
Necator americanus Infection: A Possible Cause of
Altered Dendritic Cell Differentiation and Eosinophil
Profile in Chronically Infected Individuals
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Horizonte, Minas Gerais, Brazil

Abstract

Background: Hookworms survive for several years (5 to 7 years) in the host lumen, inducing a robust but largely ineffective
immune response. Among the most striking aspects of the immune response to hookworm (as with many other helminths)
is the ablation of parasite-specific T cell proliferative response (hyporesponsiveness). While the role of the adaptive immune
response in human helminth infection has been well investigated, the role of the innate immune responses (e.g., dendritic
cells and eosinophils) has received less attention and remains to be clearly elucidated.

Methodology/Principal Findings: We report on the differentiation/maturation of host dendritic cells in vitro and the
eosinophil activation/function associated with human hookworm infection. Mature DCs (mDCs) from Necator americanus
(Necator)–infected individuals showed an impaired differentiation process compared to the mDCs of non-infected
individuals, as evidenced by the differential expression of CD11c and CD14. These same hookworm-infected individuals also
presented significantly down-regulated expression of CD86, CD1a, HLA-ABC, and HLA-DR. The lower expression of co-
stimulatory and antigen presentation molecules by hookworm-infected–derived mDCs was further evidenced by their
reduced ability to induce cell proliferation. We also showed that this alternative DC differentiation is partially induced by
excreted-secreted hookworm products. Conversely, eosinophils from the same individuals showed a highly activated status,
with an upregulation of major cell surface markers. Antigen-pulsed eosinophils from N. americanus–infected individuals
induced significant cell proliferation of autologous PBMCs, when compared to non-infected individuals.

Conclusion: Chronic N. americanus infection alters the host’s innate immune response, resulting in a possible modulation of
the maturation process of DCs, a functional change that may diminish their ability for antigen presentation and thus
contribute to the ablation of the parasite-specific T cell proliferative response. Interestingly, a concomitant upregulation of
the major cell surface markers of eosinophils was observed in hookworm-infected individuals, indicative of antigen-specific
immune responses, especially antigen presentation. We showed that in addition to the postulated role of the eosinophils as
effector cells against helminth infection, activated cells may also be recruited to sites of inflammation and contribute to the
immune response acting as antigen presenting cells.
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Introduction

Human hookworm infection is caused by the blood-feeding

nematodes Ancylostoma duodenale and Necator americanus, which infects

nearly 740 million people, mostly in rural areas of the tropics [1],

resulting in an estimated annual loss of 22 million disability-

adjusted life years [2]. These DALYs are the result of a well-

established relationship between the intensity of hookworm

infection, intestinal blood loss, and anemia [3–5]. While treatment

with the benzimidazole class of anthelmintic drugs is highly

effective against established hookworm infection, sustained

chemotherapy has proven difficult to implement, especially in

developing countries, where there is rapid reinfection (often within

12 months) [6].

Hookworms survive for several years (5 to 7 years) in the face of

a robust but largely ineffective immune response. The fact that the

immune system is capable of reacting vigorously to hookworm

infection and yet does little to prevent primary infection or re-

infection is a strong indication that the immune response to

hookworms is highly down-regulated. Among the most striking

aspects of this downregulation is the ablation of parasite specific T

cell proliferative responses (‘‘hyporesponsiveness’’) [7–11]. The
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mechanisms underlying T cell hyporesponsiveness during hel-

minth infections vary from organism to organism, and are

associated with such diverse factors such as regulatory cytokines

[12,13], altered function of antigen presenting cells [11,14–17], T

cell apoptosis [18,19], inducible NO synthase [8], modulation by

regulatory T cells [20], and pro- and anti-inflammatory cytokines

[11].

Marked eosinophilia is another striking feature of hookworm

infection [21,22]. As with other helminth infections, eosinophils

are considered end-stage cells involved in host ‘‘protection’’

against hookworms [23–25], based on their ability to mediate

antibody- (or complement-) dependent cytotoxicity in vitro, as

well as the observation that eosinophils aggregate and degran-

ulate in the vicinity of damaged parasites [26]. During helminth-

infection, eosinophils of humans and experimental laboratory

animals exhibit morphological and functional changes associated

with activation in vitro [27]. These include decreased density,

upregulation of surface activation molecules (e.g., CD69, CD25,

CD44, and HLA-DR), enhanced cellular cytotoxicity, and

release of granule proteins, cytokines, leukotrienes, and other

mediators of inflammation (reviewed in [25]). Despite their

potent to kill helminth parasites in vitro, the precise function of

eosinophils during helminth infection remains poorly understood

[25].

