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Abstract: The interactions between cell and cellular matrix confers plasticity to each body tissue,
influencing the cellular migratory capacity. Macrophages rely on motility to promote their physio-
logical function. These phagocytes are determinant for the control of invasive infections, and their
immunological role largely depends on their ability to migrate and adhere to tissue. Therefore, they
interact with the components of the extracellular matrix through their adhesion receptors, conferring
morphological modifications that change their shape during migration. Nevertheless, the need to
use in vitro cell growth models with the conditioning of three-dimensional synthetic matrices to
mimic the dynamics of cell-matrix interaction has been increasingly studied. This becomes more
important to effectively understand the changes occurring in phagocyte morphology in the context of
infection progression, such as in Chagas disease. This disease is caused by the intracellular pathogen
Trypanosoma cruzi, capable of infecting macrophages, determinant cells in the anti-trypanosomatid
immunity. In the present study, we sought to understand how an in vitro extracellular matrix model
interferes with T. cruzi infection in macrophages. Using different time intervals and parasite ratios,
we evaluated the cell morphology and parasite replication rate in the presence of 3D collagen I matrix.
Nevertheless, microscopy techniques such as scanning electron microscopy were crucial to trace
macrophage-matrix interactions. In the present work, we demonstrated for the first time that the
macrophage-matrix interaction favors T. cruzi in vitro replication and the release of anti-inflammatory
cytokines during macrophage infection, in addition to drastically altering the morphology of the
macrophages and promoting the formation of migratory macrophages.

Keywords: extracellular matrix; macrophage; Trypanosoma cruzi; collagen I; 3D matrix

1. Introduction

The extracellular matrix (ECM) is composed of proteins and polysaccharides that
are secreted by the different cell types that make up the tissues. The various tissues are
characterized not only by the constituent cell types but also by the chemical composition,
structure, and mechanics of their ECMs [1]. Such properties modulate various cellular
functions. Both in vitro and in vivo, cells and their respective ECMs are in constant com-
munication, where the recognition of the extracellular environment by the receptors and
co-receptors present on cell surfaces trigger functional modifications [2–4].

Collagen is comprised of fibrous proteins of predominant occurrence in the extracellu-
lar environment and are involved not only in the supramolecular structure of the ECMs but
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also in the modulation of several biological processes such as adhesion, migration, growth,
differentiation, and tissue repair [5,6].

Collagen I is the most abundant type of collagen in mammalian tissues and, there-
fore, the most easily obtainable in large quantity [7], ECMs constituted by collagen I and
structured in three-dimensional (3D) are the most studied models, both with respect to the
mechanics presented by collagen I and their interaction with eukaryotic cells [8,9].

The most used materials in mammalian in vitro cell culture are composed of rigid
and planar substrates made of glass or plastics and are subjected to special treatments.
In recent decades it was observed a growing interest in the culture of mammalian cells,
particularly human cells, in 3D frameworks in the scientific literature. That means the use of
cell culture models with rigid or flexible/floating substrates structured in 3D scaffolds [10].
This tendency is mainly due to the fact that this type of crop provides a mechanochemical
environment closer to that observed in vivo [11].

Macrophages are very active cells with amoeboid movement and variable morphol-
ogy, depending on their functional state, location, and chromatin shape [12–14]. It plays
an important role in the removal of cell debris and altered extracellular material. They
influence cell activity and homeostasis in various tissues and are antigen-presenting cells,
pivotal for the initial recognition and removal of senescent cells [15]. They also provide a
frontal line of defense against invading antigens and newly formed tumor cells [16,17].

Macrophages interact with other cells and the ECM in various situations during their
ontogeny and differentiation, as well as in response to appropriate physiological stimuli.
Its ability to interact with extracellular matrix molecules, such as collagen, laminin, and
fibronectin, is a determining factor for the development of its unique functions [18]. These
interactions allow the cells to adhere and spread over the matrix and occur via specific cell
membrane receptors, including some integrins [19].

Macrophages are part of the innate immune system, recognizing, phagocytosing,
and destroying many potential pathogens, including bacteria, protozoa, and fungi [20].
Phagocytosis begins with the spreading, characterized by the alteration of the form and
redistribution of the cytoplasmic organelles. Changes in cell shape increase the contact
area of the plasma membrane of the phagocyte with the substrate. During adhesion, the
activation of membrane receptors for adhesion molecules occurs, causing the rearrangement
of the cellular cytoskeleton [21,22].

