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Abstract
Brazilian medical mycology considerably expanded in the last decades due to the efforts of several pioneers who started 
and expanded mycology during the twentieth century. In this manuscript, we highlight some of the contributions of one of 
these pioneers: Professor Luiz R. Travassos, who started his career in the field of microbiology in the 1960s. We will discuss 
his contributions to the areas of medical mycology and glycobiology, with a focus on glycosphingolipids, sialic acids, and 
surface enzymes.
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Introduction

The awareness of the medical importance of fungal diseases 
increased considerably after the AIDS pandemic in the early 
1980s, although fungal pathogens are still widely neglected 

[1]. In the 1970s, the situation was incomparably worse. In 
the late 1960s and early 1970s, studies on the surface struc‑
tures of fungal pathogens were driven by a young, visionary 
Luiz R. Travassos, who recognized not only the importance 
of fungal pathogens as infectious agents but also an under‑
appreciated molecular class at that time: glycoconjugates. 
In the next sections, we will illustrate some of Travassos’ 
contributions to the fields of medical mycology and micro‑
bial glycobiology.

A pioneer of modern medical mycology 
in Brazil

In the 1970s, Professor Travassos led in Rio de Janeiro 
several innovative initiatives in the field of medical mycol‑
ogy, including efforts that resulted in seminal contributions 
to the field of glycobiology mainly using Sporothrix and 
Ceratocystis as experimental models [2–6]. His findings of 
structural and functional aspects of fungal glycans greatly 
influenced other areas of glycobiology in Brazil.

The initial period of studies of the compositional and 
structural properties of the fungal cell wall was prolific in 
many ways. The establishment of collaborations between 
Professors Travassos, Philip Gorin (Canada), and Kenneth 
Lloyd (USA) in the 1970s not only resulted in the generation 
of fundamental knowledge of the composition and struc‑
tural arrangements of the fungal cell wall, but also changed 
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the way fungal surface components were being analyzed. 
Through these interactions, the use of nuclear magnetic 
resonance for the study of cell wall glycans of fungi was 
introduced in Brazil. Dr. Gorin came from Canada to Brazil 
in 1976 as a visiting professor at the Federal University of 
Rio de Janeiro (1976–1977) to analyze polysaccharides and 
glycocomplexes from fungi and protozoa. Later, he moved 
to Curitiba, Brazil and, in 1983, became a full professor at 
the Department of Biochemistry of the Federal University 
of Paraná where he initiated a series of studies that helped 
the consolidation of glycobiology in that region. Through‑
out this period, Dr. Gorin continued to actively collaborate 
with Professor Travassos and his students. According to a 
Pubmed search (https:// pubmed. ncbi. nlm. nih. gov/), this col‑
laboration produced 13 scientific articles. Most importantly, 
this whole exciting scenario attracted young scientists to 
glycobiology who Professor Travassos guided to become 
leaders in their model systems. To name a few of them, we 
highlight Drs. Lucia Mendonça‑Previato and José Oswaldo 
Previato, in addition to Eliana Barreto‑Bergter and Celuta 
S. Alviano, who are authors in this manuscript.

After moving to São Paulo in the early 1980s, Profes‑
sor Travassos initiated a series of studies in the Paracoc-
cidioides model that opened another large new field within 
South American medical mycology. These seminal findings 
will be discussed in other articles of this special issue. Of 
note, Professor Travassos authored 125 mycology articles 
out of 242 scholarly outputs from his whole career reported 
on Pubmed. In this group of 125 mycology articles, 71 
focused on the Paracoccidioides model. These numbers 
can slightly vary according to the database used for article 
search, but they demonstrate unequivocally how Professor 
Travassos contributed to and influenced a whole field. We 
will describe in the next sections a series of studies led by 
Professor Travassos in non‑Paracoccidoides fungal models.

