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Genetic architecture of spatial electrical
biomarkers for cardiac arrhythmia and
relationship with cardiovascular disease

A list of authors and their affiliations appears at the end of the paper

The 3-dimensional spatial and 2-dimensional frontal QRS-T angles are mea-
sures derived from the vectorcardiogram. They are independent risk pre-
dictors for arrhythmia, but the underlying biology is unknown. Using multi-
ancestry genome-wide association studies we identify 61 (58 previously
unreported) loci for the spatial QRS-T angle (N = 118,780) and 11 for the frontal
QRS-T angle (N = 159,715). Seven out of the 61 spatial QRS-T angle loci have not
been reported for other electrocardiographic measures. Enrichments are
observed in pathways related to cardiac and vascular development, muscle
contraction, and hypertrophy. Pairwise genome-wide association studies with
classical ECG traits identify shared genetic influences with PR interval and QRS
duration. Phenome-wide scanning indicate associations with atrial fibrillation,
atrioventricular block and arterial embolism and genetically determined QRS-
T angle measures are associated with fascicular and bundle branch block (and
also atrioventricular block for the frontal QRS-T angle). We identify potential
biology involved in the QRS-T angle and their genetic relationships with car-
diovascular traits anddiseases,may inform future research and risk prediction.

Abnormalities of ventricular depolarization and repolarization are a
cause of malignant arrhythmia, which are associated with car-
diac morbidity and mortality1. Mechanisms underlying the relation-
ship of conventional electrocardiographic (ECG) measures with
arrhythmogenesis (e.g. the QT interval and QRS duration) have pre-
viously been explored and highlight the role of cardiac ion channels.
However, the biology reflected by markers derived from the vector-
cardiogram is largely unknown2. These markers include the spatial
(spQRSTa) and frontal (fQRSTa) QRS-T angles, which are the angles
between the directions of ventricular depolarization and repolar-
ization in 3- and 2-dimensional space, respectively (Fig. 1)3. Previous
experimental and theoretical studies have shown that a wider QRS-T
angle is determined through local variation in action potential
duration and morphology4,5.

While vectorcardiographic measures are not currently used in
routine clinical practice, therehasbeen a resurgenceof interest in their
potential clinical utility, which has coincided with computational
advances for efficient calculation of these markers. Recent studies

have reported associations of the spQRSTa and fQRSTa with risk
for arrhythmogenesis, sudden cardiac death and cardiac-related
mortality6–8. In a population-based study, an abnormal spQRSTa was
associated with a five-fold increased risk of cardiac and sudden death.
Noother conventional cardiovascular or ECGmeasureprovidedhigher
hazard ratios9. These measures may also be broad markers of cardio-
vascular risk, and associations have been reported with cardiomyo-
pathies and cardioembolic stroke10,11. Improved knowledge of these
markers will increase our understanding of these clinical relationships
and has potential to identify new biology that is not captured by
conventional ECGmeasures. Genome-wide association studies (GWAS)
allow investigation of intermediate phenotypes and complex diseases
to identify candidate genes and pathways that contribute to the
underlying biology without a predefined hypothesis12. A previous
GWAS meta-analysis for the spQRSTa (N = 13,826) identified 3 inde-
pendent loci, with candidate genes involved in cardiac conduction and
development13. However, this study was limited by a small sample size,
and no GWAS has investigated the fQRSTa.

Received: 27 May 2022

Accepted: 26 February 2023

Check for updates

e-mail: tereshl@ccf.org; p.b.munroe@qmul.ac.uk

Nature Communications |         (2023) 14:1411 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;



We performed the largest multi-ancestry studies to date for the
spQRSTa (N = 118,780) and fQRSTa (N = 159,715) to identify additional
candidate genes and pathways enriched for these markers, to advance
our understanding of their genetic relationship with other ECG traits
and cardiovascular disease, and to enhance the interpretation of
existing and future clinical studies.

Results
Meta-analysis of QRS-T angle GWAS
Our primary multi-ancestry GWAS meta-analysis for spQRSTa
had a total sample size of 118,780 individuals, including European
(81.3%), Hispanic/Latino (10.7%) and African (7%) ancestries
from 14 studies. The multi-ancestry GWAS meta-analysis for
fQRSTa included 159,715 individuals from 23 studies and a similar
ancestral composition (Supplementary Data 1–3, Supplementary
Note 1). Ancestry-stratified analyses were also conducted. Due to
the non-normal distribution of the traits, results are for the rank-
based inverse normal transformed phenotype, with reference
to corresponding effect sizes from the raw-phenotype analyses
(degrees [°]) for clinical interpretation. No inflation of tests statistics
was identified, but early deviation from the reference line was
observed in Quantile-Quantile (Q-Q) plots for multi-ancestry and

European-ancestry meta-analyses (driven by a locus on chromosome
17; Supplementary Figs. 1 and 2).

Genome-wide significant loci
In multi-ancestry meta-analyses, we identified a total of 61 (58 pre-
viously unreported) and 11 lead genome-wide significant (GWS;
P < 5 × 10−8) variants at independent loci associated with spQRSTa and
fQRSTa, respectively (Figs. 2 and 3, Supplementary Data 4 and 5).
All lead variants for fQRSTa mapped within a locus reported for
spQRSTa. All previously reported loci for spQRSTa (NFIA, HAND1 and
TBX3) were GWS and were the most significant loci. A total of 51 and
9 GWS independent loci were identified in European ancestry meta-
analyses for spQRSTa and fQRSTa, respectively. All loci were also GWS
in the correspondingmulti-ancestry analysis, except one fQRSTa locus
(TTN; Supplementary Data 4 and 5).

Conditional analyses and heritability estimates in European
ancestry individuals
To identify additional signals, Genome-wide Complex Trait Analysis
(GCTA, v1.26.0)14 was performed using European ancestry UK Bio-
bank (UKB) participantmeta-analysis summary statistics from33,960
individuals. The analyses identified conditionally independent

Fig. 1 | Graphical representation of the spQRSTa and fQRSTa alongside a single
electrocardiogram lead signal. a Single lead electrocardiogram (ECG) signal with
classical measures QRS duration and the QT interval labelled. The dark orange
(estimates ventricular depolarization time) and blue (ventricular repolarization
time) shaded sections of the signal represent the regions used to calculate the QRS
and T-wave axes respectively with multiple ECG leads. b The spatial QRS-T angle

(spQRSTa) mean is the angle between the mean amplitude of QRS and T-wave
spatial loops. These spatial loops can be constructed from the resting 12-lead ECG
using a standardised transformation, to produce representative X, Y and Z vectors
that can be plotted over time. c The frontal QRS-T angle (fQRSTa) is the absolute
difference between QRS and T-wave axes in the frontal plane only.
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variants at 4 loci for spQRSTa and at 2 loci for fQRSTa (Supplemen-
tary Data 6).

