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Abstract 1 

Latin America is underrepresented in genetic studies, which can exacerbate disparities in personalized genomic 2 
medicine. However, genetic data of thousands of Latin Americans are already publicly available, but require a 3 
bureaucratic maze to navigate all the data access and consenting issues. We present the Genetics of Latin 4 
American Diversity (GLAD) Project, a platform that compiles genome-wide information of 54,077 Latin 5 
Americans from 39 studies representing 45 geographical regions. Through GLAD, we identified heterogeneous 6 
ancestry composition and recent gene-flow across the Americas. Also, we developed a simulated-annealing-7 
based algorithm to match the genetic background of external samples to our database and share summary 8 
statistics without transferring individual-level data. Finally, we demonstrate the potential of GLAD as a critical 9 
resource for evaluating statistical genetic softwares in the presence of admixture. By making this resource 10 
available, we promote genomic research in Latin Americans and contribute to the promises of personalized 11 
medicine to more people.  12 
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Introduction 13 

 14 
Latin Americans/Latinos/Latinx/Latine, or Hispanics, as an ethnic label, represent a set of populations across the 15 
Americas characterized by admixture between populations from many parts of the world with distinct ancestry 16 
compositions 1. As such, treating Latin Americans as a single group is an over-simplification that may limit 17 
opportunities to improve health and clinical treatment. Latin Americans comprise 656 million people (8.5% of the 18 
world’s population)2. In the United States, Latin Americans represent 18% of the population and are the fastest-19 
growing demographic3. Unfortunately, these populations remain understudied and underserved in biomedical 20 
research and are at risk of being left behind by the precision medicine revolution. For example, Latin Americans 21 
only represent about 0.23% of participants in genome-wide association studies (GWAS) performed4. Several 22 
important efforts have been made to understand Latin American (LAm) genetic history and to identify genetic 23 
variants associated with complex traits 5–26. However, most of these samples are thinly spread across many 24 
projects with few initiatives (e.g., the Mexico City Prospective Study27) to obtain the 100K+ individuals necessary 25 
to have statistical power comparable to other population groups (e.g., Europeans28 and East Asians29,30).  26 

To remedy the under-representation of Latin Americans in genomic studies, we have created the Genetics of 27 
Latin American Diversity database (GLADdb), a resource to infer fine-scale patterns of population structure 28 
across the Americas and boost statistical power for the discovery of genetic factors contributing to LAm health 29 
and disease. By gleaning LAm individuals through dbGaP and whole genome sequencing projects across the 30 
Americas, we gathered over 54,000 unrelated individuals, either genotyped and imputed, or sequenced, from 31 
ten countries (Figure 1A) spanning 45 geographical groups (Table S1 and Table S2). These group labels 32 
reflect administrative division level (e.g., country, state, or city level information) when available. Using GLADdb, 33 
we addressed two major goals regarding LAm genomics: (i) in population genetics: to identify recent fine-scale 34 
patterns of distant relatedness and differentiation along the Americas, providing insights into regions with 35 
genetic underrepresentation, and (ii) in genetic epidemiology at two levels: (a) by developing a web tool for 36 
matching the genetic background of GLADdb individuals with external pools of samples providing additional 37 
power to discover genotype-phenotype associations and (b) by demonstrating how GLADdb can be utilized for 38 
testing statistical genetic software in diverse LAm cohorts. 39 

We start by exploring distant genetic relatedness among LAm countries. Several studies have focused on 40 
determining the sources and timing for admixture events that led to the current genetic composition in some 41 
LAm countries 6,11–13,16,31–33. However, understanding LAm genetic diversity goes beyond the initial continental 42 
admixture and involves bottlenecks, founder effects, and migration into and along the Americas, especially as it 43 
relates to fine-scale population structure within the continental sources (i.e., Indigenous American, European 44 
and African groups). We explored population structure and recent migration among LAm regions by analyzing 45 
allelic frequencies and identity-by-descent (IBD) sharing. 46 

We then address issues about data availability when performing large-scale analyses in LAm populations. Many 47 
association analyses in LAm populations have smaller sample sizes than similar studies in Europeans and other 48 
populations. Data, even when publicly available, is often prohibitively restrictive for investigators to access 49 
because of quality control efforts and data curation, in addition to the bureaucratic maze typically required to 50 
obtain the data 34. Artomov et al. 35 showed that with a large control cohort, a matching procedure, which is the 51 
identification of individuals with similar genetic backgrounds with external data, and sharing of their summary 52 
statistics (e.g., allele counts), is possible without the transfer of individual-level data. The matching procedure is 53 
designed to guard against genetic control inflation and reduce spurious associations due to population structure. 54 
Given Artomov's approach was developed on European ancestry individuals, we adapt this idea to the complex 55 
ancestral composition of LAm individuals. We devised an enhanced matching algorithm to explore the principal 56 
component space derived from our diverse GLADdb cohorts, into which we project external samples and match 57 
them to GLADdb individuals using ancestral background summary statistics. From the selected GLADdb 58 
individuals, we will generate and return summary statistics of genome-wide genotype frequencies and aggregate 59 
local ancestry composition to increase the sample size and power of the end-user study. Since GLADdb 60 
consists of both cases and controls for different phenotypes, we will also use phenotype filters to select 61 
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individuals useful as controls. We implemented all these features through an interactive web portal 62 
(glad.igs.umaryland.edu).  63 

Finally, we demonstrate the potential of GLADdb as a critical resource for evaluating the performance of 64 
statistical genetic software in the presence of admixture. We do so by comparing three polygenic risk score 65 
(PRS) algorithms for estimating PRS in admixed individuals in a scenario where the ancestries corresponding to 66 
the GWAS summary statistics do not match the target cohort. PRS, the linear summation of risk variants 67 
weighted by their GWAS effect size, are highly impacted by the European-ancestry bias underlying much of the 68 
available GWAS data, and their transferability across populations remains a critical limitation of the approach 69 
36,37. GLADdb is uniquely situated to support methods development efforts that help ensure cross-population 70 
transferability of statistical genetic applications. 71 

Results 72 

Data Description and QC 73 

Our main workflow is described in Figure S1 and Supplementary methods. Briefly, we have explored over 74 
268K samples by gathering data from 39 dbGaP cohorts and other WGS projects that include US Hispanics / 75 
LAm individuals 5–8,13,38 (Table S1). As inclusion criteria, we gathered individuals self-described as “Latino” or 76 
“Hispanic” and ADMIXTURE-defined individuals. This latter criterion was applied to identify possible LAm 77 
individuals using ADMIXTURE analysis39, keeping any individuals with more than 2% Indigenous American (IA) 78 
ancestry (See Methods). For genotyped cohorts (Table S1), we imputed all self-described (GLAD-SD, 79 
n=25,627) and ADMIXTURE-defined (GLAD-AD, n=17,642) individuals within each cohort using the TOPMed 80 
Imputation server40. After imputation QC, we kept 42,539 individuals that were combined into a single dataset 81 
with sequencing data from TOPMed Project5 (27,088 individuals) and 1000 Genomes Project38 (345 individuals) 82 
with 9,121,629 overlapping variants with an imputation r2 > 0.3 across all datasets. For all analyses here, we 83 
kept overlapping variants with imputation r2 > 0.9 in each dataset before merging. The final merged dataset with 84 
r2 > 0.9 for analysis contains 3,248,494 biallelic variants. Finally, to remove the family structure in GLADdb, we 85 
inferred kinship coefficients using IBD segments on the complete dataset, keeping 54,077 unrelated individuals 86 
(See Methods).  87 