Trypanosoma cruzi is an obligatory intracellular protozoan parasite, and it is the etiologi-
cal agent of Chagas disease, which is endemic in the Americas. In addition, a wide spectrum
of mammalian cells can be infected by T. cruzi, including macrophages [23]. Besides acting
as target cells for the multiplication of parasites, macrophages also act as effector cells
in the elimination of intracellular parasites [24]. Although the study of macrophages in
two-dimensional (2D) rigid surface material has already been well evaluated [25], the
mechanisms involved in macrophage/matrix interaction are still poorly documented.

Although ECM constituents are still little studied in the context of cellular modulation,
they seem to be crucial for cell modulation in immunopathological processes. Interestingly,
the migration of macrophages in the context of the presence of ECM is modulated by
biomechanical factors and cell adhesion, which are different according to the matrix compo-
sition [26]. In addition, the presence of ECM strongly influences the resident macrophage
phenotype, as macrophages conditioned with ECM clearly become more regulatory in
phenotype, which is the opposite of what is observed for macrophages cultured in the ab-
sence of matrix [27]. Furthermore, the different physiological origin of the ECM differently
activates macrophages in culture, again associated with the difference in structural compo-
sition [27]. In this sense, matrices with fibrin in their composition induce a more regulatory
profile in macrophages, associated with the initiation of tissue repair mechanisms mobilized
by alternatively activated macrophages [28]. Furthermore, collagen-based matrices also
elicit the same regulatory effect, demonstrating that this phenomenon is not exclusive to
the presence of fibrin. Nevertheless, a tighter interaction between the components of the
ECM, increasing its density, is associated with greater macrophage migration, adhesion,
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and activation of the inflammatory response due to tumor necrosis factor-alpha (TNF-α)
secretion [29]. Therefore, ECMs are cellular scaffolds that vary in composition and physical
structure, strongly influencing the activation of macrophages, being crucial to tissue repair
and pathogen clearance.

It is known that macrophages interact with the collagen type I in the matrix through
the VLA-1 and VLA-2 surface receptors [30–32]. Thus, the aim of this work was to evaluate
the role of macrophage/collagen in the 3D collagen type I matrix (3D matrix) interaction in
the context of T. cruzi infection in vitro.

2. Materials and Methods
2.1. Animals

Male BALB/c mice, aged 6–8 weeks, were obtained from the Center for Creation of
Laboratory Animals (CECAL), Fiocruz-RJ, and kept in microisolators, with food and water
ad libitum. All experimental procedures were carried out in accordance with the rules for the
use of laboratory animals established by the UFRJ Ethics Committee. (CEUA No.: 079/19).
Male Wistar rats, aged 8–10 weeks, were obtained from an Animal Care Facility in the
Health Science Center of the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
All experimental procedures were carried out in accordance with the rules for the use of
laboratory animals established by the UFRJ Ethics Committee. (CEUA No.: 045/17).

2.2. Parasites

T. cruzi clone Dm28c was used in all experiments. The epimastigotes were cultivated,
through successive passages, in BHI medium (Difco/Becton & Dickinson Laboratories,
Detroit, MI, USA) supplemented with hemin (25 mg/L, Sigma Chemical Co., St. Louis,
MO, USA), folic acid (20 mg/L, Sigma Chemical Co.) and 10% fetal bovine serum (FBS)
inactivated at 56 ◦C (FBS, Gibco-Invitrogen, Grand Island, NY, USA), and kept in a BOD
incubator at 27 ◦C. The metacyclic forms of T. cruzi clone Dm28c were differentiated in vitro
in TAU-P (Triatomine Artificial Urine) medium (190 mM NaCl; 8 mM sodium phosphate
buffer (PBS), pH 6.0; 17 mM KCl; 2 mM CaCl2; 2 mM MgCl2; 0.035% NaHCO3, with the
addition of 10 mM L-proline; all from Sigma Chemical Co.) according to the protocol
described by Contreras and collaborators (1985) [33].

2.3. Collagen I Source

Collagen I used in the 2D and 3D models was isolated from the tail of Wistar rats
through the following process: the tails were first washed with detergent and immersed
in acetone for 5 min, having been left to rest in ethanol until the day of the extraction.
With the help of tweezers and scissors, each vertebra of the tail was broken to remove the
collagen fibers. The removed fibers were placed in a 1% acetic acid solution for 96 h at
4 ◦C for solubilization. Subsequently, the solution was subjected to ultracentrifugation
at 30,000× g (BECKMAN COULTER, OPTIMA L-90) for 45 min at 4 ◦C to discard non-
solubilized fibers. The supernatant was conserved and dialyzed in 1% chloroform for 1 h
to sterilize the solution. Then, the solution was dialyzed in sterile 0.02 N acetic acid for
3 days, changing the solution daily. At the end of dialysis, the product was stored at 4 ◦C.
Protein concentration was determined by the dry weight method [34].