While the role of the adaptive immune response in human

helminth infection has been well-described, the influence of the

innate immune response, especially the roles of dendritic cells and

eosinophils remains to be elucidated. In the current study, we

report on the differentiation/maturation of dendritic cells in vitro

and eosinophil activation/function associated with human Necator

infection. We show that along with modulation in the dendritic cell

maturation, possibly mediated by excreted-secreted hookworm

products, there is a concomitant upregulation of the major cell

surface markers on eosinophils, which is indicative of antigen-

specific immune response, especially antigen-presenting cells

(APCs). We suggest that chronic Necator infection alters the host’s

innate immune response, resulting in parasite-impaired dendritic

cells and activated, antigen-presenting eosinophils.

Materials and Methods

Study population
The study was conducted in areas for endemic N. americanus in

Northeast Minas Gerais State, Brazil. Seventeen volunteers

between ages of 22 and 63, were recruited over the course of

four months (Table 1). These volunteers reside in areas of high N.

americanus transmission and presented with moderate (up to

3,999 epg) to high (.4,000 epg) intensity of Necator infection.

Individuals were selected on the basis of not having any other

helminth infection (mono-infected). The presence of Necator

infection was determined by formalin-ether sedimentation from

2 days of fecal exams. If positive, stool samples were further

examined by the Kato-Katz fecal thick-smear technique, with the

intensity of infection expressed as eggs per gram of feces (epg) [28].

Six hookworm-naive individuals were initially enrolled as non-

infected individuals from Belo Horizonte, Minas Gerais State,

Brazil where no transmission occurs. Later, additional five

hookworm-naive volunteers were included in order to demonstrate

the effects of excreted-secreted hookworm products on DC

differentiation. None of these individuals had a history of Necator

infection and all presented with egg-negative stool and no specific

antibodies to Necator crude antigen extracts. Furthermore, the

nutritional status of non-infected volunteers (controls) was similar

to those presented by hookworm-infected individuals as deter-

mined by anthropometric measurements. The nutritional status of

adults was determined using the absolute body mass index and

classified as eutrophic (18.5–24.9 kg/m2), underweight (,18.5 kg/

m2) or overweight ($25 kg/m2) [29,30]. The study was approved

by the Ethical Committee of Instituto René Rachou/FIOCRUZ

(Protocol CEPSH/CPqRR #04/2006). Written informed consent

was obtained from all participants enrolled in this study.

Monocyte isolation, generation, and maturation of
human dendritic cells in vitro

Peripheral blood mononuclear cells (PBMCs) were isolated from

heparinized blood by a density gradient (Histopaque 1.077, Sigma

Aldrich Co., USA). Monocytes were sorted using anti-CD14-

labelled magnetic beads (CD14 MicroBeads, Miltenyi Biotech

Inc., USA), according to the manufacturer’s instructions and were

cultured in complete RPMI 1640 medium (Invitrogen Co., USA)

supplemented with 2 mM of L-glutamine (Sigma), 5% heat-

inactivated human AB serum (Sigma) and 6% Antibiotic-

Antimycotic solution (Invitrogen). Recombinant IL-4 and GM-

CSF (both from PeproTech, USA) were added to the culture at

50 ng/mL on days 1, 3 and 5. For DC maturation, cells were

stimulated with 10 mg/mL of Salmonella lipopolysaccharide (LPS,

Sigma) for 48 hours. Matured DC (mDCs) were harvested on day

7 of culture, washed twice with PBS, and used for flow cytometric

analysis and other functional studies.

In order to determine the influence of hookworm antigens on

the expression of mDC surface markers, monocyte-derived

dendritic cells were obtained from five healthy non-exposed

individuals and differentiated in the presence of N. americanus larval

extract (L3), excreted-secreted products from adult worm (ESAw),

and excreted-secreted products from L3 larvae (ESL3), obtained as

previously described [9]. These antigens were added on days 1, 3

and 5 of culture at the concentration of 5 mg/mL. DC maturation

was induced with LPS for 48 hours, as described above. Matured

DC were harvested on day 7 of culture, washed twice with PBS,

and used for flow cytometric analysis.