Continental Population Structure of GLADdb 88 

Using 54K unrelated samples and ancestry-reference groups (Table S3), we explored the patterns of diversity 89 
and differentiation throughout the Americas using principal component analysis (PCA), uniform manifold 90 
approximation and projection (UMAP), and ADMIXTURE analyses (Figure 1B and C, Figure S2-S5).  Both 91 
results highlighted some important points. First, the samples cluster according to ancestry and not technology or 92 
other batch effects (Figures S3 and S4). Notably, GLAD-AD individuals cluster well with other GLAD-SD 93 
individuals validating our inclusion criteria (Figure S4A and B). By coupling UMAP and ADMIXTURE results, we 94 
reaffirm the heterogeneous ancestry distribution of LAm individuals, with some groups showing predominantly IA 95 
ancestry (Peru, Mexico, and Guatemala) and others showing majority admixture between European and African 96 
ancestries (USA and Brazil) (Figure 1C and Figure S5). Regarding sample sizes, the best-represented regions 97 
in GLADdb included Brazil, Central America, Mexico, Peru, and the United States.  98 

 99 
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 100 
Figure 1. Dimensionality reduction of genetic data for more than 52K unrelated Latin Americans from the GLAD database. A) 101 
Geographical distribution of GLADdb cohorts. B) Principal Component Analysis of the entire dataset based on high-quality imputed SNPs 102 
(r2 > 0.9) showing the sampling spread of Latin Americans. C) Uniform Manifold Approximation and Projection (UMAP) of the first 10 PCs 103 
showing clusters of different population groups. 104 

Levels of genetic diversity within Latin American groups 105 

Although our population structure analyses identified a wide diversity of LAm groups, these groups originated 106 
from continental progenitors that suffered a significant drop in effective population size during the colonial period 107 
of the Americas41–43. This resulted in a higher level of consanguinity and enrichment of long runs of 108 
homozygosity observed in some LAm groups (e.g., CLM and PEL from 1000 Genomes Project) compared to 109 
Finnish42, a population notably shaped by a strong founder effect. Based on demographic information available 110 
for the cohorts, we organized GLAD-SD individuals into 45 self-described LAm groups, consistent with 111 
geographic labels based on administrative division level (e.g., country, state, or city level information) (Table 112 
S2). In addition, we included 12 IA populations from the Peruvian Genome project as well as 5 European (EUR) 113 
and 5 African (AFR) populations from the 1000 Genomes Project (See Methods). 114 
 115 
We explored the levels of diversity in each group by inferring runs of homozygosity44 (ROH) (Figure 2, See 116 
Methods). As expected, individuals from Africa showed lower values for total ROH compared to individuals from 117 
Europe and Indigenous groups from Peru. Analogously, LAm groups with higher proportions of African ancestry 118 
(e.g., Peru-Ica and Northeast Brazilian regions) tend to have the lowest total ROH. Furthermore, taking 119 
advantage of the detailed sample representation for 13 Peruvian and 12 Brazilian regions, we determined the 120 
correlation between average genome-wide ancestry proportions (Table S2) and the median total ROH for each 121 
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population. We observed a positive correlation between the average Indigenous American (r=0.81, p-value = 122 
0.00246) and European (r=0.88, p-value = 1.12 x 10-4) ancestries with a higher density of ROH in Peruvians and 123 
Brazilians, respectively. Interestingly, both correlations follow a North to South line. 124 
 125 

 126 
Figure 2. Distribution of Genome-wide amount of Runs of Homozygosity for Latin American groups and Reference populations 127 
included in GLADdb. The upper part of the plot shows continental reference populations—the lower part details the distribution in Peru 128 
and Brazil. Populations are sorted in a North-to-South pattern. 129 
 130 
 131 

Fine-scale population structure revealed by IBD network 132 
To obtain a fine-scale picture of population structure among LAm groups, we built a sample-pair genome-wide 133 
total IBD matrix using all IBD segments > 5cM shared in our 54K dataset. Clusters in this matrix are mainly 134 
consistent with geographic labels, with strong intra-cluster sharing among individuals from Puerto Rico, 135 
Dominican Republic, and Costa Rica (Figure 3). Given the sample size and genetic diversity, finer-scale 136 
population structure is observable in clusters representing the USA/Mexico, Peru, and Brazil. To reveal the 137 
substructure, we employed an IBD network-based community detection algorithm to further analyze relatedness 138 
patterns. We selected the top 20 IBD-network-based communities that accumulated 69% of GLADdb individuals 139 
(other communities each have less than 270 individuals). Each of these communities (labeled as CA1 to 20 and 140 
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ordered from largest to smallest) showed enrichment of individuals from a particular country, such as Costa Rica 141 
(99.6%, IBD community CA5), Puerto Rico (98%, IBD community CA2), Dominican Republic (95.0%, CA4), 142 
Cuba (89.8%, CA6), Colombia (89.4%, CA13), and Chile (84%, CA19) (Figure 4). In contrast, individuals from 143 
Mexico, Peru, and Brazil were grouped in several communities (Mexico: 7, Brazil: 5, Peru: 13 communities). 144 
These communities were represented by individuals from a particular region, reflecting the extensive sampling 145 
performed in these countries (Figure 4). 146 
 147 

 148 
Figure 3. Clustering of total IBD matrix of unrelated individuals from GLADdb. A) Heatmap of the square root of sample-pair total 149 
IBD. Annotations within the heatmap represent the most enriched demographic labels in the indicated blocks. Labels with “USA-NY-150 
country” correspond to self-described US-Hispanic living in New York with a specific country of origin. B) Individual-level labels of 151 
agglomerative cluster assignment (1st column), ethnicity (2nd), and sampling Country (combined:3rd and separated: 4th onward). C) 152 
Frequency of labels (log scale) and color keys.  153 
 154 
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 155 
Figure 4. IBD network community detection. We infer the community structure using the infomap algorithm based on a matrix of IBD 156 
segments greater than 5cM. A) Top 20 IBD network communities. For visualization purposes, only individuals with connections > 30 are 157 
included in the layout calculation. The community labels, such as CA1 and CA2, are named according to the IBD version used and the 158 
rank of the community sizes, with CA1 representing the largest community when using all IBD segments. For communities inferred from 159 
short and long IBD segments, the corresponding labels are CS1 (Figure S6A) and CL1(Figure S6B), respectively. B) IBD sharing among 160 
the top 30 inferred communities (ordered by agglomerative clustering; the same order was followed in C and D). C) Distribution of IBD 161 
shared among individuals in each community. D) Enrichment of IBD community membership in the country of origin (i.e., proportions of 162 
community labels for individuals born in a given country).  To visualize the dynamics before and after the Spanish colonization of the 163 
Americas, two different IBD networks were built based on IBD segments between 5-9.3cM (Figure S6A) and those > 9.3cM (Figure 164 
S6B), respectively, which revealed distinct patterns of detected communities. 165 

Long-distance relatedness among Latin American groups 166 

To explore recent migration among 45 LAm regions, we restricted our analyses to IBD segments greater than 21 167 
cM, representing a recent common ancestor in the last seven generations corresponding to post-colonial times 168 
45 and after the admixture process. We reasoned that sharing of larger IBD segments could be originated 169 
predominantly from gene flow among regions. At the inter-regional level, we detected higher levels of sharing 170 
between Puerto Rico with New York (Specifically with Puerto Ricans in New York) and Hawaii groups. Another 171 
tight sub-network of sharing is observed in Brazil (Figure 5A), where the South East region (São Paulo and 172 
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Minas Gerais states) have major connections with other Brazilian populations. Interestingly, there are IBD-173 
sharing connections between Uruguay, South Brazil, and Colombia. On the Pacific side, two Peruvian regions 174 
(Ica and Trujillo) show high values of IBD sharing. 175 

