
decreasing the pathogenicity and suppressing the resis-
tance of this bacterium.

In conclusion - This manuscript reports the recon-
struction and structural analysis of the largest P. aerugi-
nosa regulatory network available in the literature to date. 
This work can give new insights into identifying novel 
candidate antibiotic targets and contributes to an increase 
in our understanding of the behaviour of this bacterium.

This network’s dynamic model construction is one of 
our future studies, intending to help researchers working 
on experimental drug design and screening. The goal is 
to predict the dynamic behaviour better and improve the 
understanding of P. aeruginosa, allowing the simula-
tion of normal and stress conditions to discover potential 
therapeutic targets and help develop new drugs against 
P. aeruginosa bacterial infection.
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