Author Summary

Hookworms survive for several years in the host lumen,
inducing a robust but ineffective immune response. While
the role of the adaptive response in human helminth
infection has been well investigated, the role of the innate
immune responses remains to be elucidated. We report on
the development of dendritic cells (DCs) and the role of
eosinophils during human hookworm infection. DCs from
hookworm-infected individuals did not mature in the same
manner as DCs from non-infected volunteers. Additionally,
hookworm-infected individuals have lower expression of
costimulatory (CD86) and antigen presenting molecules
(CD1a, HLA-ABC, HLA-DR), which was coincident with a
reduced ability of the DCs to induce cell proliferation. We
also showed that this alternative DC differentiation is
partially induced by excreted-secreted hookworm prod-
ucts. Conversely, eosinophils from the same individuals
showed a highly activated status, with an upregulation of
major cell surface markers. Moreover, eosinophils from
hookworm-infected individuals induced a significant cell
proliferation to crude antigen extracts compared to non-
infected individuals. We show that, while hookworm
infection modulates the development of DCs, the major
cell surface markers of eosinophils are upregulated. Our
data suggest that hookworm infection may alter the host’s
innate immune response, resulting in parasite-impaired
DCs and activated, antigen presenting eosinophils.

Immunological Changes in Hookworm Infection
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Flow cytometric analysis of dendritic cells
Matured dendritic cells were stained using monoclonal

antibodies to determine the expression of antigen-presentation

molecules (HLA-DR, HLA-ABC and CD1a), co-stimulatory

molecules (CD86, CD80 and CD40), and other monocyte markers

(CD14, CD11c and CD16). Monoclonal antibodies to CD14 and

CD11c were used to determine the maturation of monocyte-

derived dendritic cells, with antibodies against CD16 used as a

marker for expression of immunoglobulin receptor (FccRIII). The

following conjugation of monoclonal antibodies (all from BD

Pharmingen, USA) was used: fluorescein isothiocyanate (FITC)-

conjugated mouse anti-human CD80 (clone BB1), phycoerithrin

(PE)-conjugated mouse anti-human HLA-ABC (clone DX17),

CD86 (clone IT2.2), CD40 (clone 5C3), CD16 (clone 3G8),

CD11c (clone B-ly6) and CD14 (clone M5E2), PE-Cy5-conjugated

mouse anti-human CD1a (clone HI149) and HLA-DR (clone

TU36).

Dendritic cells were harvested, washed in PBS, and then stained

with antibodies at room temperature for 20 minutes. Stained cells

were analyzed using a FACScan cytometer (Beckton Dickinson,

USA) and CellQuest software (Becton Dickinson, USA). The

intensity of fluorescence was evaluated by analysis of histograms

generated by 10,000 viable cells.

Mixed leukocyte reaction
Matured DCs (5,000) were co-incubated with 56105 heterol-

ogous PBMCs (dilution 1:100) in 96-well flat-bottom microplates

(NUNC, USA). Supernatant from cultures were collected after 5

days of culture to determine cytokine production. Thymidine

incorporation was measured after 5 days of culture at 37uC and

with 5%CO2 in a humidified incubator. After 18 hours, the

cultures were pulsed with 1 mCi of [3H]-thymidine (Amersham

Biosciences, USA). PBMCs were then harvested onto glass fiber

filters, with radioactive incorporation determined by liquid

scintillation spectrometry. Proliferative responses were expressed

as mean counts per minute (cpm) of triplicate cultures.

Flow cytometric analysis of eosinophils
Monoclonal antibodies were used to determine the expression of