Common SNP-based heritability was estimated in the same set of
UKB participants with BOLT-Restricted Maximum Likelihood (BOLT-
REML, v2.3.2) software15. Heritabilities of spQRSTa and fQRSTa were
22.3% and 6.8%, respectively (standard error [SE] 1.0%). European
ancestry lead and conditionally independent variants explained 4.0%
and 0.5% of the variance of spQRSTa and fQRSTa, respectively.
Therefore, these variants explain approximately 17.8% and 7.4% of the
SNP-based heritability of spQRSTa and fQRSTa, respectively.

Follow-up of loci for the spatial QRS-T angle
Over 96% (59/61) of the spQRSTa lead multi-ancestry variants were
common (minor allele frequency [MAF] > 0.05). Across all loci, the lead
variant with the largest effect size was rs117526881, located upstream
of MYH7 (effect size 3.7° per allele). At each locus, Variant Effect Pre-
dictor (VEP, Ensembl release 99) was used to identify potential func-
tional consequences of lead variants and their proxies (r2 > 0.8)16.
Missense variants were identified at 6 (9.8%) loci (Supplementary
Data 7). SIFT or Polyphen-2 prediction tools identified variants that

were likely to be deleterious at 2 loci (ADPRHL1 and KANSL1). The
KANSL1 locus contained missense variants in strong LD with the
lead SNP (r2 > 0.94) in multiple genes (KANSL1, SSPL2C, MAPT
and LRRC37A2). The lead variant (or a proxy) of five loci had a
Combined Annotation Dependent Depletion (CADD) score ≥ 20, and
were therefore predicted to be among the most deleterious variants
in the genome (i.e., in the top 1%; Supplementary Data 8). The low
frequency missense variant rs41306688 (effect size −2.5° per allele) at
the ADPRHL1 locus had the highest CADD score (26.7).

To identify variants associated with tissue-specific gene expres-
sion in cardiovascular tissues, data were extracted from the Genotype-
Tissue Expression (GTEx, v8) project17. At 11 loci, the lead variant or a
proxy was a significant cis- expression quantitative trait locus (eQTL)
variant in cardiac (left ventricular [LV], right atrial appendage [RAA]) or
vascular (coronary or aorta artery) tissue (Supplementary Data 9). At 5
loci, we identified support for pairwise colocalization (BACH [RAA],
C1QTNF4 [LV, aorta artery], CDH13 [LV, RAA], LINC00964 [LV] and
MTSS1 [LV, RAA], and PKDCC [LV]; posterior probability [PP] > 0.75).

To predict the effects of gene expression in LV, RAA and vascular
tissue on our phenotypes, a transcriptome-wide association study

Fig. 2 | Manhattan plot for the spQRSTa multi-ancestry meta-analysis.Mana-
hattan plot for the spatial QRS-T angle (spQRSTa) meta-analysis. Two-sided P-
values are plotted on the -log10 scale (Y-axis). The red horizontal line indicates

genome-wide significance (P < 5 × 10−8). Variants within the boundaries of loci
previously reported for the spatialQRS-T angle are labelledwith the candidate gene
and colored blue. Variants at previously unreported loci are green.

Fig. 3 | Manhattan plot for the fQRSTa multi-ancestry meta-analysis. Mana-
hattan plot for the frontal QRS-T angle (fQRSTA)meta-analysis. Two-sided P-values
are plotted on the -log10 scale (Y-axis). The red horizontal line indicates genome-

wide significance (P < 5 × 10−8). Variants within the boundaries of loci previously
reported for the spatial QRS-T angle are labelled with the candidate gene and
colored blue. Variants at previously unreported loci are green.
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(TWAS) was performed with S-PrediXcan software. The expression of
33 genes was significantly associated with the spQRSTa (Bonferroni
corrected threshold; P < 3.1 × 10−6), 26 of which mapped within GWS
loci, and 10 were significant in multiple tissues (Supplementary
Data 10). Increased expression was associated with an increase in
spQRSTa for 17 genes,whereas an inverse relationshipwas found for 15
genes (Supplementary Fig. 3). For TMEM198, increased expression in
the aorta was associated with an increase in spQRSTa, but an inverse
relationship was observed in LV tissue. All other genes with significant
findings in multiple tissues had concordant directions of effect.

Non-coding variants may influence cardiac electrophysiology
through effects on regulatory elements and chromatin folding.Weused
40kb and ~4 kb-resolution long-range chromatin interaction (Hi-C)
datasets to identify potential target genes of regulatory variants18,19.
Promoter interactionswere identified at 17 (27.9%)multi-ancestry loci in
LV or RV tissues (Supplementary Data 11a, b). GWAS Analysis of Reg-
ulatory and Functional Information Enrichment with LD correction
(GARFIELD) was used to test for enrichment of variants at DNase 1
hypersensitivity sites in specific tissues using European ancestry sum-
mary statistics. The strongest enrichment was in fetal heart tissue
(P < 7.5 × 10−36); however, additional tissues were identified, including
fetal renal pelvis, adult heart and brain (Supplementary Fig. 4).

With single nucleus Assay for Transposase-Accessible Chromatin
using sequencing (snATAC-seq) data, we tested for enrichment of non-
coding variants at open chromatin regions, to identify cell-type spe-
cific functional effects in adult heart, by utilizing Chromatin Element
Enrichment Ranking by Specificity (CHEERS)20,21. Significant enrich-
ment was observed across all variants in atrial and ventricular cardio-
myocytes (Supplementary Fig. 5).

Reconstituted gene-sets in Data-driven Expression-Prioritisation
Integration for Complex Traits (DEPICT) software were used to
prioritize potential candidate genes based on overlapping functional
pathways22. Significant gene-set enrichment (false discovery rate

[FDR] < 0.01)wasobserved in cardiac tissues (ventricle, atrial and atrial
appendage) (Supplementary Data 12). Significantly enriched Gene-
Ontology (GO) biological processes were extracted from DEPICT
pathway analyses (Supplementary Data 13). Redundant GO terms were
removed and the remaining processes clustered using the reduce and
visualise Gene Ontology (REVIGO) web application23. This analysis
identified clusters of biological processes involved in: cardiac devel-
opment (including embryonic heart tube morphogenesis, muscle
structure development, trabeculae formation and vasculogenesis);
muscle cell differentiation and regulation of organ growth; actin
filament-based movement; and cardiac contraction and hypertrophy
(Fig. 4). Significant KEGG pathways were dilated, hypertrophic and
arrhythmogenic right ventricular cardiomyopathies; cardiac muscle
contraction; and arginine andprolinemetabolism. The top 10 enriched
mouse phenotypes included dilated cardiac chambers; ventricular
wall thickness (thick and thin); and abnormal cardiac development
(Supplementary Data 13).

A summary of bioinformatic annotations for all spQRSTa multi-
ancestry loci is provided in Supplementary Data 14. These findings
have been supplemented with additional trait-relevant information
from:OnlineMendelian Inheritance inMan (OMIM)24; the International
Mouse Phenotyping Consortium25 (IMP); the Human Protein Atlas26;
and PubMed literature reviews for each candidate gene. We also per-
formed lookups of each lead variant in the Open Targets Genetics
‘Locus to Gene’ machine learning gene-prioritization pipeline for fur-
ther annotations (Supplementary Data 14)27.