2.4. Macrophage Harvesting

Resident peritoneal macrophages were obtained from BALB/c mice by washing
the peritoneal cavity of these animals with 5 mL of DMEM supplemented with 2 mM
L-glutamine, 50 µM β-mercaptoethanol, 1 mM pyruvate, 10 µg/mL of gentamicin and
0.1 mM non-essential amino acids (all from Gibco-Invitrogen) and without FBS. Cells were
counted in a Neubauer chamber using Trypan Blue dye (Sigma) for cell viability analysis,
adjusted to a concentration of 6 × 105 cells/mL in DMEM supplemented with 10% FBS
and 1 mL of this suspension was distributed in triplicates in 24-well plates for cell culture
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with or without 2D biofilm or 3D matrix layer. The plates were incubated at 5% CO2 and
37 ◦C for 3 h for macrophages to adhere.

2.5. Interaction Models In Vitro

Three different models of in vitro macrophage interaction were conducted. One
consisting in direct culturing the polystyrene surface of 24-well plates (Corning, New York,
NY, USA) with 1 mL of the macrophage suspension in DMEM (Dulbecco’s Modified Eagle’s
Medium) (Gibco-Invitrogen) at 6 × 105 cells/well. The other two protocols consisted in
culturing the macrophages on different surfaces, 2D collagen type I biofilm (2D biofilm)
and 3D collagen type I matrix (3D matrix).

2.5.1. D Collagen Type I Biofilm

The 2D biofilm model of macrophage interaction with collagen I was made by coating
the surface of 24-well plates with 300 µL of collagen I solution at 50 µg/mL in DMEM,
which were incubated at 5% CO2 and 37 ◦C for 1 h. Then, the excess solution was as-
pirated, and 1 mL of the macrophage suspension in DMEM was added to the wells
(6 × 105 cells/well) [35].

2.5.2. D Collagen Type I Matrix

The 3D matrix model was made by using collagen I at a concentration of 1.5 mg/mL.
For the matrix construction, the concentrated collagen I solution was diluted according to
the following protocol: an aliquot of 480 µL of the 5-fold concentrated DMEM was diluted
in a 50 mL tube with 5120 µL of 1× DMEM, 189 µL of NaOH, and 2400 µL of collagen I
5 mg/mL so that the final concentration of the matrix corresponded to 1.5 mg/mL and
pH 7.0. The entire process was carried out on the ice to prevent gelatinization from occur-
ring before the ideal time. The 300 µL of collagen I solution at 1.5 mg/mL added to the
wells of the 24-well plates, and the plates were incubated at 5% CO2 and 37 ◦C for 1 h to
complete the gelatinization process [35]. Then, 1 mL of the macrophage suspension was
added at 6 × 105 cells/mL.

2.6. Parasitic Burden Assay

Murine macrophages obtained, as described in Section 2.4, were infected overnight
(6 × 105 adherent cells/well in 24-well culture vessels) with chemically induced metacyclic
forms of T. cruzi clone Dm28c at a 1:1 and 3:1 parasite:cell ratio in 1 mL of complete culture
medium containing 10% FCS at 37 ◦C. On the following day (day 1), monolayers were
extensively washed to remove extracellular parasites and cultured with a complete culture
medium containing 1% Nutridoma instead of FCS.

The fold change in parasite number was evaluated after seven and ten days in culture by
counting the free trypomastigotes and amastigotes in the supernatants in a Neubauer chamber.

In some experiments, resident peritoneal macrophages of normal BALB/c mice cul-
tured or not on a layer of 2D biofilm at a concentration of 50 µg/mL or 3D matrix at a
concentration of 1.5 mg/mL were stimulated with 10 ng/mL of lipopolysaccharide (LPS
from Salmonella typhimurium, Sigma Chemical Co.) and 40 U/mL of interferon-gamma
(IFN-γ) for 24 h. The supernatants of these cultures were collected and stored at −20 ◦C for
cytokine quantification.