Considering the multi-way admixed origin of LAm populations, we devised a statistic (ancestry-specific IBD 176 
score) that quantifies the level of relatedness among two admixed populations for a particular ancestry (AFR, 177 
EUR, or IA) (Figure 5). We computed the ancestry-specific IBD score (asIBD score, see Methods) by coupling 178 
the IBD and local ancestry inferences. Our asIBD score explains the relationship of ancestry-specific IBD 179 
segments with respect to the global ancestry of the populations. We detected a different ancestry-sharing 180 
pattern between Puerto Rico with New York, and Hawaii (Table S4A). A three-way sharing with predominant IA 181 
ancestry characterized the sharing among Puerto Rico and New York. On the other hand, the Puerto Rico and 182 
Hawaii sharing is characterized by predominant IA and AFR-related ancestries (Figure 5). The sharing cluster in 183 
Brazil has higher values of asIBD for the IA ancestry, indicating a more homogenous composition of IA ancestry 184 
in those regions (Table S4B). For IBD sharing between Peru-Ica and Peru-La-Libertad, the EUR ancestry 185 
showed the highest value for the asIBD (Table S4A).  186 
 187 

 188 

Figure 5. Identical-By-Descent (IBD) analyses of Latin American groups. We explored the relationship among LAm regions by 189 
inferring the average IBD shared among regions (A) and an ancestry Specific IBD Score (asIBDScore) for Indigenous American (B), 190 
European (C), and African ancestries (D). Dots represent Latin American regions. For African and European Ancestries, we remove the 191 
sharing between Peru-Ica and Peru-La Libertad due to their higher sharing and to improve visualization. Plot A range showed the 192 
average amount of cM shared among two individuals from populations 1 and 2. On the other hand, the plot range for B-D represents the 193 
same statistic focused on segments of a specific ancestry and controlled by global ancestry proportions in each population. 194 
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Supporting external studies through the GLADdb matching algorithm and 195 

statistical genetic software benchmarking 196 

One of GLADdb’s ultimate goals is to provide controls for GWAS and admixture mapping studies. We addressed 197 
this goal by developing a genetic matching algorithm. Our method, nearest neighbor simulated annealing 198 
matching, shown in Figure 6A and outlined in Methods, employs local search to find the optimal cohort from a 199 
set of candidates. The algorithm operates on a principal component space in which the external-user-provided 200 
query cases can be used to search for controls without needing individual genotypes. The algorithm computes 201 
variance-weighted Minkowski distance pairwise between query cases and potential controls, selects the nearest 202 
neighbors as candidate controls, samples a set of matches from the candidates, and iteratively resamples and 203 
refines the set of matches using simulated annealing, optimizing for the genomic control statistics � 46,47. 204 
 205 
To evaluate both our matching algorithm and the extent to which GLAD cohorts can provide valid control sets, 206 
we performed the following experiment. Using 1000 Genomes populations and some GLAD cohorts as cases, in 207 
which the pseudo-phenotype belongs to the query cohort, we ran a greedy bipartite matching baseline 48,49 and 208 
our matching algorithm and returned summary statistics (i.e., alternative allele frequency, genotype counts, and 209 
haplotype ancestry counts by segment) for various control set sizes. Then, for each pair of cases and controls, 210 
we ran a GWAS for which the genomic control � statistics are reported in Table 1 and more extensively in 211 
Figure 6B. For the analyzed cohorts, which represent a variety of admixed groups, the matched controls yield 212 
genomic controls close to 1, suggesting that GLAD will be able to provide useful controls for a variety of cohorts, 213 
and our matching algorithm shows slight improvements for larger and more varied query cohorts. These 214 
improvements narrow progressively as the number of matches required increases (Figure 6C). 215 
 216 
 217 
Table 1. Comparison of genomic control results (� statistics) when returning 500 control individuals from GLAD using the Greedy 218 
Bipartite Matching and the Simulated Annealing Nearest Neighbor Matching algorithm.  219 
 220 
 221 

Source 1000 Genomes populations GLAD Cohorts 

Population or Cohort MXL CLM PEL PUR 
HCHS 
SOL 

MESA SIGMA LARGE-PD 

Case N 64 94 85 104 6646 1046 1146 1463 

Greedy Bipartite Matching 

Genomic 
control 

0.9438 ± 
0.0009 

1.0951 ± 
0.0018 

0.9555 ± 
0.0012 

0.9928 ± 
0.0017 

0.9939 ± 
0.0063 

1.0080 ± 
0.0136 

1.0721 ± 
0.0074 

1.0268 ± 
0.0177 

Nearest Neighbor 
Simulated Annealing 
Matching Algorithm 

0.9400 ± 
0.0001 

1.0905 ± 
0.0009 

0.9496 ± 
0.0010 

0.9881 ± 
0.0003 

0.9612 ± 
0.0045 

0.9820 ± 
0.0047 

1.0480 ± 
0.0072 

1.0045 ± 
0.0050 
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 222 
Figure 6. Nearest Neighbor Simulated Annealing Matching Algorithm and Results. A) Visual overview of the algorithm. B) 223 
Comparison with baseline bipartite matching algorithm (x-axis), where points below the line y=x indicate our algorithm outperforming the 224 
baseline (small box highlights high density region). C) Effect of number of matches on improvement over the baseline. 225 
 226 
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 228 
In addition to control matching, GLADdb is an optimal resource for benchmarking statistical genetic sof229 
complex, heterogeneous cohorts with a wide range of available traits. We demonstrated this potential 230 
comparing several popular PRS algorithms (Clumping + Thresholding using PRsice-250, PRS-CS51, an231 
CSx52) using a subset of GLAD-SD (Table S5, see Methods) with type 2 diabetes (T2D) status, height,232 
data under a hypothetical scenario where LAm GWAS data is not available (Table S6). The GLAD-SD233 
includes LAm cohorts with very different population histories and ancestry proportions (e.g., Afro-Carib234 
Brazilians, and Peruvians). Though the use of the Bayesian PRS-CS method, in general, outperformed235 
2, the inclusion of non-European GWAS data using PRS-CSx yielded the largest increase in PRS pred236 
performance (Figure 7A-C, Figure S7). PRS-CSx improved single-ancestry PRS predictive performanc237 
East Asian PRS from PRS-CSx versus PRS-CS or PRSice-2) in nearly every instance (Table S7). Com238 
the posterior effect sizes estimated by PRS-CSx further improved models (Figure 7A-C, Table S7). No239 
best approach for combining PRS information varied by cohort, likely reflecting cohort heterogeneity (F240 
Model performance, as measured by partial R2, was negatively associated with mean African ancestry 241 
standard deviation African ancestry, p-value 0.005, Figure 7D). While the percent improvement achieve242 
leveraging non-European GWAS data can be as high as 80% over the clumping + thresholding model,243 
each PRS still can be modest. For example, in the Alzheimer’s cohort from the Caribbean, the T2D PR244 
model improved prediction by nearly 80%, but the R2 of that model was only 0.03 on the observed scal245 
7D).  246 
 247 

248 
Figure 7. PRS in select cohorts from GLAD-SD. A) Comparison of Height model performance as percent improvement ove249 
European-ancestry GWAS Clumping + Thresholding PRS. Models include PRS-CS using European-ancestry GWAS, PRS-C250 
European and East Asian-ancestry GWAS, and PRS-CSx using European, East Asian, and African-ancestry GWAS. All mod251 
compared using the correlation between the prediction and the trait. B) Comparison of BMI model performance. C) Compariso252 
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model performance. D) Total R2 of best PRS model by African ancestry. Cohorts are labeled by color, traits are labeled by shape. Partial 253 
R2 was calculated by squaring Pearson’s r followed by subtracting the full model (PRS + covariates) from the base model (covariates 254 
only, see methods). African ancestry proportions were estimated using ADMIXTURE.  255 