We identified two independent loci in the Hispanic/Latino
spQRSTa meta-analysis, including one locus that was not GWS in the
multi-ancestry meta-analysis (lead variant rs112628278, multi-ancestry
GWAS P = 0.01). rs112628278 (nearest gene VAV2) is a low frequency
Hispanic/Latino variant (MAF =0.011) and rare among European
ancestry individuals (MAF =0.0002, 1000 Genomes [1000G] refer-
ence panel).

Fig. 4 | Significant GO biological processes from spQRSTa DEPICT multi-
ancestry findings. All significant (false discovery rate <0.01) multi-ancestry spatial
QRS-T angle (spQRSTa) gene-ontology (GO) biological processes from Data-driven
Expression-Prioritization Integration for Complex Traits (DEPICT) software were
analyzed using the Reduce and Visualize Gene Ontology (REVIGO) web application
to remove redundant terms and cluster related nodes. Highly similar GO terms are

linked by edges where the line width indicates the degree of similarity. Within each
cluster, the colour gradient represents differences in the DEPICT gene-set enrich-
ment two-sided P-values, with lighter gradients reflecting smaller enrichment
P-values (therefore more significant) compared with other nodes in the same
cluster.
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Oneunreported locus (FAM135B) identified in theAfrican ancestry
spQRSTa meta-analysis showed no evidence for association in the
multi-ancestry meta-analysis (P >0.05). The lead variant (rs28377209)
has a higher MAF in African ancestry populations, compared with
Europeans (0.19 vs 0.10).

Follow-up of loci for the frontal QRS-T angle
Three variants at two loci were significant eQTL variants (LV [SSXP10,
RP11-632C17_A.1], coronary artery [GNAZ]), but there was no support
for colocalization (SupplementaryData 9). Eight geneswere significant
in the TWAS, and overlapped with spQRSTa genes, except for two
(CEP85L and MMP11) (Supplementary Data 10). Tissue-specific pro-
moter interactionswere identified for variants at two loci thatwere not
reported for spQRSTa loci (lead variant rs10885011; FAM124A and
DLEU7, rs5030613; BCR) (Supplementary Data 11a, b). An unreported
locus identified in the African ancestry fQRSTa meta-analysis was not
GWS in spQRSTa analyses. The gene nearest to the lead signal is
CCDC60 (Coiled-Coil Domain Containing 60).

Genetic correlation and overlap of GWS loci with other ECG
measures
LD Score Regression (LDSC) software was used to estimate genetic
correlations (rg) of spQRSTa and fQRSTa with ECG markers of
cardiac conduction (PR interval), ventricular depolarization (QRS
duration) and repolarization (QT and JT intervals)28,29. Therewas a high
positive genetic correlation between spQRSTa and fQRSTa (rg = 0.61).

Weak positive correlations wereobserved with PR interval (rg = 0.12,
P = 6 × 10−4 for spQRSTa; rg = 0.19, P = 2.2 × 10−5 for fQRSTa). However,
no statistically significant correlationwas observedwith the other ECG
traits (Supplementary Fig. 6).

We used additional approaches to interrogate genetic overlaps.
First, lead variants reported for other resting ECG traits were extracted
and overlap was reported if they mapped within spQRSTa locus
boundaries (within r2 > 0.1 or ±500 kb from the lead spQRSTa variant).
Despite the low genetic correlations observed genome-wide, 26
(42.6%), 27 (44.3%) and 26 (42.6%) lead multi-ancestry spQRSTa var-
iants mapped to reported PR, QRS and HR loci, respectively (Supple-
mentaryData 15). Fewer variantsmapped to reportedQTand JT loci (19
[31.1%] and 14 [23%], respectively) (Fig. 5). Of the 7 loci reported for the
global electrical heterogeneity trait SAI QRST, 3 lead variants mapped
within the boundaries of spQRSTa loci (SCN5A, MYBPC3 and NDRG4).

Next, we performed a pairwise GWAS with GWAS-PW, which uses
Bayesian bivariate methods to estimate the probability for each
genomic region that a variant affects both traits tested30. Across all
spQRSTa loci, there was evidence for shared genetic influences at 17
(27.9%), 20 (32.8%), 7 (11.5%), 14 (22.9%) and 12 (19.7%) loci involving PR,
QRS, HR, QT and JT, respectively (PP >0.9). Of the loci that shared
effects with QT and JT, 8/14 (57.1%) and 6/12 (50%) loci, respectively,
also influenced QRS duration (Supplementary Data 15). The smallest
P-value for variants at theNOS1AP locus in the spQRSTamulti-ancestry
meta-analysis was 7.3 × 10−5. NOS1AP is the locus consistently reported
with the strongest QT and JT associations. We performed a sensitivity

Fig. 5 | Overlap of multi-ancestry spQRSTa loci with ECG measures. Venn dia-
gram showing spatial QRS-T angle (spQRSTa) multi-ancestry loci where a lead
variant reported for another electrocardiographic ECG measure maps within the
locus boundaries. For this figure, ECG measures shown are PR interval (cardiac
conduction), QRS duration (ventricular depolarization), QT and JT intervals

(ventricular repolarization) and heart rate (HR). Overlap was declared if a lead
variant for these ECG measures mapped to within ±500kb or r2 > 0.1 of a lead
variant at a spQRSTa locus. Some loci overlap with other ECG traits (not visualised
here but presented in Supplementary Data 15). At seven spQRSTa loci, no overlap
was observed with any ECG trait (blue circle bottom right).
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analysis in ~34,000UKB individuals to determine whether inclusion of
the QT interval as a covariate influenced our findings. Beta estimates
and P-values were highly correlated (rho[ρ] = 0.99 and 0.96 respec-
tively) across all variants comparing a GWAS with or without the QT
interval as a covariate. Also, there was no substantial change in the
minimum P-value of variants at the NOS1AP locus.

At 7 multi-ancestry spQRSTa loci, we observed no overlap with
previously reported ECG loci. Candidate genes at these loci include
AHNAK2, ALDH1A2, SGCG and TAOK2.

Pleiotropy of genetic variants with other phenotypes
We performed a phenome-wide association study (PheWAS) to iden-
tify associations of European ancestry lead and conditionally inde-
pendent spQRSTa variants with 1301 clinical conditions in 395,758
unrelated individuals European-ancestry individuals. Data on clinical
conditions were from hospital episode statistics. Significantly asso-
ciated conditions included atrial fibrillation, bundle branch block
(BBB), atrioventricular block (AVB), arterial embolism and thrombosis,
and hypertension (Fig. 6). We also performed lookups of all multi-
ancestry lead spQRSTa variants (and proxies) in Phenoscanner (v2), to
determine if they appeared in GWAS reports for non-ECG phenotypes
and diseases (Supplementary Data 16). Lead variants or proxies
at 19 spQRSTa loci (31.1%) had reported associations with blood pres-
sure, anthropometric traits, blood counts, or psychiatric features or
disorders (P < 5 × 10−8).