The cellular distribution of fungal glycolipids 
and its resonance on the discovery of fungal 
extracellular vesicles

Glycosphingolipids are typical components of the mem‑
branes of eukaryotic cells. Glycosylceramides (also known 
as cerebrosides or ceramidemonohexosides) represent the 
most well‑studied class of neutral glycosphingolipids pro‑
duced by fungal cells [7].

Glycosylceramides consist of D‑glucose (Glc) or 
D‑galactose (Gal) residues linked by a β1‑1′‑glycosidic 
bond to ceramide composed of D‑erythro‑sphingosine and 
long‑chain fatty acid [8]. These lipids (glucosylceramide, 
GlcCer; galactosylceramide, GalCer) are produced by most 
fungal pathogens, where they play key roles in growth, 
differentiation, and immunogenicity [9]. Consequently, 

glycosylceramides are now considered as promising targets 
for novel antifungals [10] and therapeutic antibodies [11]. 
Eliana Barreto‑Bergter, one of the authors in the present 
manuscript and Professor Travassos’ former student, led a 
series of studies resulting in the full structural characteriza‑
tion of fungal glycosylceramides [7]. Other authors in this 
manuscript collaborated with her in several of these studies 
[12–16], which illustrates how Travassos’ former students 
closely interacted and still collaborate.

For many years, it was widely accepted that fungal gly‑
cosylceramides were plasma membrane components. This 
view changed a couple of decades ago with the direct par‑
ticipation of Professor Travassos. In the Cryptococcus neo-
formans model, a collaboration between Drs. Travassos 
and Barreto‑Berger resulted in the identification of human 
antibodies against GlcCer that were able to control fungal 
growth [13]. To exert these effects against a plasma mem‑
brane component, the antibodies would necessarily have to 
cross the fungal cell wall, a thick external layer that encages 
the plasma membrane [17]. That would be an unlikely event, 
considering the relatively large molecular weight of antibod‑
ies and the reduced porosity of the cell wall. At that time, 
after a brainstorm discussion with Arturo Casadevall during 
the 14th Congress of the International Society of Human and 
Animal Mycology (Buenos Aires, Argentina, 2000), Profes‑
sor Travassos and Dr. Casadevall raised the hypothesis that, 
as targets of antifungal antibodies, cryptococcal GlcCer had 
to be a cell wall component. In fact, lipid extraction of cell 
wall samples resulted in the chemical identification of Glc‑
Cer [13]. Transmission electron microscopy using immu‑
nogold labeling demonstrated extensive antibody binding 
to the cryptococcal wall, revealing a previously unknown 
cellular site for fungal lipids [13]. This observation was in 
accordance with the antifungal activity of antibodies to Glc‑
Cer [13] and was the basis for the future development of 
antifungals targeting GlcCer [10].

Of note, the antibodies reacted with unique structures 
at the cryptococcal cell wall. As originally stated by the 
authors, “points of transport of presumed glucosylceramide‑
containing vesicles from the plasma membrane to the cell 
wall” were detected [13]. This observation was the experi‑
mental basis for the formulation of the hypothesis that fungal 
cells were able to produce vesicles that could cross the cell 
wall and reach the extracellular space. In fact, extracellular 
vesicles containing GlcCer were initially detected in cul‑
tures of C. neoformans and P. brasiliensis [18, 19]. These 
findings were expanded to at least 20 fungal species during 
the following 15 years [20]. We see the discovery of fungal 
extracellular vesicles as a direct consequence of the unique 
views of Professor Travassos, who foresaw the possibility 
that fungal lipids could be transitory cell wall components 
participating in exportation events in fungal cells. Fungal 
EVs are now candidates for vaccine development [21–24], 
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which connects a fundamental discovery with a clearly trans‑
lational potential.