Discussion 256 

Latin American individuals are not well represented in genomic and epidemiological studies. This means we 257 
have a poor knowledge of their genetic diversity and environmental backgrounds, which limits the applicability of 258 
personalized medicine and our understanding of the basis of complex phenotypes 53. GLADdb aims to tackle the 259 
underrepresentation of genomic data by gathering genome-wide data of LAm populations into a single resource. 260 
Through GLADdb, we have two main contributions to LAm genomics: 1) Population genetics: we elucidated 261 
population structure and gene flow across LAm regions. 2) Genetic epidemiology: we developed an algorithm 262 
and an online portal (see Supplementary information 1) to provide summary statistics from control individuals 263 
from GLADdb with a similar genetic makeup to external samples. Also, by assembling a collection of LAm 264 
cohorts with very different population histories, we have created a unique tool for evaluating the performance of 265 
statistical genetic software in the presence of admixture and other complexities. 266 
 267 
For population genetics, continental migrations were the initial sources of LAm diversity. However, other 268 
processes have shaped this diversity and the relationships across geographic regions. Through ROH and IBD 269 
inferences, we have explored the relationships at intra- and inter-population levels in Latin America in terms of 270 
diversity and relatedness. From both analyses, we observed that Peruvians, even with a higher level of 271 
homozygosity, have differentiated groups associated with geographical regions 6,7. Moreover, IBD sharing tells 272 
us more about recent migrations when we restrict the analysis to 21 cM or greater, an interval size correlated 273 
with post-colonial events corresponding to the last seven generations before the present. We detected two main 274 
networks of sharing: Puerto Rico - New York and Hawaii, and the Brazilian internal sharing groups. In Latin 275 
America, during the 20th century, migrations have followed a rural-to-urban or outside-the-country tendency due 276 
to regional socioeconomic disparities54. Particularly, in Puerto Rico, during the early 1900s, a migration policy 277 
was enacted in response to its social and economic problems55. Hawaii, Dominican Republic, and Cuba were 278 
the primary destinations during the first stage of the Puerto Rican diaspora, followed by a strong migration to 279 
New York during the late 1940s 56. It is noteworthy that there were socioeconomic differences between the 280 
groups participating in each migration stage 57,58. For example, many individuals who migrated from Puerto Rico 281 
to Hawaii were recognized as jibaros 58, which are countryside people who farm the land in a traditional way. 282 
However, Puerto Ricans who migrated to New York represented a cross-section of economic and social classes 283 
57. By inferring the ancestral background of IBD segments, we found that the Puerto Rico/Hawaii sharing is 284 
characterized by predominant AFR and IA sharing compared to the IA and EUR sharing between Puerto Rico 285 
and New York. These contrasting patterns may reflect the differential composition of the two stages of migration. 286 
Brazil is another example of recent migration due to economic factors. During the 1950s, South Eastern Brazil, 287 
represented by Rio de Janeiro, São Paulo, and Minas Gerais, experienced a huge economic growth that 288 
triggered a massive migration to these regions 59. We observed huge connectivity among South Eastern regions 289 
(Rio de Janeiro and São Paulo), showing higher values for EUR sharing suggesting higher mobility of European 290 
components in Brazil. Moreover, EUR sharing was detected between Southern Brazilian regions and Uruguay. 291 
This could reflect their recent shared history as Uruguay was annexed to Brazil before its independence 60, and 292 
its demographic composition included a significant proportion of Brazilians at that time61. 293 

For genetic epidemiology, our genotype matching algorithm and subsequent provision of control summary 294 
statistics meet a real need in the research community. Groups exploring the genetic architecture of traits in Latin 295 
American cohorts can increase their sample sizes without further straining budgets. This will help facilitate the 296 
discovery of genetic risk factors in a historically underrepresented population, which could lead to the discovery 297 
of population-specific variation and reduce bias in GWAS data. While there are initiatives that significantly 298 
increase the representation of Latin American subjects in genomics, access to that data remains a concern. In 299 
some cases, navigating the bureaucratic maze presents a real barrier, while in other cases, the data is 300 
proprietary. By constructing the first version of GLADdb, we have already acquired and aggregated Latin 301 
American data from across 39 cohorts. In addition, our matching and data transfer processes only require 302 
summary statistics (genotype counts and principal components), thus reducing the exposure of sensitive data. 303 
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Also, by employing our matching algorithm, we can potentially provide a better set of controls than by simply 304 
applying for individual cohorts from dbGaP or other public repositories, nor using allele frequencies from 305 
heterogeneously sampled cohorts alone. 306 
 307 
In addition to supporting genetic studies through control matching, GLADdb presents a valuable resource for 308 
evaluating the performance of genetic epidemiology software for methods development and benchmarking. 309 
Such software needs to be evaluated in the presence of admixture in addition to the more homogeneous 310 
cohorts. This is particularly evident for PRS estimation, where the impact of long-standing biases in GWAS data 311 
is well documented 36,37,62. In our test case, we evaluated three popular PRS algorithms: clumping + thresholding 312 
implemented in PRSice-2, PRS-CS, and PRS-CSx. We found that PRS-CSx, which can model multiple GWAS 313 
populations simultaneously, significantly improved predictive performance over single ancestry methods. This 314 
was true despite not using GWAS data from any Latin American cohorts for this example. Variability in model 315 
performance likely reflected population heterogeneity across the different cohorts, and model performance was 316 
negatively associated with mean African ancestry. The sample sizes of the African-ancestry GWAS cohorts 317 
used for this study were smaller by an order of magnitude than the East Asian and European Ancestry GWAS 318 
cohorts. It is clear that well-powered, diverse GWAS is critical for equitable PRS performance. In the meantime, 319 
methodological innovation is required to improve cross-population portability for GWAS traits lacking adequate 320 
representation 63. In addition to PRS-CSx, several methods such as LDPred-funct and Polypred include 321 
functional data, and TL-Multi utilizes transfer learning 64–66. The robustness of existing and new PRS methods to 322 
admixture can be evaluated using the heterogeneous cohorts represented in GLADdb.  323 
 324 
A major challenge in our study, and for LAm genomics, is the poor representation of Indigenous American 325 
ancestries. Currently, the Indigenous American representation in public datasets is restricted to a few 326 
populations with higher levels of isolation which could lead to caveats in global and local ancestry inferences. 327 
This is important because several studies show that IA ancestry in an admixed LAm population closely relates to 328 
their local Indigenous groups 6,11,16. To overcome the problems related to IA ancestry, we used a reference panel 329 
of Indigenous Peruvians and Guatemalans. These populations have higher effective population sizes compared 330 
to other native groups 67, which is helpful for avoiding problems related to higher levels of genetic drift. In this 331 
way, we can get around the problem of IA inferences in Brazilians or USA individuals with some level of IA 332 
ancestry (i.e., Individuals with ancestry related to tribal nations in which genetic studies have not been allowed). 333 
Still, better ethically-aware representation in genomics is preferred. Furthermore, GLADdb allowed us to identify 334 
geographical regions better represented (e.g., Brazil, Mexico, and Peru) than others in sample size and 335 
genotyping technologies (WGS and array data). Moreover, even in these best-represented regions, there is an 336 
unbalance of ethnic diversity (e.g., European ancestry descendants are predominant in these datasets). This 337 
reality should motivate the need for urgently including regions like Bolivia or Paraguay as well as at the ethnicity 338 
level (i.e., African and Asian ancestries in the Americas). 339 
 340 
In conclusion, through GLADdb, we highlighted the heterogeneous ancestry composition across LAm 341 
populations and inferred ancestry differences in gene flow events relatedness among LAm regions. Also, by 342 
sharing summary statistics, we are contributing to improving global equity in genomic research, specifically in 343 
epidemiological research in which GWAS is performed routinely. This is one more step to ensuring that health 344 
disparities arising from genetic studies do not become pervasive in admixed and non-European populations. 345 
 346 
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Methods 405 