The macrophages on the collagen I models were subjected to an enzymatic digestion
process with a 1 mg/mL collagenase solution 300 µL/well (Type IA, Sigma Chemical,
St. Louis, MO, USA). The plates were incubated at 5% CO2 and 37 ◦C for 20 min, and then
the cells obtained after this enzymatic digestion were adjusted to 1 × 105 cells/200 µL and
cytocentrifuged at 6000 rpm for 3 min in a centrifuge (CT-2000 CIENTEC). After centrifuga-
tion, cells were stained using the Instant Prov kit (LABORCLIN) and then observed under
an optical microscope (ZEISS, Oberkochen, Germany, 100X).
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2.7. Determination of Cytokines

The concentrations of transforming growth factor beta (TGF-β) and TNF-α in the
supernatant, obtained from cultures of infected macrophages cultured on 2D biofilm or
3D matrix, were quantified after 48 h of incubation by sandwich immunoassay (ELISA)
according to methodology recommended by the manufacturer (R&D). The optical density
was obtained from a plate spectrophotometer (VERSAMAX MICROPLATES Reader Molec-
ular Devices, San Jose, CA, USA). The concentrations of cytokines were calculated from a
standard curve of recombinant cytokines.

2.8. Determination of Nitric Oxide

Nitric oxide (NO) produced by peritoneal macrophages cultured on 2D biofilm, 3D
matrix, or plates was quantified by the presence of nitrite accumulated in the supernatant
of cultures using the Griess colorimetric method [36].

2.9. Scanning Electron Microscopy (SEM)

Normal or T. cruzi-infected macrophages were fixed with 2.5% glutaraldehyde in 0.1 M
cacodylate buffer (pH 7.2) for 1 h and then washed overnight with PBS. After fixation,
trypomastigotes in the 3D matrix were postfixed for 30 min in a solution containing
1% OsO4, 1.25% potassium ferrocyanide, and 5 mM CaCl2 in 0.1 cacodylate buffer, washed
in the same buffer, and then dehydrated in an ethanol series from 30% to 100%. Finally,
samples were critical point dried, coated with a thin gold layer in a gold sputtering system
(Oerlikon, Balzers), and observed in an FEI-Quanta scanning electron microscope [37].

2.10. Statistical Analysis

Results were expressed as mean ± standard error (SE). Statistical analyzes were
performed using Prism 6 (Sigma) for Windows using the “One-way ANOVA” method.

3. Results
3.1. Infected Macrophages Grown in a 3D Environment Release More Trypomastigotes Forms

Our first hypothesis was that the replication rates of T. cruzi in murine macrophages
after in vitro infection would be altered with different chemical or mechanical matrix
compositions. To address that, we cultured peritoneal macrophages and infected them
with T. cruzi on a layer of collagen type I in a 2D biofilm form or in a 3D matrix layer, or
directly on the polystyrene surface of 24 well plates.

We observed a marked increase in T. cruzi replication occurring in the 3D matrix
situation after 7 and 10 days of culture (Figure 1A,B), respectively. This result suggests that
macrophage infection in the 3D matrix environment behaves differently from the one in
the polystyrene plate and in 2D biofilm surfaces.

The increased parasite replication in the 3D matrix system may be associated with
changes in cell shape, which represents the area of contact between the macrophage plasma
membrane and the substrate (3D matrix), which would favor the infection of the cell by the
T. cruzi. Infected macrophages cultured on 2D biofilm released levels of parasites similar to
the ones observed for macrophages cultured directly on the plate, suggesting that the effect
is mechanical rather than chemical (Figure 1).

3.2. Infected Macrophages Cultured on a 3D Matrix System Release More Amastigotes into the
Extracellular Environment

Based on previous studies showing that trypomastigotes forms from cell culture
differentiate into amastigotes in culture medium at 37 ◦C in vitro [38,39], we decided to
investigate whether this differentiation was influenced by the different collagen I model
employed in this study. Since there was no difference in the parasitic burden after only
7 days of infection, we only analyzed parasite differentiation after 10 days. We then
evaluated the number of amastigotes in the supernatants of infected macrophages cultured
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for 10 days on a layer of 2D biofilm, on a 3D matrix, and directly on the polystyrene surface
of 24-well plates.
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 Figure 1. The presence of a 3D matrix in vitro induces a higher trypomastigote release from T. cruzi-
infected macrophages. Peritoneal macrophages from BALB/c mice (6 × 105) were cultured on the 3D
matrix or 2D biofilm or directly on the wells of 24-well plates. After 3 h of macrophage adhesion to
different surfaces, cells were infected with metacyclic forms of T. cruzi clone Dm28 at parasite:cell
ratios of 1:1 (6 × 105) and 3:1 (18 × 105). Then, 24 h later, the infected monolayers were extensively
washed to remove extracellular parasites. After seven and ten days of infection, the trypomastigote
forms released in the culture supernatants were counted using a Neubauer chamber. Each bar
represents the mean ± SE of triplicates from a representative experiment. The experiments were
repeated three times, and similar results were obtained. Figures: (A) (seven days post-infection),
(B) (ten days post-infection). *** p < 0.001.