Association of genetically determined spQRSTa and fQRSTa
with cardiovascular disease
Polygenic risk scores (PRSs) were used to explore associations
between genetically determined spQRSTa and fQRSTa and relevant
cardiovascular diseases. PRSs were calculated by summing the dosage
of lead variants from the European-ancestry meta-analysis, weighted
by the effect size estimates from the corresponding untransformed
analysis. To obtain preliminary β estimates for the association of PRSs

with the directlymeasured ECG trait, we performed a linear regression
adjusting for age, sex, RR interval, BMI, height and 10 genetic principal
components, in 33,960 unrelated individuals of European ancestry
fromUKB. These individuals were included in the GWASmeta-analysis,
and therefore β estimates and CIs are biased. However, approximation
is useful to aid interpretation of subsequent analyses. Associations
observed for each PRS were (β [95%CI]): 5.4° (5.1–5.7) for spQRSTa;
and 2.03° (1.8–2.3) for fQRSTa (per standard deviation [SD] increase in
the PRS).

Subsequently, each PRS was tested for association with prevalent
cases of cardiovascular disease in 395,758 unrelated European ances-
try UKB participants who were not in the GWAS meta-analysis
(adjusting for sex, age, and 10 genetic principal components).
We used a Bonferroni corrected threshold to identify significant find-
ings (0.05/number of conditions tested, P < 6.3 × 10−3). Genetically
determined spQRSTawasassociatedwith increasedodds for fascicular
or bundle branch block (odds ratio [OR] (95%CI) per SD: 1.10
[1.07–1.13]) (Supplementary Fig. 7, Supplementary Data 17). Associa-
tion of a QRS PRS with fascicular or bundle branch block has been
reported31. However inclusion of a QRS PRS as a covariate did not
substantially change the point estimates (1.09 [1.06–1.13]), supporting
an interpretation that the spQRSTa PRS contains independent risk
information. There was suggestive evidence for an association with AV
block but not at the Bonferroni corrected significance threshold
(OR: 1.04 [1.01–1.06], P = 7.7 × 10−3). Genetically determined fQRSTa
was significantly associated with fascicular block or bundle branch
block (OR 1.05 [1.02–1.08]), and AV block (OR 1.04 [1.01–1.07]).

No evidence for a causal relationship between spQRSTa and
cardiomyopathies
Because candidate genes and pathway analyses indicated potential
involvement with cardiomyopathies, we performed Mendelian
randomization (MR) studies to test for a causal relationship of
genetically determined spQRSTa (as the exposure) with hypertrophic

Fig. 6 | Significant associations observed inphenome-wide association studyof
leadandconditionally independent spQRSTavariants.X-axis: Leadvariant (RsID
[Chromosome: Position (hg19): Allele1: Allele2]) or conditionally independent var-
iant from the spatial QRS-T angle (spQRSTa) European ancestry meta-analysis that
had a significant association with a clinical phenotype in UK Biobank. Y-axis:

Phenotype derived from hospital episode statistics, with colour coding for each
major group (circulatory system; red, digestive system; green, neoplasms; yellow,
respiratory; blue). Odds ratios (OR) are color coded according to decreasing (blue)
or increasing (green) odds. 3:38587306:A:G was a conditionally independent var-
iant at the SCN5A locus.
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cardiomyopathy32 (HCM) and idiopathic dilated cardiomyopathy33

(DCM) (as outcomes). Lead variants frommulti-ancestry and European
spQRSTa meta-analyses were used as instrumental variables (IV). A
relationship was suggested with HCM (multi-ancestry: OR 1.01
[1.00–1.02], P =0.004; European: 1.01 [1.00–1.02], P = 0.009), using a
fixed-effect inverse variance-weighted (IVW) model. However, the
association was not supported in sensitivity analyses, including MR-
Egger, weighted median and MR-PRESSO analyses (Supplementary
Data 18). Similarly, no causal relationship was identified with either
sarcomere positive or sarcomere negative HCM cases. There were no
significant findings in spQRSTa-DCM MR analyses (Supplementary
Data 19). Funnel, scatter, and forest plots for HCM and DCM analyses
are presented in Supplementary Figs. 8 and 9.

Discussion
Our large-scale analyses of spQRSTa and fQRSTa -- two emerging
markers for arrhythmogenesis and cardiovascular disease -- sig-
nificantly advance our understanding of their basic biology and rela-
tionships with classical ECG markers. We identify candidate genes
involved in cardiac development, muscle cell differentiation, cardiac
contraction and actin-filament based movement. The genes also
haverelationships with cardiomyopathies and central arterial vascular
development. spQRSTa and fQRSTa shared loci with other ECG

measures. But there are also 7 unshared loci, suggesting distinct
genetic influences. Among spQRSTa and fQRSTa loci, there are fewer
genes for cardiac ion channels, in contrast to findings for other ECG
traits. Based on a phenome-wide scan, we report associations with
atrialfibrillation, conduction disease and arterial embolism.Moreover,
PRSs are associated with fascicular and bundle branch block, and AV
block, indicating potential downstream effects of the loci.

A substantial proportion of lead candidate genes at spQRSTa loci
are associated with development of inherited cardiomyopathies in
humans (includingMYH7, TTN, TNNT2,MYBPC3, DSP, RBM20; Fig. 7)34.
There was also support for genes with non-Mendelian roles in cardiac
myogenesis, including ADPRHL1, NACA and NFIA. The function of
ADPRHL1 in humans has yet to be established, however, knockout of
ADPRHL1 in Xenopus laevis causes loss of the myofibril assembly in
ventricular cardiomyocytes and prevents ventricular outgrowth35.

Small clinical studies have identified an association between
a widened spQRSTa and HCM in paediatric and adult populations10,36.
A widened spQRSTa also predicts occurrence of ventricular arrhyth-
mia among HCM patients37. Interestingly, we did not identify a causal
relationship between genetically determined spQRSTa and HCM or
DCM inMR studies. Lack of association could be due to the small sizes
of the HCM andDCM cohorts. However, the analyses did identify GWS
loci. Therefore, the spQRSTa may reflect functional information in

Fig. 7 | Illustration of candidate genes at spQRSTamulti-ancestry loci and their
potential function. Candidate genes at spatial QRS-T angle (spQRSTa) loci are
grouped according to potential roles in embryonic development, cardiac structure

and function. RYR2 and ACTN2 are candidate genes from the same locus. A sum-
mary of the bioinformatic evidence for each gene is presented in Supplementary
Data 14. Created using BioRender.com.
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these cardiomyopathies (conditional, non-obligatory), rather than
causal mechanisms for the structural phenotype. The spQRSTa may
also reflect mechanisms and conditions predisposing to intermittent
changes inventricular conduction (e.g., intermittent orpersistent BBB)
indicating the development of cardiac memory11,38. This is supported
byour PheWAS andPRS analyses, whereweobserved associationswith
fascicular or bundle branch block and AV block. Therefore, although
we did not find a causal relationship with structural HCM or DCM
phenotypes, the spQRSTa may reflect the burden of intermittent
ventricular arrhythmia or conduction abnormalities occurring over
time in these conditions39.