Data Description, Quality control, and imputation 406 

We have gathered data sets for the GLADdb by combining accessible genomic information from Whole-Genome 407 
Sequencing (WGS) and microarray genotyping chip sources. We have requested and received access to 39 408 
dbGaP cohorts. Another important source was the WGS projects in TOPMed 5. In total, we have explored over 409 
268K samples in detail to find 70,702 Latin American subjects for this initial set. This search includes 172K from 410 
general dbGaP datasets including the eMERGE 68, PAGE 69, and SIGMA 9 projects (Table S1). Figure S1 411 
shows our general workflow. For each non-WGS dataset (Table S1), we converted their genome coordinates 412 
(liftover) from the original reference (NCBI36/hg18 or GRCh37/hg19) to the genome reference GRCh38/hg38 413 
using picard 70. After a first liftover run, we used the strand flip option of PLINK 71 on the rejected variants and 414 
performed a second liftover run. Furthermore, variants were filtered using PLINK for 5% missingness, a p-value 415 
less than 1x10-6 on the Hardy Weinberg exact test (HWE), keeping only biallelic autosomal variants with a 416 
minimum minor allele frequency (MAF) of 1%. Samples were filtered for 5% missingness and heterozygosity 417 
exceeding three times the standard deviation from the mean. Also, a linkage disequilibrium (LD) pruned dataset 418 
was created using PLINK’s indep-pairwise algorithm using the parameters 50 10 0.1. 419 
 420 
For each data set for which we acquired genomic information and appropriate consent, we evaluated self-421 
described demographic variables such as an ethnic designation of Hispanic/Latino. We included the entire 422 
cohorts where the primary study design was focused on Latin American individuals, e.g. SIGMA 9. For the 423 
remaining datasets, many without demographic information provided via dbGaP, we identified possible Latin 424 
American individuals using genetic clustering analysis 39. 425 
 426 
We merged each of these remaining datasets (the LD pruned data) with a custom panel of 361 individuals to 427 
assess genome-wide ancestry proportions for European, African, East Asian, and Indigenous American 428 
ancestry. This custom panel included 100 each for European, African, and East Asian from the high coverage 429 
1000 Genomes Project data 38 (Table S3). In addition, we included 61 unrelated, previously estimated as near 430 
100%, Indigenous American high coverage genomes from the Peruvian Genome Project 6. Each data set was 431 
combined with this reference sample, then we ran a supervised ADMIXTURE analysis 39. These results were 432 
then evaluated for admixture proportions and any sample found to have greater than 2% Indigenous American 433 
ancestry was extracted and included for additional analyses. These samples were then designated as 434 
admixture-defined, which will persist in our evaluations of the database as to their utility as matches or 435 
exclusion. 436 
 437 
After we collected all self-described and admixture-defined individuals in each dataset (non-LD pruned data), we 438 
imputed the genotype panel against the TOPMed Imputation server 40. The TOPMed imputation panel contains 439 
over 90K individuals and was shown to accurately impute Latin Americans 5. To date, after we have combined 440 
across all studies analyzed, including the non-imputed TOPMed WGS data, we have 63,589 non-duplicate 441 
samples. This comprises 9,121,629 variants with an imputation r2 > 0.3 across all datasets (i.e. no missing data) 442 
and includes 8,626,916 SNPs and 494,713 INDELs. 443 
 444 
Importantly, GLADdb includes 30,078 individuals with non-ambiguous geographical information (Table S2). This 445 
means that we have country-level or, in some cases, state or city-level information like Peru, Brazil, and the 446 
USA. For the latter three groups, we did not include individuals without state-level information. A particular case 447 
is the Rio Grande do Sul state in South Brazil. Two of three cohorts that were sampled in this state correspond 448 
to specific cities (Porto Alegre and Pelotas) and were considered as independent groups. To support the 449 
clustering of individuals of different project into groups of similar geographical regions (e.g., USA-Wisconsin, 450 
Chile, Brazil-São Paulo), we performed an Fst analysis. We calculated the Fst among individuals sampled by 451 
different projects but of the same sample region. No regional cluster showed an Fst value above 0.07 (Table 452 
S2). Finally, these 30K individuals were organized into 45 different regions (Table S2). We used this information 453 
for ROH and IBD analyses. 454 
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After imputation, for each dataset, we kept only variants with r2 > 0.9. Then, we merged all datasets and 455 
removed variants with missing information in more than 0.1% of the final dataset using bcftools: 456 
 457 
bcftools filter -e 'F_MISSING > 0.001' ${mergedGLAD} -O b -o $QC1 458 
 459 
For normalizing and keeping biallelic SNPs we applied the following command line: 460 
 461 
bcftools norm -m +any -s $QC1  | bcftools view -m2 -M2 -v snps | bcftools sort -O b -o $GLAD 462 
 463 
Our initial freeze of GLADdb consists of 3,248,494 biallelic SNPs (r2 > 0.9) and 63,589 individuals (R0.9 464 
dataset). 465 
 466 
To avoid any phase issues during the merging process, we infer the haplotype phase for the complete GLADdb 467 
using SHAPEIT ver4 72 using the TOPMed freeze9 dataset 5 (160K individuals) as a reference panel. We ran 468 
SHAPEIT with the following parameters 469 
 470 
shapeit4 --input $GLAD --map $map --thread 60 --region chr${chr} --reference $TOPMEDRef --output $Phased_GLAD 471 
--log phased_chr${chr}.log --mcmc-iterations 10b,1p,1b,1p,1b,1p,1b,1p,10m 472 

Identical-by-Descent and Relatedness analyses 473 

Phased biallelic R0.9 dataset together with HapMap genetic maps (GRCh38) were used as input for inferences 474 
of IBD (Identical-By-Descent) segments using hap-ibd 73. For hap-ibd, we set the parameters “min-seed=3” and 475 
“min-output=3” to reduce the rate of false positiveness; defaults were used for all the other parameters. Given 476 
IBD coverage is dramatically increased by the paucity of SNP markers, we defined low SNP density regions as 477 
1-cM windows with the number of SNPs less than 30 and processed all IBD segments overlapping with these 478 
regions by splitting them and removing the parts within the low SNP density regions. The processed IBD 479 
segments were then used as input for ancestry-specific downstream analysis. For non-ancestry specific 480 
analyses, we further merged and flattened the processed IBD segments for each sample-pair when two 481 
segments are either overlapping or close (gap no longer than 0.6cM and the number of phasing-informative 482 
discordant markers no more than 1) 74. The flattened and merged IBD segments were kept if the segment length 483 
>= 5cM. Genome-wide total IBD length of all segments shared by each sample pair was then calculated and 484 
organized to an IBD matrix with each element representing the relatedness between a pair of individuals. For 485 
agglomerative clustering, we transformed the matrix into a dissimilarity matrix by the formula X = (max-min)/(X-486 
min+1e-9). The IBD post-processing steps including encoding, removing low SNP density regions, decoding, 487 
sorting, merging, filtering, and matrix-building were implemented in a C++ toolkit ibdtools 488 
(https://github.com/umb-oconnorgroup/ibdtools) to accelerate the computation for large IBD datasets, for 489 
instance, hundreds of billions of IBD segments.  490 
 491 
We estimated the kinship coefficient for each pair of individuals in GLADdb with IBDkin 75. After kinship 492 
coefficient inferences, we pruned for relatedness in GLADdb using NAToRA 76 to exclude the minimum number 493 
of related individuals while removing the main kinship relationships in the dataset. We used 0.03125 as the 494 
kinship coefficient threshold which is the theoretical kinship coefficient expected for a 4th degree relationship.  495 