We observed a difference in the number of extracellular amastigote forms in the
supernatants of cultures of infected macrophages cultured on a 3D matrix when compared
to the other variants. We can suggest that the smaller number of trypomastigote forms
observed on the seventh day of incubation in the monolayers of macrophages cultured on
a 3D matrix layer (higher concentration ratio of infection) was related to an early release of
trypomastigotes and subsequent transformation into amastigotes in vitro (Figure 2).

3.3. Culture of Infected Macrophages on the 3D Matrix Induces the Early Release of
Trypomastigote Forms

In order to verify if the results presented in Figures 1 and 2 were indeed related to the
early release of trypomastigote forms by macrophages distributed on a 3D matrix, the free
parasite counts in the supernatant of cells cultured in two experimental conditions were
performed after 96 h of incubation at 37 ◦C. Even after only 96 h of culture, it was already
possible, in the 3D model, to count trypomastigote forms in the supernatants (Figure 3).

As already mentioned, amastigote forms divide intensely in the cytoplasm of the host
cell, then differentiate into trypomastigotes and rupture the cell membrane. For a more
detailed observation of the macrophages cultured on a 3D matrix layer infected by T. cruzi,
we subjected the culture to an enzymatic digestion process with collagenase I after 96 h
of infection. The suspensions obtained were used in the preparation of microscopy slides
using a cytocentrifuge. The evaluation of the slides under optical microscopy showed
intensely parasitized macrophages and trypomastigote forms disrupting the host cell
membrane (Figure 4).
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Figure 2. The presence of a 3D matrix in vitro induces a higher amastigote release from T. cruzi-
infected macrophages. Peritoneal macrophages from BALB/c mice (6 × 105) were cultured on the
3D matrix or 2D biofilm or directly on the wells of 24-well plates. Macrophage monolayers were
infected after 3 h of adhesion with metacyclic forms of T. cruzi clone Dm28c at parasite:cell ratios of 1:1
(6 × 105) and 3:1 (18 × 105). Then, 24 h later, the infected monolayers were extensively washed to
remove extracellular parasites. After ten days of incubation, the amastigote forms released in the
culture supernatants were counted in a Neubauer chamber. The results (means ± SE of triplicates)
presented are representative of three experiments performed separately. *** p < 0.001.
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Figure 3. The presence of a 3D matrix in vitro induces early trypomastigote release from T. cruzi-
infected macrophages. Peritoneal macrophages from BALB/c mice (6 × 105) were cultured on the 3D
matrix or directly on the wells of 24-well plates. Cell cultures were infected after 3 h of adhesion with
metacyclic forms of T. cruzi clone Dm28c in proportions of 1:1 (6 × 105) and 3:1 (18 × 105). 24 h later,
the infected monolayers were extensively washed to remove extracellular parasites. After 96 h of
infection, trypomastigote forms released in the culture supernatants were counted using a Neubauer
chamber. The results (means ± SE of triplicates) presented are representative of three experiments
performed separately. *** p < 0.001.
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Figure 4. Macrophages are intensely parasitized early in vitro in the 3D matrix. Peritoneal
macrophages from BALB/c mice (6 × 105/well) were distributed into wells of 24-well plates covered
with 3D matrix and allowed to adhere for 3 h at 5% CO2 and 37 ◦C. Cells were infected overnight
with metacyclic forms of T. cruzi clone Dm28c in a 3:1 proportion (18 × 105). After this incubation,
the wells were washed to remove non-internalized parasites. Enzymatic digestion with collagenase
was performed 96 h post-infection, and the suspension obtained was used in the preparation of slides
by a cytocentrifuge. The slides were fixed and stained using the Instant Prov kit (LABORCLIN) and
then observed under an optical microscope (ZEISS, 100X). Trypomastogotes are indicated with red
arrows, and amastigotes are indicated with red arrowheads.

3.4. Detection of TNF-α and TGF-β

To evaluate the cytokine production by macrophages, a control group of non-infected
cells was introduced to compare the basal levels between infected groups and collagen I
models. It is known that the proinflammatory cytokine TNF-α produced by macrophages
is essential in the immune response against T. cruzi [40]. The cytokine analysis shows
no difference in TNF-α production between macrophages cultured and infected on a 3D
matrix, 2D biofilm, or directly on the polystyrene surface of the 24-well plate (Figure 5A).
The peak of TNF-α production was observed in the parasite:cell ratio of 3:1 in the three
experimental variables. However, TGF-β production was significantly higher in the 3D
matrix model than in the other groups (Figure 5B). Indeed, TGF-β has been related to a
mechanism of parasite escape [41–45]. Therefore, this cytokine profile could explain the
higher parasite release on the 3D matrix model.