Multiple findings support a role for angiogenesis and arterial
development in modulating the spQRSTa, including candidate genes
(ALDH1A2, ANGPT1, and VAV2), significant enrichment of GO-terms
(coronary vascular development and vasculogenesis), and associations
identified in PheWAS (arterial embolism, thrombosis and hyperten-
sion). VAV2, a candidate gene identified in Hispanic/Latino ancestry-
specific analyses, is a guanine nucleotide exchange factor for Ras-
related GTPases and modulates receptor-mediated angiogenic
responses40,41. Knockout mice for this gene show signs of left ven-
tricular hypertrophy, cardiac fibrosis and hypertension42. Abnormal
angiogenesis influences cardiac structure and function through phy-
siological and pathological cardiac hypertrophy, effects on tissue
recovery following ischaemia, and regenerative capacity43,44. These
processes may potentially lead to an arrhythmogenic substrate.
A recent study identified an association between a widened
spQRSTa and increased risk for cardioembolic and haemorrhagic
stroke45. Our findings provide potential biological explanations for
stroke associations.

Previous theoretical studies suggested that the spQRSTa reflects
abnormalities of ventricular repolarization due to abnormal
depolarization3. We identified shared genetic influences and loci
overlapping with mainly PR interval and QRS duration. We also report
loci that are shared across multiple ECG traits including NFIA, CASQ2,
RYR2, TTN, SCN5A, PITX2, CDKN1A, PLN, NACA and NDRG4 (Fig. 7,
Supplementary Data 15). In comparison to results reported for QT and
JT, there is less support for the involvement of cardiac potassium
channels, which are important determinants of ventricular repolar-
ization and common targets of existing anti-arrhythmics46. Combined
with other studies, our results support an interpretation that the
spQRSTa is primarily a marker of abnormal ventricular depolarization
and suggests new therapies targeting depolarization should be inves-
tigated for arrhythmia prevention and management.

Despite evidence for shared effects at some loci, genetic and
phenotypic correlations of spQRSTa and fQRSTa with other ECG traits
are weak. Therefore, spQRSTa and fQRSTa may represent unique
biology that may contribute to arrhythmic risk. There was no overlap
with other ECG traits at 7 multi-ancestry spQRSTa loci. Candidate
genes at these loci include: AHNAK2, which encodes a large nucleo-
protein that localises to the Z-band region of mouse cardiomyocytes
andmay have a role in excitation-contraction coupling through effects
on L-type voltage-gated calcium channels; SGCG, a component of the
subsarcolemmal cytoskeleton; and ALDH1A2, which encodes an
enzyme responsible for early embryonic retinoic acid synthesis, a
process that is critical for normal cardiac and arterial development47–50.
Another candidate gene TAOK2, is a protein kinasemost studied for its
role in dendritic spine maturation51. More recently, TAOK2 has been
identified in tethering the endoplasmic reticulum tomicrotubules. We
report another locus, MACF1, that is also involved in microtubule
organization52,53. Validation of these loci is required.

Although sample sizes were significantly larger for fQRSTa than
for spQRSTa (134% larger), we found fewer loci and lower heritability
estimates for fQRSTa. All multi-ancestry fQRSTa loci overlapped with
spQRSTa loci. There were candidate genes involved in cardiac devel-
opment and cardiomyopathies including SCN5A, RBM20, PLN, TBX3

and MYO18B. The fQRSTa represents the QRS-T angle in the frontal
plane only, whereas the spQRSTa is 3-dimensional. Therefore the
fQRSTa trait likely loses information that resides in other planes.
However, we identified an unreported locus in African ancestry-
specific analyses (candidate gene FAM135B). Knockdownof FAM135B in
iPSC lines reduces spinal motor neuron survival and contributes to
neurite defects as seen in spinal and bulbar muscular atrophy. These
disorders are associated with cardiac arrhythmia and structural
abnormalties54–56.

Although our study includes individuals frommultiple ancestries,
ancestry-specific analyses were limited by sample sizes. Larger studies
are needed to yield additional signals. The precise algorithms used to
calculate the spQRSTa will marginally differ despite efforts to harmo-
nise approaches; however, such differences are unlikely to affect our
positive findings (measurement error or noise will dampen signals),
and summary statistics for spQRSTa across all studies are broadly
similar (Supplementary Data 3)57–59.

In summary, our analyses significantly advance our knowledge of
the underlying biology reflected by the spQRSTa and fQRSTa, which
are independent riskmarkers for arrhythmogenesis.We also identified
loci that have not been reported for ECG traits. Our findings highlight
biological processes and candidate genes that may explain associa-
tions observed in previous clinical studies and could inform future
research on the utility of these markers in risk prediction.

Methods
Study cohorts
Fourteen studies (32 ancestry-specific sub-studies) and 23 studies (40
ancestry-sub-studies) contributed GWAS summary statistics for
spQRSTa and fQRSTa meta-analyses, respectively. These included
members of the Cohorts for Heart and Aging Research in Genomic
Epidemiology (CHARGE) consortium60 (Supplementary Data 1). This
study was approved by all participating cohorts. Ethics and consent
was obtained at a study level. The majority of participating cohorts
were population based with a small number of case-control studies.
Information for study level genotyping method (typically Illumina or
Affymetrix), quality control (Hardy-Weinberg equilibrium [HWE] P,
and MAF), are provided in Supplementary Data 2. The 1000G refer-
ence panel (26/40 sub-studies) was most used for imputation (26/40)
followed by the Haplotype Reference Consortium panel (13/40). The
Atherosclerosis Risk in Communities (ARIC) study was imputed with
TOPMed Freeze 5 reference panel61,62. All GWAS summary data inclu-
ded in themeta-analyses utilized NCBI build 37 (summary statistics for
ARIC sub-studies were converted from build 38 to 37 using a liftover
tool [https://genome.sph.umich.edu/wiki/LiftOver]).

Cohort-level single variant association analyses
A GWAS was performed by each participating cohort for the spQRSTa
(mean) and fQRSTa. If the spQRSTa was not already calculated and
digitized ECGs were available, it was derived by transformation of the
12-lead ECG using previously published algorithms57. In brief, after
applying a bandpass butterworth filter and signal averaging to reduce
noise, orthogonal X, Y and Z vector beats were estimated using Kors’
regression matrix63. The spQRSTa was subsequently calculated as the
angle between mean QRS and T-wave spatial vector loops57,58. The
fQRSTa was defined as the absolute difference between QRS and
T-wave frontal plane axes (fQRSTa = abs[QRS-axis − T-axis])3. Values for
both phenotypes are between 0 and 180°.