antigen-presenting molecules (HLA-DR and HLA-ABC), co-

stimulatory/inhibitory molecules (CD4, CD86, CD80, CD28

and CTLA-4), activation/memory markers (CD69, CD11c,

CD25, CD62LL, CD45RO and CD45RA), immunoglobulin

receptors (CD64 - FccRI, CD16 - FccRIII, CD23 - FceRII and

CD89 - FcaRI) and Eotaxin receptor (CCR3). The monoclonal

antibodies (all from BD Pharmingen, USA) used for flow

cytometric analysis of eosinophils were as follows: FITC-

conjugated anti human CD4 (clone RPA-T4), CD64 (clone

10.1), CD80 (clone BB1), CD28 (clone CD28.2), PE-conjugated

anti-human HLA-ABC (clone DX17), CD89 (clone A59), CD86

(clone IT2.2), CD45RA (clone HI100), CD45RO (clone UCHL1),

CD11c (clone B-ly6), CD62L (clone Dreg 56), CD23 (clone M-

L233), CD16 (clone 3G8) or CCR3 (clone 5E8), and PE-Cy5-

conjugated anti-human HLA-DR (clone TU36), CD25 (clone M-

A251), CD69 (clone FN50), CTLA-4/CD152 (clone BNI3).

Phenotyping of eosinophils was performed using whole blood

samples. In short, 100 mL of whole blood was stained with the

respective antibodies for 30 minutes at room temperature and

then incubated with BD FACS Lysing Solution; unlysed cells were

washed twice with PBS and then fixed. Data on fluorescently

labeled cells were acquired in a FACScan flow cytometer (Becton

Dickinson, USA), by gating on the eosinophil population

according to Carulli et al. [31]. Intensity of fluorescence was

evaluated by analysis of histograms generated by 30,000 viable

cells. Isotype control antibodies (from all three fluorochromes

used) were included in all experiments.

Antigen-presentation assay using eosinophils
Eosinophils were purified from a polymorphonuclear cell

(PMNCs) fraction generated after PBMC isolation. Briefly, the

PMNC fraction was lysed with distillated water for 30 seconds,

washed twice in PBS, and separated using a magnetic-based cell

separation kit (Human Eosinophil Enrichment Kit, StemSep

Technologies, USA) according to the manufacturer’s instructions.

Purified eosinophils were counted and cultured with complete

RPMI 1640 medium in polypropylene round-bottom tubes

(Becton Dickinson Labware, USA). Cells were incubated in the

presence or absence of 20 third-stage (L3) Necator americanus larvae

for 48 hours. After incubation, eosinophils were harvested, washed

twice in PBS, and then fixed with fixative solution (10.0 g/L

paraformaldehyde; 10.2 g/L cacodylic acid; 6.65 g/L sodium

chloride; pH 7.2).

Stimulated or unstimulated eosinophils were co-incubated with

autologous PBMCs in complete RPMI 1640 medium for 5 days at

37 uC and 5% CO2 atmosphere. Additional culture controls with

PBMCs, stimulated eosinophils, and unstimulated eosinophils

individually were also included. All tests were done in triplicate in

96-well flat-bottomed culture microplates. Cells were pulsed for

the last 6 hours of incubation, with 1 mCi of [3H]-thymidine

(Amersham Biosciences, USA) and harvested onto glass fiber

Table 1. Description of the study population.

Individuals Reference Values{{

Necator-infected Non-infected

Age mean, years (range) 47.2 (35.4–58.9) 36.43 (24.6–48.3) N/A

Intensity of infection{ 2181 (912–2181) 0 N/A

Hemoglobin (g/dL) 14.16 (13.3–15.0) 15.32 (13.8–16.8) 12.0–17.5

Whole blood count (cell/mm3) 8150 (7020–9280) 7060 (5115–9005) 3500–10000

Eosinophils (cell/mm3) 1008 (671–1344)* 130.6 (36–224) 50–500

% Eosinophils 12.5 (8.6–16.4)* 1.8 (0.8–2.8) 1.0–6.0

{Intensity of infection was expressed by mean (range) of number of eggs per gram of feces.
{{Reference values for healthy adults (adapted from Elin, 2004 [51]).
*Statistically different from control group (P,0.05).
doi:10.1371/journal.pntd.0000399.t001
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filters. Radioactive incorporation was determined by liquid

scintillation spectrometry. Proliferative responses were expressed

as Stimulation index, calculated as follows: mean cpm of

stimulated eosinophils and PBMC co-cultures (triplicates) divided

by mean cpm of unstimulated eosinophils and PBMC co-cultures

(also in triplicates).

Supernatants from eosinophil cultures were collected for

determination of cytokine production after hookworm L3

stimulation and after incubation with PBMCs.