Continental Population Structure 496 

PCA and UMAP 497 
Prior to performing dimensionality reduction, we used PLINK71 to narrow our biallelic R0.9 dataset by applying 498 
LD pruning with a threshold of 0.5 to all 54K samples. Then, using the scikit-learn 77 implementation, we ran 499 
Principal Components Analysis (PCA) on the LD-pruned sites, keeping the top 50 components. To help with 500 
cluster visualization, we reduced the 50 principal components down to 2 dimensions by applying the UMAP 501 
algorithm, using the umap-learn package 78, with n_neighbors set to 10 and min_dist set to 0.25. 502 
 503 
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Runs of Homozygosity (ROH) 504 
We inferred the ROH segments for our 45 Latin American groups and 21 reference populations to explore the 505 
level of homogenization in each group. For each group, we used PLINK to filter for monomorphic variants and 506 
generate a transpose format. Then, we ran GARLIC 44, software that infers ROH based on the Pemberton et al 507 
79 pipeline detecting short (tens of kb), medium (hundreds of kb to several Mb)  and long (tens of Mb) ROH 508 
segments. We set the --auto-winsize mode to allow GARLIC to estimate the best window size for ROH inference 509 
starting from a 50 SNP window. We used the following command line: 510 
 511 
garlic --tped ${pop}.tped --tfam ${pop}.tfam --build hg38 --error 0.001 --cm --winsize 50 --auto-winsize --512 
auto-winsize-step 10 --out roh_autosize_${pop} --threads 20 --map ${geneticmap} 513 
 514 
For each individual in each group, we summed all ROH sizes to determine the genome-wide amount of ROH. 515 
Considering the good representation of Peruvian and Brazilian regions, 13 and 12 respectively, we estimated 516 
the correlation between the median for each group and the average genome-wide ancestry proportion in each 517 
country using the Pearson correlation. Processing and plotting scripts are available in: https://github.com/umb-518 
oconnorgroup/GLAD_DemographicAnalysis 519 
 520 
Local ancestry Inferences 521 
We ran local ancestry inference using RFMix ver2 80 on GLADdb. We inferred local ancestry for the phased 522 
dataset considering two Expectation-Maximization runs and eight generations since admixture. For the ancestry 523 
reference panel, we selected 982 individuals including 250 Europeans, 250 East Asian, 250 Africans and 232 524 
individuals with predominant Indigenous American ancestry (Table S2). Europeans, Africans and East Asian 525 
reference populations are part of the 1000 Genomes Project. Individuals with predominant Indigenous American 526 
ancestry includes Indigenous Americans from the Peruvian Genome Project 6,7 and individuals with predominant 527 
Indigenous American ancestry (above 99% of Indigenous American ancestry) from Guatemala (Table S2). 528 

Distant genetic relatedness among Latin American groups 529 

IBD-community detection 530 
For community detection, we calculated an IBD matrix by summing up all IBD segments with length within a 531 
specific range (>5cM, 5-9.3 or >9.3cM) across the genome for each pair of individuals, and set all elements with 532 
values < 12 cM to 0 in this matrix to reduce the density of non-zero elements in the matrix. The resulting 533 
symmetrical matrix was used as a weighted-adjacency matrix to build a bidirectional relatedness network. We 534 
used the infomap algorithm implemented with the python-igraph 81 package to infer the community structure of 535 
the relatedness network. We kept individuals within the top 20 communities and with a degree >= 30 536 
connections and used the Frutcherman Reingold layout 82 for visualization purposes. Community enrichment in 537 
a given birth country is defined as the largest proportion of community labels for individuals born in the country. 538 
The number of communities enriched in a birth country is determined by counting the communities that have 539 
>1% enrichment in this country. 540 
 541 
IBD sharing among Latin American regions 542 
To explore the recent relationship among Latin American regions, we focused on IBD segments greater than 543 
21.4 cM. We calculated the IBD sharing at intra and interregional levels. For intraregional sharing, we summed 544 
the total amount of shared IBD and divided it by the number of pairs: N(N-1)/2, where N is the total number of 545 
individuals included for that region. For interregional sharing, we summed the total amount of shared IBD among 546 
individuals of populations 1 and 2 and divided it by N1xN2, where N1 and N2 are the total number of individuals 547 
included for populations 1 and 2 involved in the sharing, respectively.  548 
 549 
Ancestry Specific IBD 550 
From the multi-way admixed origin of Latin American populations, IBD (segments greater than 21.4 cM) and 551 
local ancestry analyses provide an opportunity to detect ancestry-specific signatures related to bottleneck 552 
(whitin-region analysis) and recent migration (across-region analysis) along the Americas. 553 
 554 
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We implemented a python algorithm called GAfIS ( that stands for “Getting Ancestry For IBD Segments” ) that 555 
uses RFMIX outputs to identify local ancestry labels for an IBD segment shared by a pair of individuals under a 556 
certain probability threshold. As a probability threshold for local ancestry inferences in GAfIS, we set 90% for a 557 
genomic region being of the K ancestry. For this analysis, we included our processed IBD segments to reduce 558 
the proportion of false positives. Moreover, if an IBD segment contained several ancestries, we split the 559 
segment into segments corresponding to independent ancestries for each pair of individuals. 560 
 561 
After ancestry identification of the IBD segments, we filter out ancestry specific-IBD segments based on the 562 
following criteria: 563 
 564 
-The ancestry profile of one of the individuals for the IBD region was unknown for having a local ancestry 565 
probability lower than 90%. 566 
-Both individuals have different ancestry labels of the IBD segment. 567 
 568 
After those filters, we kept individuals with demographic information and calculated an ancestry-specific IBD 569 
score (asIBD score) within and across the 45 Latin American groups. Our asIBD score is defined in the following 570 
equations: 571 

 572 
Within regions: 573 

∑ ∑ ���������  

�����	� � �
������	� ���

�
 � �	
�
	�
���� � ����	� �

�  � �����������������
       (Equation 1) 574 

 575 
Across regions: 576 

∑ ∑ ���������  

������� � � ������� � �  ������	
��	�
 � ������ � �  ������	
��	�
 � ������ � � �������������	�
     (Equation 2) 577 

 578 
Where: 579 
 580 
Anc K= African, European or Indigenous American ancestries 581 
IBD anc K: The total amount of ancestry K IBD shared between a pair of individuals from region i and j. 582 
N region i: Total number of individuals from region i. 583 
N region j: Total number of individuals from region j. 584 
Proportion anc K region i : Global ancestry proportion for Ancestry K in region i. 585 
Proportion anc K region j : Global ancestry proportion for Ancestry K in region j. 586 
callableIBDlength: Total size of the genome that was included for IBD analysis. 587 
 588 
In both equations, in the numerator, for a specific ancestry, we summed the total amount of IBD per ancestry for 589 
each pair of individuals from the same region (Equation 1) or between region i and j (Equation 2). To control for 590 
sample size and ancestry proportions, for equation 1, we divide the total amount of shared IBD by the product of 591 
the total number of combinations of individuals and the square of ancestry proportion. For Equation 2, we divide 592 
by the product of sample size for each region and the product of the global ancestry proportion K for each 593 
region, respectively. Finally, to get a value relative to the total size of the genome, we included the genome size 594 
that was analyzed in the IBD inference in both equations. Codes and pipeline to estimate the asIBD score are 595 
available in: https://github.com/umb-oconnorgroup/GLAD_DemographicAnalysis 596 