3.5. Activated Macrophages Reduced Trypomastigote Release in the 3D Matrix In Vitro

To verify any changes in the ability of macrophages cultured on the 3D matrix to exert
their trypanocide activity in cells pre-treated with IFN-γ and LPS by 24 h and then infected
with metacyclic forms of T. cruzi, after 10 days, the number of trypomastigotes in the
supernatants was evaluated. The presence of IFN-γ and LPS caused a significant reduction
in the free trypomastigote forms in the supernatants of macrophage culture grown on a
3D matrix and no similar effect on 2D biofilm and plate cultures (Figure 6). Nevertheless,
in macrophages, stimulation with IFN-γ, LPS, or both promotes the production of large
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amounts of nitric oxide (NO) [46], and the trypanocide activity of macrophages is mainly
mediated by NO production. However, we did not detect any nitric oxide in the supernatant
of the cultures in our models after infection.
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Figure 5. Higher parasite:cell ratio induces macrophages to produce more TNF-α in vitro, and
macrophages grown in 3D matrix produce more TGF-β Peritoneal macrophages from BALB/c mice
(6 × 105) were cultured on the 2D biofilm, 3D matrix or on the polystyrene surface of the 24-well plates.
Cell cultures were infected after 3 h of adhesion with metacyclic forms of T. cruzi in proportions
of 1:1 (6 × 105) and 3:1 (18 × 105) and incubated overnight at 5% CO2 and 37 ◦C. After 48 h of
culture, the production of TNF-α (A) and TGF-β (B) was evaluated in the supernatants. The results
(means ± SE of triplicates) presented are representative of three experiments performed separately.
* p < 0.05.

3.6. Morphological Alteration of Infected Macrophages Cultured in 3D Matrix Cultures

We also used scanning electron microscopy (SEM) to evaluate macrophage morpholog-
ical changes. Initially, we cultured peritoneal macrophages from normal mice directly on
the surface of 24-well plates. Once adhered, we infected the macrophages with metacyclic
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trypomastigote forms of the T. cruzi Dm28c clone or not (control group). Afterward, in
order to further explore morphological changes and macrophage adhesion, we performed
an SEM analysis of infected and non-infected macrophages cultured directly on plates,
2-D biofilm, and on 3D matrix. The images obtained showed that the non-infected cells
grown directly on the polystyrene surface, 2D biofilm, and 3D matrix were rounded and
less elongated (Figure 7A,C,E), but T. cruzi infected cells were stellar, larger, and shown
a more spread pattern (Figure 7B,D,F). These data suggest a direct effect of the parasite
infection on macrophage spreading. Infected cells also presented similar extensions to
filopodia. However, additional experiments with specific markers are necessary to make
sure that these extensions are, in fact, filopodia.
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Figure 6. IFN-γ and LPS reduce the trypomastigote release in macrophage culture grown on a 3D
matrix. Peritoneal macrophages from BALB/c mice (6 × 105) were cultured on the 3D matrix or
directly on the wells of 24-well plates and incubated for 3 h for adhesion at 5% CO2 and 37 ◦C. Cell
cultures were infected with metacyclic forms of T. cruzi clone Dm28c in proportions of 1:1 (6 × 105)
and 3:1 (18 × 105) stimulated with 10 ng/mL lipopolysaccharide (LPS from Salmonella typhimurium,
Sigma Chemical Co.) and 40 U/mL of IFN-γ for 24 h. After 10 days of infection, the parasites released
in the culture supernatants were counted using the Neubauer chamber. The results (means ± SE of
triplicates) presented are representative of three experiments performed separately. *** p < 0.001.

During the SEM analysis, we also observed the cell-cell contacts, with overlapping of
extensions and their anchoring on the 3D matrix (details in red) (Figure 8).