Determination of cytokine and chemokine production by
ELISA

All cytokines were detected and quantified in culture superna-

tants using cytokine-specific enzyme-linked immunosorbent assays

kits. IFN-c, TNF-a, IL-1b, IL-4, IL-5, IL-6, IL-10, IL-13 kits

(R&D Systems, USA) were used to detect cytokine production in

supernatants from the mixed leukocyte assay. IFN-c, TNF-a, IL-4,

IL-5, IL-10, IL-13, TARC/CCL17 and Eotaxin/CCL11 kits

(R&D Systems, USA) were used to detect cytokine/chemokine

production in cultures from eosinophils. Assays were performed

according to the manufacturer’s instructions. Biotin-conjugated

secondary antibodies were used, followed by streptavidin-HRP

(Amersham Biosciences, USA), and OPD substrate system

(Sigma). The colorimetric reaction was read in an automated

ELISA microplate reader at 492 nm. Calculations of cytokine/

chemokine concentrations from mean optical density values were

determined by interpolating diluted values from 4-parameter

model fitted by SOFTmax Pro 4.8. Results were expressed in pg/

mL, with the detection limits as follows: 7.8 pg/mL for IFN-c,

TNF-a and Eotaxin/CCL11; 3.9 pg/mL for IL-1b and TARC/

CCL17; 15.6 pg/mL for IL-4; 11.7 pg/mL for IL-5; 4.7 pg/mL

for IL-6; 23.4 pg/mL for IL-10; and 40 pg/mL for IL-13.

Statistical analysis
The Mann-Whitney test was used to determine the differences

(P value,0.05) of non-parametric variables (e.g., surface cell

markers, cell proliferation, and antigen presentation) between

Necator-infected individuals and non-infected individuals. All

statistics were performed using Prism 4.0b for Macintosh

(GraphPad Software, Inc.).

Results

N. americanus infection impairs dendritic cell
differentiation

Analysis of surface cell markers of monocyte-derived dendritic

cells showed that DCs from Necator-infected individuals had an

impaired differentiation process, as evidenced by the differential

expression of CD11c and CD14 on the cell surface (Fig. 1A)

compared to non-infected individuals. Differentiation of the

monocytes into dendritic cells in non-infected individuals occurred

as expected, with a relatively higher expression of CD11c and an

absence lack of CD14 (Fig. 1A). However, dendritic cells from

Necator-infected individuals showed a significantly lower expression

of the immunoglobulin receptor CD16 (FccRIII, P = 0.0177,

Fig. 1B), the co-stimulatory molecule CD86 (P = 0.0025, Fig. 1C),

and cell presentation molecules, such as CD1a (P = 0.0317), HLA-

A, B, C and HLA-DR (P = 0.025 for both, Fig. 1D).

Monocyte-derived dendritic cells differentiated in the presence

of N. americanus excreted-secreted products both from adult worm

(ESAw) and L3 larvae (ESL3) showed a significant decreased

expression of CD11c and CD86 while presented higher expression

of CD80 (Fig 2). Interestingly, levels of CD14 expressed by

dendritic cells differentiated in the presence of hookworm antigens

were similar to those presented by control cells (Fig. 2B).

Decreased cell reactivity by mixed leukocyte response
In order to assess the effect of the reduced expression of CD86

and antigen presentation molecules on dendritic cells from Necator-

infected patients, co-incubation with heterologous PBMCs was

performed as a mixed leukocyte response. Due to the differences in

the Major Histocompatibility Complex (MHC) marked cellular

proliferation as a rejection response are expected, as observed in

the co-cultures with dendritic cells from the control group (non-

infected individuals) (Fig. 3). Our results showed that co-cultures

with dendritic cells from Necator-infected patients resulted in

markedly ablated cell proliferation (P = 0.0051) compared to non-

infected individuals. This ablation may be the result of an

accompanying lower expression of co-stimulatory and antigen

presentation molecules on the cells of these patients.