Polygenic Risk Scores in Latin American populations 597 

Description of PRS cohorts 598 
We utilized the following studies participating in GLAD: Columbia University Study of Caribbean Hispanics and 599 
Late Onset Alzheimer's disease (phs000496), Slim Initiative in Genomic Medicine for the Americas (SIGMA): 600 
Diabetes in Mexico Study (phs001388), eMERGE Network Phase III: HRC Imputed Array Data (phs001584), 601 
Early Progression to Active Tuberculosis in Peruvians (phs002025), and EPIGEN-Brasil (Bambui, Pelotas, and 602 
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SCAALA). These studies all ascertained one or more of the following traits: height, body mass index (BMI), 603 
and/or type 2 diabetes (T2D). See Table S5 for a complete description of cohorts.  604 
 605 
Ancestry proportions, relationship inference, principal components and imputation 606 
Within each cohort, PCs were calculated using PC-Air 83 to utilize as covariates. Related individuals were 607 
resolved to the 3rd degree using a kinship matrix generated in Identical-by-descent and relatedness analyses 608 
section. Genotyped data from each cohort was separately merged with the 1000 Genomes Project (1KGP) 38.  609 
Global ancestry proportions were estimated using ADMIXTURE39, a K of 5, and 20 replicates. For PRS 610 
estimation, imputed variants were filtered for a minimum imputation r2 of 0.9 and a MAF of 0.01. Both imputed 611 
and genotyped data were down-sampled to Hapmap Phase Three variants as required by PRS-CS 51. 612 
Phenotype data was harmonized across cohorts, though all analyses were conducted on a per-cohort basis. 613 
 614 
GWAS summary statistics 615 
Genome-wide association statistics were obtained from the GWAS Catalog 85, Biobank Japan 30 (BBJ), and UK 616 
Biobank 28 (UKBB). African-ancestry GWAS summary statistics were combined using a random-effects meta-617 
analysis using the GAP package in R to improve sample size. See Table S6 for a description of summary 618 
statistics used for this study. 619 
 620 
Heritability estimation 621 
Per-cohort additive heritability for each trait was estimated using GCTA 86, adjusting for sex, age, age2, and PCs 622 
1-10. For each set of GWAS summary statistics, heritability was estimated using LD score regression 87, using 623 
the appropriate 1KGP super-population for the calculation of LD scores.    624 
 625 
Polygenic risk score calculation 626 
Pruning/Thresholding PRS: We used PRS calculated with PRSice-2 50 as the representative pruning and 627 
thresholding (P+T) method. For P+T, we trained the r2 parameters (r2 thresholds of 0.2, 0.4, 0.6, and 0.8), 628 
window size (+/- 250 kb, 500kb, 750kb, 1000 kb), and p-value thresholds (iterated by PRSice-2) in one cohort 629 
(eMERGE) and validated the parameters in the other cohorts.  630 
Bayesian Mixture PRS: We used PRS estimated with PRS-CS51 as the baseline Bayesian mixture method. For 631 
PRS-CS, we trained the phi (φ) parameter (phi=1e-06, 1e-04, 1-e02, and 1e+00) in one cohort (eMERGE, as 632 
this cohort included information for all tested traits) via a small grid search and validated it in the other cohorts. 633 
In addition, we also evaluated the fully Bayesian pseudo-validation method (phi=auto) for obtaining phi.  634 
 635 
Multi-ancestry PRS using PRS-CSx: We leveraged PRS-CSx 52 to compute a multi-ancestry PRS, which 636 
simultaneously fits multiple sets of GWAS summary statistics while modeling population-specific LD, resulting in 637 
more accurate posterior effect sizes for any relatively underpowered GWAS. PRS-CSx outputs a PRS 638 
corresponding to each GWAS population and an inverse variance meta-analysis of the posterior effect sizes. 639 
We trained the best linear combination of each single-population PRS in one cohort using the mixing weights 640 
method proposed by Márquez-Luna et al. 88,89 (Equations 3 and 4) with validation in other cohorts. Prior to 641 
combining, each PRS is scaled (mean 0, standard deviation 1). In addition, we also evaluated weighting PRS by 642 
ancestry proportions (Equation 5), weighting by ancestry proportions after collapsing East Asian and Indigenous 643 
American ancestries (Equation 6), and regressing on ancestry proportions prior to model fitting. We compared 644 
these linear combinations to the PRS generated from the inverse-variance meta-analysis of PRS-CSx posterior 645 
effect sizes.  646 
 647 
Equation 3: ����  �  ��������

 � �1 
 ���������
, 648 

Equation 4: ����  �  ��  �������
� ���������

� ������ ��
, ���� �� � �� � �� � 1, 649 

Equation 5: ���� � �������
������

� � �������
������� � ���� ��

��� ��
�, 650 

Equation 6: ���� � �������
������

� �!�"�
� � �������

������
� � ���� ��

��� ��
�, 651 

where α, α1, α2, and α3 represent mixing weights, ���� ��
, �������

, and �������
 represent a PRS calculated 652 

using African, European, East Asian ancestry GWAS, respectively, for individual i. �����
 ,�� ��

 , ����� , and 653 
�!�"�

represent the East Asian, African, European, and Indigenous American ancestry proportions for individual i. 654 
 655 
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For BMI, height, and T2D, GWAS summary statistics from East Asian, European, and African populations are 656 
publicly available (see Table S6). In addition, we were able to train the full range of parameters thanks to 657 
multiple independent Latin American cohorts containing data for these traits. We first compared pruning and 658 
thresholding (P+T), PRS-CS, and PRS-CSx models. We then evaluated PRS-CSx based multi-ancestry models, 659 
comparing linear combinations (the best performing linear combination model for each cohort) and inverse-660 
variance meta-analyses of PRS-CSx posterior effects. These multi-ancestry models were derived from East 661 
Asian and European GWAS (referred to as SUM2 and META2) or derived from East Asian, European, and 662 
African GWAS (referred to as SUM3 and META3). Finally, we compared these multi-ancestry models against 663 
the best single ancestry PRS (EUR2 and EUR3 estimated using PRS-CSx).  664 
 665 
 666 
PRS model evaluation 667 
All models were evaluated using the 10-fold cross validation framework outlined by Pain et al 90. In this 668 
approach, the primary metric is the Pearson correlation between the predicted and true values with a standard 669 
error of ��# � �1 
 �� �/��� 
 2�, where r is the Pearson correlation and n is the sample size. Correlations were 670 
compared using the two-sided William’s test implemented in the psych R package that accounts for the non-671 
independence of the model predictions. R2 was calculated as the square of Pearson’s r; partial R2 was estimated 672 
by subtracting the R2 of the base model (only covariates) from R2 of the full model (covariates and PRS). In 673 
general, the base model included age, age2, sex, and PCs 1-10 with the exception of cohorts with a categorical 674 
age variable (eMERGE for T2D). The Pelotas cohort, as a birth-year cohort, age and age2 were not included as 675 
all subjects were the same age. We tested the association of mean ancestry proportions of the cohorts with 676 
model performance using linear regression, adjusting for the GWAS trait (R2~ scaled ancestry proportion + 677 
trait).   678 
 679 
Code Availability 680 
From the code utilized for this project, we developed an R package called PRSHelpDesk that supports PRS 681 
estimation and evaluation. It is available on GitHub at https://github.com/dloesch/PRSHelpDesk.  682 
 683 

Matching 684 

Both the baseline bipartite matching 49 algorithm and the nearest neighbor simulated annealing matching 685 
algorithm operate on a principal components space composed of the first 50 components computed using 686 
246,799 LD-pruned SNPs from GLADdb. The external-user-provided query is also embedded into the PCA 687 
space with a saved transformation matrix and pairwise distances are computed with a variance-weighted 688 
Minkowski distance metric. Once a suitable matching set has been found, we return summary statistics to the 689 
external user including alternate allele frequency, genotype counts, and haplotype ancestry counts by segment. 690 
 691 
The baseline algorithm is outlined in Algorithm 1 and consists of iteratively applying scikit-learn’s 77 bipartite 692 
matching implementation until enough controls have been found. 693 
 694 
Given a desired control cohort size m and hyperparameters �, �, �, and n, the nearest neighbor simulated 695 
annealing matching algorithm, outlined in Algorithm 2, proceeds as follows. The computed pairwise distances 696 
between query and GLADdb PCA embeddings are used to find the � nearest neighbors of each query genome 697 
from the potential controls, which we then merge into a candidate set. We sample m controls from the candidate 698 
set and do so � times to generate � control cohorts. We use the genomic control �, calculated between a 699 
control cohort and the query, to evaluate the � control cohorts. The � values are then used to select the optimal 700 
starting control cohort and a function of their standard deviation is used to initialize our simulated annealing 701 
temperature. We perform simulated annealing for n iterations, randomly swapping � genomes between our 702 
control cohort and the candidate set at each iteration, evaluating the control cohort by its genomic control �. 703 
 704 
 705 
 706 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2023. ; https://doi.org/10.1101/2023.01.07.522490doi: bioRxiv preprint 