We also observed that the infected macrophages are “plugging” and remodeling the
collagen type I mesh for displacement (Figure 9). It is important to note that these cells
present a profile of migratory macrophages. This phenomenon was observed only in
cultures of infected macrophages cultured on a 3D matrix.
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Figure 7. T. cruzi-infected macrophages present a more stellar and elongated shape compared to
non-infected ones. Morphology and adhesion of non-infected and infected macrophages cultured on
a plate, 2D biofilm, and 3D matrix. Scanning electron microscopy of peritoneal macrophages from
BALB/c mice (6 × 105/well) cultured directly on polystyrene plate (A,B), 2D biofilm (C,D), or 3D
matrix (E,F). The model was divided into non-infected (A,C,E) and infected (B,D,F) groups. For the
infected groups, after three hours of adhesion of macrophages, the cultures were infected overnight
with metacyclic forms of T. cruzi clone Dm28c at a parasite:cell ratio of 1:1. Images were obtained
48 h after infection.
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Figure 8. T. cruzi-infected macrophages elongate by attaching to the 3D matrix and to each other.
Elongated macrophage ties. Adhesion and morphology of macrophages cultured on 3D matrix.
Scanning electron microscopy of peritoneal macrophages from BALB/c mice (6 × 105/well) cultured
on a 3D matrix. After three hours of adhesion of macrophages to the substrate, cultures were infected
overnight with metacyclic forms of clone Dm28c at a parasite:cell ratio of 1:1. Images were obtained
48 h after infection. In the detail of T. cruzi figures (A,C), the contact between the cells in (B,D) is in
greater magnitude. Red rectangles in (A,C) indicate maximized figures (B,D), respectively.
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Figure 9. T cruzi-infected macrophages remodel their shape and enter the 3D matrix for displacement.
Adhesion and morphology of macrophages cultured on 3D matrix. Scanning electron microscopy of
peritoneal macrophages from BALB/c mice (6 × 105/well) cultured on a 3D matrix. Representative
images of the non-infected group (A) and infected group (B). For the infected groups, after three hours
of adhesion of macrophages, the cultures were infected overnight with metacyclic forms of T. cruzi
clone Dm28c at a parasite:cell ratio of 1:1. The images were obtained 48 h after infection, and we
observed migratory macrophages remodeling the mesh for its displacement (C) 2000× magnification.
(D) 5500× magnification. (E) 14,000× magnification.
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4. Discussion

The use of the monolayer cell culture enabled a better understanding of the molecular
mechanisms of the cell, allowing important scientific advances in the different areas of
research. However, responses obtained in monolayer cell culture are not always com-
pletely satisfactory since the behavior of the cells always differs from the ones observed
in vivo, considering the lack of cell-matrix interactions in these types of protocols. Three-
dimensional (3D) cell culture was initially derived from cell culture in monolayers. The
differential of the 3D culture allows the cells to explore the three dimensions of space, thus
enhancing the interaction between cells and the environment. Therefore, the use of 3D
models composed of synthetic polymers or natural materials, such as collagen, laminin,
and fibronectin, among others, as physical support lets us mimic the spatial conditions to
which cells are subjected in vivo [19,47,48]. The use of cell cultures in 3D models has led to
infection studies with bacteria and viruses, reflecting the natural infection process. These
models may be adapted for the study of other infectious agents, such as parasites [49–51].

It is well known across the literature that the invasion process of host cells by T. cruzi
takes at least 10 min [52], then it takes about 1 h for lysosomal markers to reach the vacuoles
containing the parasite [53]. It is during this period that the membrane fragmentation of the
parasitoid vacuole and consequent release of the parasites into the cytoplasm occurs [52].
Once in the cytoplasm, the amastigote forms remain quiescent from 24 to 44 h, after which
the division process begins. The generation time of the amastigotes can vary within the 8 to
15 h range, depending on the strain, while the cytokinesis takes between 20 and 30 min [54].
Cell rupture is necessary for the process of transformation of the amastigote forms into
trypomastigotes and takes around 2 to 5 days [23].

In an intriguing way, it was verified in our study that after 96 h post-infection, it was
possible to quantify trypomastigote forms in the supernatants of infected macrophages
with or without the 3D matrix. One hypothesis to explain the replication and early release
of trypomastigote forms in macrophages cultured on the collagen type I substrate is that
contact of the host cell with the template modulates the activity of key host molecules
such as surface receptors, cytoskeleton proteins or proteins cell signaling [55]. This has
crucial implications regarding the infectivity of T. cruzi since in our 3D matrix model,
the production of TGF-β was much higher compared to other 2D models, suggesting a
possible effect of the 3D matrix in macrophage modulation towards a more regulatory
and repairing profile, as in the case of alternatively activated macrophages (M2) [15].
Interestingly, M2 macrophages display altered isoforms of fibronectin [56], and this may
influence the host-parasite interaction, as previously described for T. cruzi [57]. Therefore,
the observed migratory macrophages could have their components of interaction with the
matrix altered by TGF-β. Similar behavior has already been described in in vitro cultures
with macrophages in collagen I matrices, in which the cells presented a lower release
of inflammatory cytokines such as IL-6 and TNF-α and greater release of the regulatory
cytokine IL-10 [58]. Therefore, our model presents similar characteristics in the modulation
of macrophages in the collagen matrix, showing a greater presence of TGF-β. However, it
is worth mentioning that this phenomenon was exclusively conditioned by infection with
T. cruzi in our model. Dealing more specifically with the possible relationships between the
infection and the production of TGF-β, it is well documented that the parasite can adhere
to cells genetically deficient in TGF-β receptors TβRI or TβRII but is unable to penetrate
and replicate within these cells, as opposed to within competent cells. The infection in the
receptor mutants is restored when the TGF-β receptor genes are transfected [59]. T. cruzi
can also directly trigger the signaling pathway required for entry into the host cell using
a factor similar to TGF-β, detectable in extracts of the parasite in the infective form [59].
Furthermore, the anti-TGF-β neutralizing antibody inhibits the invasion of T. cruzi in
cardiomyocytes [60], and the pre-treatment of host cells with the TGF-β receptor inhibitor,
SB-431542, also can lead to a similar invasion inhibition [61]. The data suggest that, in a
complete scenario, the parasite needs to activate latent TGF-β, which is associated with the
extracellular matrix components, to invade host cells. Probably, TGF-β would be activated
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by proteases [62] and sialidases [59] secreted by the parasite, capable of processing the
latent form into an active peptide.