The primary analysis for this study to declare GWS and previously
unreported associations, was the rank-based inverse normal trans-
formed phenotype (as both the spQRSTa and fQRSTa are not normally
distributed). The raw phenotype was also analysed to calculate clini-
cally meaningful effect sizes (on the degree [°] scale). Study level
GWASs were performed using an additive genetic model, accounting
for relatedness with appropriate software (e.g. BOLT linear mixed
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model [BOLT-LMM])15 or by including a kinshipmatrix or pedigree64–66.
Poorly imputed genotypes were excluded (Rsq> 0.3 or similar for
IMPUTE) and a MAF >0.01 was applied, so that only high-quality var-
iants were included in the study.

Summary statistics for cohort level distributions of each ECG trait
and covariates included in the GWAS model, are provided in Supple-
mentary Data 3. Age, sex, RR interval, height, and body-mass index
(BMI) were mandatory covariates in the GWAS model. In addition, as
the QT interval is associated with the QRS-T angle and we wished to
identify associations that were not primarily driven by this marker of
ventricular depolarization and repolarization, the QT interval was also
included as a covariate. If pedigree data was not available, or if the
chosen GWAS software did not correct for underlying population
stratification, genetic principal components (PCs) were also included
as covariates. Cohorts could also select additional covariates if rele-
vant to their study, such as genotyping method or recruitment site.
Cohorts comprising multiple ancestries performed separate analyses
for each ancestry.

Individuals were not included in the study-level GWAS if they had
a prior diagnosis of heart failure, myocardial infarction, pacemaker or
implantable cardiac defibrillator; were prescribed class I or III anti-
arrhythmics, QT-prolonging or digitalis medication; or were pregnant
at the time of ECG acquisition. In addition, individuals were excluded if
atrial fibrillation, BBB or a QRS duration greater than 120ms, was
present on their ECG.

Additional quality control of study-level data
After submissions of results in a standardized format, quality control
was performed using EasyQC (R package v9.2)67. Allele frequencies of
all variants were compared to those reported in the reference panel
used by the study for imputation. To identify analytical errors, QQ and
P–Z-score plots were inspected, and summary statistics for β estimates
and SE were compared across all studies. To identify potential uncor-
rected population stratification, the genomic-control inflation factor
was calculated to identify test statistic inflation.

GWAS meta-analysis
The primary GWAS meta-analysis for spQRSTa and fQRSTa was the
multi-ancestry rank-based inverse normal transformed meta-analysis;
however, to estimate clinically relevant effect sizes, a GWAS meta-
analysis was also performed using the untransformed phenotype (on
the degree [°] scale). European, African, and Hispanic/Latino ancestry-
specific meta-analyses were also performed as secondary analyses.
Meta-analyseswere performedwithMETAL (v2011-03-25) using an IVW
model68. If a study’s λ was >1.0, genomic control during the meta-
analysis. Summary statistics and plots were produced for the entire
meta-analysis. Subsequently in downstream analyses, variants were
only included if present in >60% of the total meta-analysis sample size.
TheGWS thresholdwas set as P < 5 × 10−08. To calculate the correlation
between variants, relevant individuals fromthe 1000G referencepanel
were used; all individuals for the multi-ancestry summary statistics,
ancestry-specific for European, African and Hispanic/Latino analyses.
Some in-silico analyses relied upon correlations calculated by the
software developers and did not permit modification. In these
instances (and explicitly stated in themanuscript text), only European-
ancestry summary statistics were used in recognition that the multi-
ancestry meta-analysis contained a substantial proportion of indivi-
duals of European descent.

Definition of known and previously unreported loci
One previous GWAS has been reported for spQRSTa, with 3 loci
reachingGWS13. Using PLINK (v1.9)69, lead variants from the studywere
extracted to calculate locus boundaries, defined as ±500 kb or r2 < 0.1
within a 4mb region (whichever was larger), centered on the lead
variant. The 1000G reference panel was used to calculate correlations

between variants61. The variants furthest upstream or downstream
were declared the locus start and end respectively. We used the same
list to define known loci for fQRSTa as no previous GWAS has been
reported for this trait and as the phenotypic correlation with spQRSTa
is high. The same method was used to identify GWS loci in our study.
Loci that did not overlap with the list of known loci, were declared as
previously unreported.

Heterogeneity I2 statistics and forest plotswereproduced for each
lead variant (smallest P) at each locus, to identify evidence for het-
erogeneity. Locus-Zoom plots were also produced to visually inspect
patterns of association and variant correlations70.

Conditional and heritability analyses
To identify independent secondary signals within GWS loci, condi-
tional analyses using European-ancestry statistics were performed
using Genome-wide Complex Trait Analysis (GCTA, v1.26.0)14. As
recommended by GCTA, the largest cohort in the meta-analysis was
used as the reference panel (UKB,N = 33,960). For this analysis, related
individuals in the UKB sample were excluded (up to the 2nd-degree
[kinship coefficient <0.0884]). A strict threshold (r2 < 0.1 with the
lead variant and PJoint < 5 × 10−08) was used to declare “conditionally
independent” signals within loci.

Heritability estimates were calculated using the same UKB indi-
viduals of European-ancestry included in the GWAS meta-analysis,
using BOLT-REML (v2.3.2)15. BOLT-REML models directly genotyped
SNPs to estimate relatedness within a sample and obtains SNP-based
heritability estimates. The percentage of variance explained (PVE)
by lead and conditionally independent variants was subsequently cal-
culated (Eq. 1)71;

PVE=
2*ðbeta^ 2Þ*MAF* 1�MAFð Þ� �

2*ðbeta^2Þ*MAFð1�MAFÞ+ ððseðbetaÞÞ^2Þ*2*N*MAF*ð1�MAFÞ� � ð1Þ

Variant annotation
Lead and conditionally independent variants (and their proxies
[r2 > 0.8]) were annotated using Variant Effect Predictor (VEP, Ensembl
release 99) to identify potential functional consequences16. VEP also
contains data from prediction tools Sorting Intolerant From Tolerant
algorithm (SIFT, version 5.2.2)72 and PolyPhen-2 (v2.2.273), which sup-
plied deleteriousness scores. In addition, CADD74 and RegulomeDB75

scores for eachof thesevariantswere extracted.CADDscores annotate
coding and non-coding variants, and enable ranking of their potential
deleteriousness compared with other variants in the genome74.

Association with tissue-specific gene expression
To identify relationships between lead and conditionally independent
variants (and their proxies), with tissue-specific gene expression, cis-
eQTL data was extracted from the GTEx portal (v8)17,76,77. Tissues
included in these analyses were cardiac (LV and RAA) and vascular
(coronary and aorta artery), for their known influence on cardiovas-
cular disease. If a variant was also a lead cis-eQTL variant, colocaliza-
tion analysis were performed at the locus using the R package COLOC,
to determine whether the variant was causal in both the GWAS meta-
analysis and the eQTL study78. These colocalization analyses use
Bayesian statistical methods to calculate a posterior probability (PP)
for the variant being causal in both analyses (PP > 75%).