 

 

 707 

 708 

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2023. ; https://doi.org/10.1101/2023.01.07.522490doi: bioRxiv preprint 



 

 22

GLADdb 709 

The GLADdb portal provides both visualization and control matching functionality. The visualizations are built 710 
with the Plotly library, enabling in-browser interaction, zooming, and filtering. The control matching page enables 711 
filtering by self-identified ethnicity, phs numbers, and some phenotypic traits. The external user is asked to 712 
prepare and anonymize their data using a Dockerfile provided at github.com/umb-oconnorgroup/gladprep. 713 
 714 
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 755 

SUPPLEMENTARY FIGURES 756 

 757 
Figure S1. Workflow for the building and the use of the GLAD database. A) For each dbGaP cohort, we extracted and self-described 758 
Latino and ADMIXTURE defined subjects with at least 2% of Indigenous American ancestry. Then each cohort was imputed in the 759 
Michigan Imputation Center using the TOPMED Imputation panel. After imputation, we selected the best imputed loci (r2>0.9) and 760 
merged the data. We characterized the GLADdb using PCA, IBD and local ancestry analyses. B) By identifying the GLAD individuals that 761 
have similar genetic patterns of a query sample, we provide summary statistics of the control subjects from GLADdb. 762 
 763 
 764 
 765 
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 766 
 767 

 768 
Figure S2. Principal component (PC) analysis GLADdb and ancestral reference groups individuals. First ten PCs that include 769 
reference groups (triangles) and GLAD individuals (circles). 770 
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 771 

 772 
 773 
Figure S3. Principal component (PC) analysis GLADdb and ancestral reference groups individuals. Plot shows the relationships 774 
between GLADdb individuals with different data types: Imputed (diamond) and sequencing data (cross). 775 
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 776 
 777 

 778 
 779 
Figure S4. Population structure analysis GLADdb and ancestral reference groups individuals. Principal component (A) and UMAP 780 
(B) analyses showing the relationship between self described and ADMIXTURE-defined individuals in GLADdb. C) UMAP analysis of 781 
GLADdb individuals with different data types: Imputed (diamond) and sequencing data (cross). 782 
 783 
 784 
 785 
 786 
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 787 

 788 
 789 
 790 
 791 
Figure S5. Genome-wide ancestry clines projected on UMAP analysis. Continental ancestry clines based on ancestry proportions 792 
inferred by ADMIXTURE for African (AFR), European (EUR) and Indigenous American (IA) ancestries in GLADdb individuals. 793 
 794 
 795 
 796 
 797 
 798 
 799 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2023. ; https://doi.org/10.1101/2023.01.07.522490doi: bioRxiv preprint 



 

 28

 800 

 801 
 802 
 803 
 804 
Figure S6A. IBD network community detection using IBD segments between 5-9.3cM. This interval was selected to explore the 805 
population dynamics before the colonial times. A) Top 20 IBD network communities visualized using Fruchterman-Reingold layout 806 
algorithm 82. For visualization purposes, only individuals with connections > 30 are included in the layout calculation. The community 807 
labels, such as CS1 and CS2, are named according to the IBD version used and the rank of the community sizes, with CS1 representing 808 
the largest community when using short IBD segments (5-9.3cM). B) IBD sharing among top 30 inferred communities (ordered by 809 
agglomerative clustering; the same order was followed in C and D). C) Distribution of IBD shared among individuals in each community. 810 
D) Enrichment of IBD community membership in the country of origin (i.e., proportions of community labels for individuals born in a given 811 
country).  812 
 813 
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 814 
 815 
 816 
Figure S6B. IBD network community detection using IBD segments  greater than 9.3cM. This interval was selected to explore the 817 
population dynamics after the colonial times. A) Top 20 IBD network communities visualized using Fruchterman-Reingold layout 818 
algorithm 82. For visualization purposes, only individuals with connections > 30 are included in the layout calculation. The community 819 
labels, such as CL1 and CL2, are named according to the IBD version used and the rank of the community sizes, with CL1 representing 820 
the largest community when using large IBD segments (> 9.3cM). B) IBD sharing among top 30 inferred communities (ordered by 821 
agglomerative clustering; the same order was followed in C and D). C) Distribution of IBD shared among individuals in each community. 822 
D) Enrichment of IBD community membership in the country of origin (i.e., proportions of community labels for individuals born in a given 823 
country).  824 
 825 
 826 
 827 
 828 
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 830 
 831 
 832 
 833 
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 838 
A. 839 

 840 
Figure S7A. Predictive Performance as measured by the mean correlation of the trait with the prediction. A: Predictive841 
performance for BMI. B: Predictive performance for height. C: Predictive performance for T2D. AD: Columbia University Study842 
Caribbean Hispanics and Late Onset Alzheimer's disease (phs000496), DMS: Slim Initiative in Genomic Medicine for the Ame843 
(SIGMA): Diabetes in Mexico Study (phs001388), EMERGE: eMERGE Network Phase III: HRC Imputed Array Data (phs0015844 
Early Progression to Active Tuberculosis in Peruvians (phs002025), and EPIGEN-Brasil (Bambui, Pelotas, and SCAALA). 845 
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 867 
 868 
B. 869 

 870 
Figure S7B. Predictive Performance as measured by the mean correlation of the trait with the prediction. A: Predictive871 
performance for BMI. B: Predictive performance for height. C: Predictive performance for T2D. AD: Columbia University Study872 
Caribbean Hispanics and Late Onset Alzheimer's disease (phs000496), DMS: Slim Initiative in Genomic Medicine for the Ame873 
(SIGMA): Diabetes in Mexico Study (phs001388), EMERGE: eMERGE Network Phase III: HRC Imputed Array Data (phs0015874 
Early Progression to Active Tuberculosis in Peruvians (phs002025), and EPIGEN-Brasil (Bambui, Pelotas, and SCAALA). 875 
  876 
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C. 877 

 878 
Figure S7C. Predictive Performance as measured by the mean correlation of the trait with the prediction. A: Predictive879 
performance for BMI. B: Predictive performance for height. C: Predictive performance for T2D. AD: Columbia University Study880 
Caribbean Hispanics and Late Onset Alzheimer's disease (phs000496), DMS: Slim Initiative in Genomic Medicine for the Ame881 
(SIGMA): Diabetes in Mexico Study (phs001388), EMERGE: eMERGE Network Phase III: HRC Imputed Array Data (phs0015882 
Early Progression to Active Tuberculosis in Peruvians (phs002025), and EPIGEN-Brasil (Bambui, Pelotas, and SCAALA). 883 
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Figure S8. PRS linear combination methods across three traits. Predictive performance of linear combination methods ac887 
and 7 cohorts. Error bars represent the standard error of the correlation. See methods for model definitions. AD: Columbia Un888 
Study of Caribbean Hispanics and Late Onset Alzheimer's disease (phs000496), DMS: Slim Initiative in Genomic Medicine fo889 
Americas (SIGMA): Diabetes in Mexico Study (phs001388), EMERGE: eMERGE Network Phase III: HRC Imputed Array Data890 
(phs001584), TB: Early Progression to Active Tuberculosis in Peruvians (phs002025), and EPIGEN-Brasil (Bambui, Pelotas, 891 
SCAALA). 892 
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912 
Figure S9. Screenshots from GLADdb website. A) Landing page. B) The control matching page, encompassing data prepa913 
matching job submission. C-E) Visualization pages, showing respectively all cohorts, selected cohorts, and a zoomed-in view914 
highlighted individual. 915 
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