Furthermore, immunity elicited by TGF-β is particularly significant in the immunopa-
thology of Chagas disease, being associated with regulatory mechanisms of fibrosis induc-
tion by T. cruzi infection [63]. In addition, increased TGF-β signaling is associated with
greater adherence, internalization, and recognition of the parasite by host cells, including
greater TGF-β receptor expression, which also increases affinity for the parasite [64,65].
Although we were not able to evaluate the expression of this receptor in our model, our
data suggest that the presence of a cellular matrix is crucial for the immunopathogenesis
of T. cruzi, as seen by the increased replication on the 3D matrix, and therefore, in vitro
models that mimic this structural component tend to approximate the actual modulation of
macrophages that occurs physiologically.

The trypomastigote forms when phagocytosed by macrophages differ from amastigote
forms, with the macrophage state being the determinant for their survival. IFN-γ-activated
macrophages are able to partially destroy the parasites [44,45,66,67]. The results obtained
in our study corroborate the previous studies since the presence of collagen I did not alter
the activation of the macrophages by IFN-γ and LPS, which still were able to control the
intracellular replication of T. cruzi [68].

The establishment of T. cruzi infection depends on a series of events involving in-
teractions between parasite and host molecules [69]. This process has been extensively
studied in in vitro models, with mammalian cell lines or peritoneal macrophages residing
in adhered monolayers on rigid surfaces, such as, for example, cell culture polystyrene
plates (2D model) [70].

In the present study, we decided to evaluate the morphological alterations of resident
peritoneal macrophages infected by T. cruzi and the replication of the parasite in cells
cultured on a 3D matrix in the 3D model. It is important to highlight the uniqueness and
importance of our study since no other similar study has ever been developed.

The 3D matrix induces a reorganization of the actin cytoskeleton of the infected
macrophages [71,72], which would favor the formation of the observed projections and
consequently facilitate the infection of the cells.

The use of SEM shows that macrophages cultured and infected by T. cruzi on the 3D
matrix were scattered, with fine extensions and increased cell-to-cell contact. In addition,
we also found that the extensions were anchored in the 3D matrix, allowing macrophage
migration through the collagen type I substrate [73]. We did not observe the same morpho-
logical changes in macrophage monolayers cultured on 24 plate wells or when cells were
cultured having the 2D biofilm as the substrate.

Macrophage culture on the 3D matrix favored the formation of migratory macro-
phages [74]. This phenomenon was observed only in macrophages infected by T. cruzi in
our study. Extracellular matrices create physical barriers to cell migration. In order to reach
the different tissue sites, macrophages carry out transmigration through the endothelial
wall and through basolateral membranes and interstitial spaces [74,75]. Although migrating
macrophages in two dimensions have been extensively studied, the mechanism involving
migration in 3D models remains unclear.

5. Conclusions

This study demonstrates for the first time the higher replication of T. cruzi when
using the 3D matrix during macrophage infection in vitro and the presence of migratory
macrophages in a model of parasite infection. Because they present a larger migratory
capacity in the 3D matrix, these cells may be involved in cellular signaling or favoring the
exacerbation of the immune response in situ [76].

The physical support provided by the 3D matrix layer used in our system can provide
relevant information to a better understanding of the T. cruzi invasion process and why
the parasitic replication is enhanced when the 3D matrix acts as a scaffold for infected
cells, where several parasites and host cell molecules can interact and activate signaling
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pathways, promoting parasite internalization. In addition, this study provides what may
become an important model for the understanding of the immunomodulatory mechanisms
of infections and even for initial drug screening panels.
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