Phenotypic changes in the expression of eosinophil
surface markers on Necator-infected patients

While there was a marked downregulation surface marker

expression on dendritic cells from Necator-infected individuals,

circulating eosinophils from these same subjects showed upregu-

lated expression of major cell surface markers. We observed a

statistically significant increase in expression of cell presentation

molecules HLA-A,B,C and HLA-DR (P = 0.0011 for both),

activation markers CD69 and CD25 (P = 0.0011 and P = 0.0001,

respectively), naive/memory markers CD45RA and CD45RO

(P#0.0001 for both), immunoglobulin receptors (CD64 - FccRI,

CD16 - FccRIII and CD23 - FceRII, P = 0.0011 for all), integrin

CD11c (P#0.0001), accessory molecules (CD4, CD80, CD86,

CD28 and CD152; P = 0.0011 for all), and eotaxin receptor

(CCR3, P = 0.0001) (Fig. 4). On the other hand, the expression of

CD62L, an adhesion molecule, was significantly reduced on

eosinophils from Necator-infected individuals when compared with

the non-infected individuals (P = 0.0016).

Cell presentation in human Necator-infection by
eosinophils

Antigen-pulsed eosinophils from Necator-infected individuals

induced significant cell proliferation in autologous PBMCs

(SI = 4.18362.838), when compared with eosinophils from non-

infected individuals (SI = 1.22660.280, P = 0.0013, Fig. 5). Pro-

liferative responses of control cultures were similar to those

observed in co-cultures of primed eosinophils and PBMCs from

non-infected individuals (data not shown).

Cytokine and chemokine production by dendritic cells
and eosinophils

No statistically significant differences were observed in the

cytokine and chemokine production of dendritic cells and

eosinophils from Necator-infected and non-infected individuals

(data not shown). The cytokine/chemokine production of cultures

from both groups was marginal and reached levels close to the

detection limits of the assay for each analyte.

Discussion

Chronic human N. americanus infection is associated with a

profound ablation of cell proliferation that may even extend to

other parasitic infections and even mitogens (‘‘bystander effect’’)

[12,32]. The mechanisms underlying Necator-induced T cell

hyporesponsiveness have yet to be fully elucidated; however,

Immunological Changes in Hookworm Infection
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diverse factors such as regulatory cytokines (e.g., IL-10) [12],

secretion of IFN-c by NK cells [33,34], cleavage of effector cell

chemo-attractants [35], direct down-modulation by parasite

antigens [9], and reduced expression of Toll-like receptors

[36,37] have been proposed as possible causes of hyporesponsive-

ness. Among the many mechanisms hypothesized to cause

hyporesponsiveness, the least investigated is an alteration in the

antigen presenting ability of dendritic cells (DCs), which play a

central role in the initiation of both innate and adaptive immune

responses to parasitic helminth infection. Common functions of

DCs are antigen-processing and T-lymphocyte activation, fol-

lowed by changes of their surface markers, migration patterns, and

cytokine production according to the different stages of parasitic

infection. In vitro monocyte differentiation systems can mimic the

physiological conditions that control this process in vivo. As such,

they have proven useful tools for studying the factors that control

DC differentiation, providing information about the physiological

situations in which this process takes place [38].

The present study demonstrates that Necator-infection impairs

phenotypic differentiation and maturation of monocyte-derived

DCs, mediated by hookworm ES products, and further inhibits

DCs stimulatory function to allogeneic T cell proliferation in vitro.

In both murine and human systems, monocytes cultured with

GM-CSF and IL-4 differentiate into immature DCs, which are

characterized by low expression of MHC class II (MHC II)

molecules as well as co-stimulatory molecules [38]. Immature

Figure 1. Flow cytometric analysis of monocyte-derived dendritic cell surface markers. (A) Analysis of dendritic cell differentiation/
maturation (CD11c and CD14) and (B) expression of IgG receptor (CD16, FccRIII). (C) Expression of co-stimulatory molecules. (D) Expression of cell
presentation molecules. Median intensity of fluorescence is indicated on x axis (arbitrary units). Statistical differences are indicated in each graph with
the significant P values.
doi:10.1371/journal.pntd.0000399.g001
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monocyte-derived DCs can be subsequently matured with LPS,