Sialic acids and surface enzymes

The studies of fungal pathogens initiated by Professor Tra‑
vassos in the early 1970s were extended to other projects 
focused on surface‑located structures participating in the 
interaction with the host. In the S. schenckii model, an 
early study suggested the presence of cell wall‑associated 
acidic amino acids [25]. These initial findings evolved to 
the investigation of the presence of sialic acids on the sur‑
face of fungal pathogens, resulting from a collaboration 
between Drs. Travassos and Celuta S. Alviano. Of note, 
Dr. Alviano, also an author in this manuscript, was a PhD 
student under the supervision of Dr. Travassos. Together, 
they described the presence of sialic acids in S. schenckii 
[26], Fonsecaea pedrosoi [27], P. brasiliensis [28], C. neo-
formans [29], Candida albicans [30], and Mucor poly-
morphosporus [31]. These findings made possible the col‑
laboration between the Alviano and Travassos laboratories 
with the group of Roland Schauer (1936–2019) in Ger‑
many. Dr. Schauer, also known as “Mr. Sialic Acid” [32], 
was a world leader in the field of sialic acids who visited 
Drs. Alviano and Travassos in Brazil in 1998 (Fig. 1). His 
collaboration with the Travassos and Alviano laboratories 
resulted in three publications in this field [33–35]. The 
group’s expertise on the analysis of surface structures of 
fungal cells evolved to studies on the functions of pig‑
ments [36], inducers of differentiation [37], and surface 
enzymes [38–40], as detailed below.

During the decades of work at the Federal University 
of São Paulo, Professor Travassos maintained collabora‑
tions with several groups in Rio de Janeiro, where he was 
born as a person and as a scientist. He used to travel to 
Rio on a regular basis to discuss collaborative projects and 

to follow the progress of his former students. In this sce‑
nario, Professor Travassos initiated a tripartite collabora‑
tion involving his group in São Paulo and the laboratories 
of Celuta S. Alviano and Jose Roberto Meyer‑Fernandes at 
the Federal University of Rio de Janeiro. They combined 
their expertise in mycology and biochemistry to identify 
an ecto‑phosphatase in F. pedrosoi, as initially revealed by 
transmission electron microscopy and biochemical assays 
[39, 40]. Driven by Dr. Travassos’ enthusiasm in these 
face‑to‑face meetings in Rio, the initial observation of sur‑
face ecto‑phosphatase activity in F. pedrosoi evolved to 
functional studies. The group found that under conditions 
of inorganic phosphate deprivation, the enzymatic activity 
was approximately 130‑fold increased [39]. Fungal cells 
(conidial forms) with higher ecto‑phosphatase activity had 
a greater capacity to adhere to mammalian cells (fibro‑
blasts and epithelial cells). The confirmation that this 
property resulted from increased enzyme activity came 
from the reduction in adhesion under conditions of enzy‑
matic inhibition [39]. Ecto‑phosphatases were involved not 
only in adhesion processes but also in fungal physiology, 
as concluded from the distinct levels of enzyme activity in 
the different morphotypes of F. pedrosoi [40].

Professor Travassos’ legacy to the study 
of surface structures of fungal pathogens

The six of us, authors in this manuscript, were PhD students 
or post‑doctoral fellows under the supervision of Professor 
Travassos, from the 1970s to the 2000s. All of us became 
independent principal investigators in different Brazilian 
institutions, and we are now at diverse career levels. Most 
importantly, all of us still study surface structures of fungal 
pathogens, with several students and young investigators 
under our supervision. This is a clear illustration of how 

Fig. 1  Visit of Dr. Roland 
Schauer to Rio de Janeiro, Bra‑
zil, in 1998. This picture was 
taken in the Copacabana beach, 
after a visit to Rio guided by Dr. 
Travassos. Besides Drs. Travas‑
sos and Schauer, Flavia Reis, 
Marcio Rodrigues, and Daniela 
Alviano—all of them PhD stu‑
dents at that time—participated 
in Dr. Schauer’s visit

Luiz R. Travassos
Flavia Reis

Marcio Rodrigues Daniela
Alviano

Roland Schauer
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Professor Travassos impacted medical mycology in Brazil 
and, at a more personal level, our careers and lives.
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