To predict the effects of gene expression levels on spQRSTa and
fQRSTa, we performed a TWAS using S-PrediXcan. S-PrediXcan is an
extension of the original software PrediXcan and infers results using
GWAS summary statistics, thus removing the need for individual-level
genotype and phenotype data79. S-PrediXcan provides a precalculated
transcriptome model database from GTEX-based tissues and covar-
iance matrices of SNPs within each gene model (https://github.com/
hakyimlab/MetaXcan). We used European meta-analysis summary
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statistics for these analyses and tested for association in a total of
16,097 genes across LV, RAA and vascular tissues. A Bonferroni cor-
rected threshold (0.05/number of genes tested [16,097] = 3.1 × 10−6)
was used to declare significance and results are only reported when
more than one SNP was included in the model.

Tissue- and cell-type specific regulatory elements
GARFIELD (v2) was used to identify tissue-specific enrichment of var-
iants at DNase I hypersensitivity sites80. GARFIELD annotates variants
with data from the ENCODE, GENCODE and Roadmap Epigenomics
projects and calculated odd ratio using a generalised linear model
framework80.

Chromatin interaction data was used to identify target genes
of regulatory variants (RegulomeDB score ≤3b) in LV and RV tissues.
First, using FUMA GWAS (Functional Mapping and Annotation of
Genome-Wide Association Studies) software (v1.3.6), overlap was
identified between lead and conditionally independent variant, and
pre-processed loops determined by Fit-Hi-C pipelines18,81. An FDR
threshold <0.05 was used to report results. In addition, we performed
the same analysis using loops called from recently published Knight-
Ruiz normalised 5 kb, 10 kb and 25 kb resolution promotor capture Hi-
C data19.

To identify cardiac cell-type specific enrichment of non-coding
variants, we utilized accessible chromatin information from snATAC-
seq data, for atrial and ventricular cardiomyocyte, smooth muscle,
endothelial, adipocyte, macrophage, fibroblast, lymphocyte and ner-
vous cells21. Using PLINK, our GWAS meta-analysis summary statistics
were partitioned into haplotype blocks centered on each lead variant
(r2 > 0.1 within a 2Mb radius). Peaks within the lowest decile of total
read counts from the snATAC-seq data were removed using a SNP
enrichment method CHEERS (version accessed 2020)20, followed by
quantile normalization of the remaining peak counts20. Enrichment of
variants (one-sided P) within the ATAC-seq peaks was estimated and a
Bonferroni-corrected threshold (0.05/number of cell-types) used to
report significant findings.

Candidate gene prioritisation and pathway enrichment
To identify additional candidate genes at each locus, DEPICT (v3)
software was used, that prioritizes genes according to common func-
tional pathways. DEPCT calculates a membership probability for each
gene within 14,461 reconstituted gene-sets22. Additional analyses were
performed using DEPICT to identify pathway enrichment of these
genes using Gene-Ontology (GO), Kyoto Encyclopaedia of Genes and
Genomes (KEGG), REACTOME and the Mouse genetics initiative (MGI)
data. DEPICT also performs gene-set tissue enrichment analyses using
annotations from human Affymetrix microarray probes. For all ana-
lyses, an FDR <0.01was used to identify significant results. To visualise
GO biological processes from the DEPICT spQRSTa multi-ancestry
meta-analysis output were analysed using the REVIGOweb application
to remove redundant terms and cluster related nodes23. They were
subsequently visualised using Cytoscape (v3.8.2)82.

The output of all bioinformatic analyses were pooled and sup-
plemented with trait relevant information from Online Mendelian
Inheritance in Man (OMIM)24 and International Mouse Phenotyping
Consortium25 (IMP, www.mousephenotype.org) databases, theHuman
Protein Atlas26 (www.proteinatlas.org) and a PubMed literature review
(Supplementary Data 14). We also performed a look up of each lead
variant in theOpenTargets Genetics “Locus toGene”machine learning
pipeline, which uses supervised learning to weight evidence from dif-
ferent sources and prioritize genes at a locus27. This database does not
include trait-specific information in the pipeline and therefore it is
used to supplement the analyses performed for this work. For each
locus, the candidate gene with the most support across all lines of
evidence is indicated. We also included a second gene if there is sup-
port from multiple analyses.

LD score regression
LD score regression with LDSC (v1.0.1), was performed to calculate the
genetic correlation of the spQRSTa and fQRSTa with other ECG traits
including PR, QRS, JT and QT intervals28. LDSC (v1.0.1) uses pre-
computed LD scores and therefore these analyses were performed
with European ancestry summary statistics only. These LD scores are
used as weights in the regression model29.

Overlap of spQRSTa loci with other resting ECG traits and
association with clinical phenotypes
Lead variants previously reported for other ECG markers including
P-wave duration, atrioventricular conduction (PR interval12), ven-
tricular depolarization (QRS duration83 and QRS voltage84), ventricular
repolarization (JT83, QT83 andTp-Tend intervals85) andHR86 were tested
for overlap with spQRSTa loci (definition of overlap; if previously
reported lead variants were within ±500 kb or r2 > 0.1 of the lead
spQRSTa variant). Summary statistics for each ECG trait were also
extracted and pairwise-GWASs performed using Bayesian bivariate
analyses as implemented in GWAS-PW30. GWAS-PW combines GWAS
summary statistics using the variance of effect sizes at each SNP to
estimate the probability that a given genomic region contains a variant
that influences both traits or distinct associations, and learns reason-
able thresholds from the data to declare significance. A pairwiseGWAS
was performed with the summary statistics of the multi-ancestry
spQRSTa meta-analysis and each ECG trait of interest. To account for
sample overlap between summary statistics, an expected correlation
(-cor in GWAS-PW) between two traits was specified for each analysis87.
The values used after adjusted for estimated sample overlap were;
−0.0045, −0.0258, 0.0539, 0.0107, 0.0045 and 0.0135 for QT, JT, QRS,
PR, HR and TpTe respectively. A posterior probability >0.9was used as
evidence supporting the presence of a causal SNP within the genomic
region that influences both traits.

To identify evidence of pleiotropy with clinical conditions, a
PheWAS was performed using the R package PheWAS (v0.99.5-5)88.
ICD-10 and 9 codes were extracted from UKB hospital episode statis-
tics and mapped to phecodes. Lead and conditionally independent
variants from the European ancestry spQRSTa meta-analysis were
subsequently tested for association with each phecode in 395,758
European individuals. Related pairs were excluded (kinship coefficient
>0.0884). A Bonferroni corrected threshold for the number of phe-
codes tested (0.05/1,301 = 3.8 × 10−5) was used to declare significance.
To identify evidence for pleiotropy with non-cardiac phenotypes and
diseases from previously reported GWAS, a look-up was performed of
lead and conditionally-independent spQRSTa variants (and proxies,
r2 > 0.8) using Phenoscanner v289,90. Associations reaching GWS with
other traits and diseases were extracted.