which determines the upregulation of their antigen-presenting and

co-stimulatory molecules, together with higher expression of the

integrin CD11c and lack of CD14. While this is indeed the case for

matured DCs from non-infected donors, mDCs from Necator-

infected individuals have a down-regulated expression of antigen-

presenting, costimulatory (CD86) molecules, and CD11c, with the

CD14 still present on the cell surface. The effects of N. americanus

infection on DC function and subsequent T cell proliferation could

be mediated by the down-regulated expression of antigen-

presenting molecules and CD86, which may ultimately result in

lower T cell specific priming. Many factors have been shown to

influence the differentiation and development of DCs from their

precursor cells, including corticosteroids [39], anti-inflammatory

drugs [40], IFN-a and IFN-b [41], and parasitic infectious

products/agents (e.g., Plasmodium vivax [42], P. falciparum [43],

Brugia malayi [16] and Schistosoma mansoni [44]). The mechanism by

which Necator-infection modulates monocyte differentiation into

DCs remains unclear. However, here we demonstrated that

hookworm ES products may be partially responsible for the

alternative differentiation of DC, as observed by the reduction of

CD11c and CD86 expression and increase of CD80 expression on

the DC surface. Interestingly, the recent identification by our

group of ES products from N. americanus (e.g., Natural Killer Cell

Binding Protein (NKBP)) indicates that selective proteins released

by the parasite may binds to specific cell subsets, such as NK cells,

Figure 2. Expression of cell surface markers on monocyte-derived dendritic cells obtained from healthy non-exposed individuals
(n = 5), differentiated in the presence of hookworm antigens. Expression of CD11c (A), CD14 (B), CD80 (C) and CD86 (D). Median intensity of
fluorescence is indicated on y axis (arbitrary units). Statistical differences are indicated in each graph with the significant P values.
doi:10.1371/journal.pntd.0000399.g002

Figure 3. Mixed leukocyte response induced by co-culturing of
dendritic cells and heterologous PBMCs. Results are expressed in
counts per minute (CPM) and the bars represent the median for each
group. Statistical difference is indicated with the significant P value.
doi:10.1371/journal.pntd.0000399.g003
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platelets, and also monocytes [34]. The identification of these

proteins may shed light on this potentially unique strategy by N.

americanus to subvert the immune response. The down-modulated

DC differentiation/maturation induced during Necator-infection

might contribute to the cellular hyporesponsiveness observed in

individuals chronically infected with N. americanus and the long-

term survival of the parasite.

Interestingly, while hookworm-infected individuals presented

impaired DCs, there was marked upregulation of their circulating

eosinophils. Infection with N. americanus is well known to be

accompanied by eosinophilia, which can either be localized (e.g.,

to the lungs [45,46] or the sites of attachment in the gut) or

systemic [46]. The marked elevation in eosinophils during

parasitic helminth infection has long been postulated to play an

important role in defending the host against infection. In this case,

eosinophils are thought to mediate antibody- (or complement-)

dependent cellular toxicity against helminths in vitro, as they

aggregate and degranulate in the local vicinity of damaged

parasites in vivo [23]. Other evidence for the role of eosinophils in

helminth infection are from experimentally infected mice that

have been depleted of eosinophils by IL-5 neutralization and/or

gene targeting and the observation that eosinophil levels increase

after they are infected with helminths (reviewed in [23]). Despite

these findings, the in vivo role of eosinophils in immunity to

helminth infection has been much more difficult to define.

Our data show that eosinophils from Necator-infected individuals

presented a differential expression of antigen-presenting-, costi-

mulatory-, activation-, and memory-surface cell markers. Immu-

noglobulin and eotaxin receptors were also found to be

upregulated. The elevated expression of antigen-presenting and

co-stimulatory molecules, but reduced levels of CD62L, indicate a

highly activated state for these eosinophils. Similarly, increased

expression of MHC II, CD86, and CD69 molecules, but decreased

CD62L levels, have also been observed in activated eosinophils

after in vitro exposure to Strongyloides stercolaris antigens in a murine

model [47]. Moreover, comprehensive analysis of human

eosinophils after in vitro activation with IL-5 and GM-CSF have

also showed a similar phenotypic profile (reviewed in [27]). It is

noteworthy that the increased expression of CD64/FccRI, CD16/

FccRIII and CD23/FceRII may be directly associated with the

antibody-dependent cellular toxicity against N. americanus. Indeed,

Necator-infection is characterized by antibody responses dominated

by IgG1, IgG4, and IgE [21], which bind to the receptors

upregulated on hookworm-activated eosinophils. Surprisingly, an

increased expression of CTLA-4/CD152 was observed in

eosinophils from infected donors. CTLA-4 directly competes with

CD28 for binding CD80/CD86 (B7) and also directs the assembly

of inhibitory signaling complexes that lead to cell quiescence or

anergy [48]. Further experiments are needed to elucidate its role

on eosinophils during hookworm infection. Moreover, we have

demonstrated that activated eosinophils express relatively higher

levels of the eotaxin receptor (CCR3), suggesting that these cells

may be recruited to sites of inflammation. Although the parasite

has developed the ability to specifically cleave eotaxin, hypothet-

ically inhibiting eosinophil recruitment [35], the upregulation of

CCR3 expression may counterbalance this effect.