Sensitivity analyses
To determine whether the QT interval significantly influences the
findings from our spQRSTa meta-analyses, sensitivity analyses were
performed inUKB (N = 34,361). Analyseswere repeatedwithout theQT
interval as a covariate. Spearman rank correlations (rho [ρ]) for beta
estimates and -log10 P-values, were calculated across all variants
between the original model and the sensitivity analysis.

Association between genetically determined spQRSTa and
fQRSTa with cardiovascular diseases
A PRS was calculated for each trait using lead variants from the Eur-
opean meta-analysis, to test for association with atrial fibrillation,
stroke, coronary artery disease, conduction disease, heart failure, non-
ischaemic cardiomyopathy and ventricular arrhythmia. Analyses were
performed in individuals of European ancestry in UKB (N = 395,758).
Participants included in the GWASmeta-analysis were excluded, along
with related pairs up to the 2nd-degree (kinship coefficient <0.0884).
To take advantage of genotype probability data in BGEN format,

Article https://doi.org/10.1038/s41467-023-36997-w

Nature Communications |         (2023) 14:1411 10



PRSice-291 was used. The PRSs were calculated by summing the dosage
of lead variants weighted by the effect size from the corresponding
raw-phenotype meta-analysis. Disease status for each cardiovascular
outcome of interest was extracted using ICD-9/ICD-10 codes from
hospital admission episodes, self-reported data, operation codes and
death certification (Supplementary Note 2). Associations were identi-
fied for prevalent and incident cases using a logistic regressionmodel,
including covariates age, sex, genotyping array and ten genetic prin-
cipal components. A Bonferroni-corrected threshold of 0.05/number
of outcomes tested (0.05/8 = 6.3.1 × 10−3) was used to declare sig-
nificant associations.

Relationship between spQRSTa and HCM and DCM
The TwoSampleMR R package (v0.5.6), was performed to test for
association of spQRSTa with cardiomyopathies, using data from
cohorts with HCM and DCM92. First, summary statistics from a pre-
viously reported multi-ancestry (2780 cases, 47,486 controls) and
European (2,244 cases, 42,668 controls) HCM GWAS were retrieved32.
Summary statistics for multi-ancestry sarcomere positive (871 cases,
20,142 controls) and sarcomere negative (1874 cases, 27,344 controls)
HCM GWAS were also extracted. The HCM GWAS included UKB par-
ticipants as controls; however, there was no overlap of individuals
included in the spQRSTa meta-analyses. Multi-ancestry (61 variants)
and European (51 variants) IVs were constructed from GWS variants in
the rank-based inverse normal transformed spQRSTa meta-analysis,
with the corresponding β, SE and P retrieved from the untransformed
meta-analysis to facilitate clinical interpretation. Effect alleles were
harmonised between IVs and HCM summary statistics. Two variants,
rs398110577 and rs35185344, from the multi-ancestry IV were una-
vailable within the HCM summary statistics and proxies were selected,
rs4946230 (r2 = 0.70) and rs12928779 (r2 = 0.98), respectively. Four
different methods were performed, specifically IVW, MR-Egger,
weighted median and MR-PRESSO (mendelian randomisation pleio-
tropy residual sum and outlier), using MR-Base92,93. Results are repor-
ted as OR (95%CI) for risk of HCM per 1° increase in genetically
determined spQRSTa. The same process was followed to test for
association with DCM, but with the following differences. Summary
statistics from a European ancestry “sporadic”DCMGWAS (2651 cases,
4329 controls) were used33. Sporadic DCMwasdefined as a reduced LV
ejection fraction and enlarged LV end-diastolic volume/diameter in the
absence of any obvious pathology33. For these analyses, one variant
from the European IV was not available (rs2668692), therefore a sui-
table proxy was selected (rs10514897, r2 = 0.78).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics from each genome-wide association study meta-
analysis have been uploaded to the NHGRI-EBI Catalog of human
genome-wide association studies website, https://www.ebi.ac.uk/
gwas/.(Study accession numbers GCST90246318, GCST90246320,
GCST90246322, GCST90246324 for Multi-ancestry, European, African
and Hispanic ancestry meta-analyses for the spatial QRS-T
angle, respectively. Study accession numbers GCST90246319,
GCST90246321, GCST90246323, GCST90246325 for Multi-ancestry,
European, African and Hispanic ancestry meta-analyses for the frontal
QRS-T angle, respectively). Data relating to UK Biobank will be return
to the study. The UK Biobank will make these data available to all bona
fide researchers for all types of health-related research that is in the
public interest, without preferential or exclusive access for any
person. All researchers will be subject to the same application
process and approval criteria as specified by the UK Biobank.
Please see the UK Biobank’s website for the detailed access procedure

(http:/www.ukbiobank.ac.uk/register-apply/). Other datasets used in
these analyses are publicly available and can be sourced from: 1000
Genomes reference panel: https://www.internationalgenome.org/
category/reference/; Haplotype reference consortium reference panel:
http://www.haplotype-reference-consortium.org/; Variant level anno-
tation from Variant Effect Predictor (VEP), Ensembl release 99: https://
www.ensembl.org/info/docs/tools/vep/index.html; Variant level Com-
bined Annotation Dependent Depletion scores from Combined Anno-
tation Dependent Depletion (CADD, v1.4): https://cadd.gs.washington.
edu/; Variant level tissue-specific gene expression fromTheGTExportal
(v8): https://gtexportal.org/home/; HiC data from the Functional Map-
ping and Annotation of Genome-Wide Association Studies (FUMA
GWAS, v.1.3.6): https://fuma.ctglab.nl/; DNaseI hypersensivity site
enrichment data from GWAS Analysis of Regulatory and Functional
Information Enrichment with LD correction (GARFIELD, v2): https://
www.ebi.ac.uk/birney-srv/GARFIELD/; Gene-set, biological pathways
and tissue expression data from Data-driven Expression-Prioritization
Integration for Complex Traits (DEPICT, v3): https://github.com/
perslab/depict; Variant level RegulomeDB scores from RegulomeDB
(v.2.0.3): https://regulomedb.org/regulome-search/; A compendium of
promoter-centered long-range chromatin interactions in the human
genome (Jung et al., 2019): https://doi.org/10.1038/s41588-019-0494-8;
Cardiac cell type-specific gene regulatory programs and disease risk
association (Hocker et al., 2021): DOI: 10.1126/sciadv.abf1444; Drug-
gable genome dataset from Finan et al., 2017: DOI: 10.1126/sci-
translmed.aag1166; g:Profiler (accessed May 2021): https://biit.cs.ut.ee/
gprofiler/gost; Online Mendelian Inheritance in Man database: https://
www.omim.org/; Mouse Genome Informatics: http://www.informatics.
jax.org/; KEGG drug database: (https://www.genome.jp/).

Code availability
Codes are available from the original software used for each analysis.
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