We also performed in vitro experiments to investigate whether

these activated eosinophils could act as APCs during Necator-

infection and stimulate T cell responses. Indeed, recent clinical

and experimental investigations have shown that eosinophils can

function as APCs [23,47,49]. Here we showed that, when pulsed

with crude hookworm antigen extracts, eosinophils from Necator-

infected individuals were able to initiate a specific immune

response, as demonstrated by increased cellular proliferation of

primed lymphocytes. As eosinophils are associated with helminth

parasites at the initial stage of infection, it is possible that these cells

capture antigens from helminths, migrate to T cell–rich regions,

and present antigens to T cells to initiate antigen-specific immune

responses. These results suggest that in addition to their role as

terminal effector cells in helminth infections, eosinophils may also

act as specific antigen-presenting cells. However, it is not clear yet

whether activated eosinophils could compensate the lack of

dendritic cell-induced response and revert, at least partially, the

classic hyporesponsiveness induced by the parasite.

In summary, our work indicates that chronic N. americanus

infection alters the host’s innate immune response, resulting in

parasite-impaired dendritic cells and activated eosinophils.

Whereas the interaction between dendritic cells and eosinophils

have been previously suggested by several authors [50–52], this

association is not clear yet in hookworm infection. In fact, human

dendritic cells may induce eosinophil chemotaxis by secreting an

arachidonic acid metabolite [51]. Eosinophils may also contribute

to DC maturation through eosinophil-derived major basic protein

(MBP) [50]. On the other hand, the release of histamine by

activated eosinophils may downregulate DC differentiation

through induction of IL-10 production by lymphocytes and

mDCs, after interaction with histamine receptor type 2 (HR2)

on these cells [53]. Indeed, HR2 agonists acts as a suppressive

Figure 5. Cell proliferation response of autologous PBMCs
after exposure with hookworm stimulated eosinophils from
Necator-infected and non-infected individuals. Results are ex-
pressed as stimulation index and the bars represent the mean for each
group. Statistical difference between both groups is indicated with the
significant P value.
doi:10.1371/journal.pntd.0000399.g005

Figure 4. Expression of surface cell markers on eosinophils from Necator-infected (closed circle) and non-infected (open circle)
individuals. Expression of antigen presentation/activation molecules (A), immunoglobulin receptors (B), integrin/memory markers (C) and accessory
molecules/eotaxin receptor (D). Results are expressed in median intensity of fluorescence as indicated on y axis (arbitrary units). Statistically
significant differences (P#0.05) between Necator-infected and non-infected individuals were found for all cell surface markers tested with exception
for CD89.
doi:10.1371/journal.pntd.0000399.g004
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molecule for antigen presentation capacity, while enhancing IL-10

production and IL-10-producing T cells [54,55].

Based on the observation that DCs are required for develop-

ment and maintenance of chronic eosinophilic airway inflamma-

tion [56,57], the study of the eosinophil and DC interaction opens

new strategies for targeting key factors to interfere with an

eosinophil induced/enhanced state of diseases, such as asthma,

atopic dermatitis and helminthic infections [50]. Whether this

profile of host’s innate immune response in N. americanus infection

will provide further benefit to parasite survival through modula-

tion of required adaptive responses remains to be elucidated. In

the present study, we evaluated the profile of cellular components

associated with the innate immune response against hookworm

infection, comparing samples from hookworm mono-infected

individuals living in endemic areas and healthy non-exposed

volunteers. Egg-negative individuals from endemic areas were not

included as controls, since the limited sensitivity of fecal exams and

the long pre-patency period make it difficult to assure that the

volunteers were not infected. Moreover, it has been previously

shown that the immunological status of helminth-infected patients

remains unaltered after anthelmintic treatment for several months

[12,58]. Although all individuals enrolled in our study received

fully medical support and were matched by nutritional status, we

cannot exclude the influence of other factors such as viral and

bacterial infections. Our results should be further validated by

large immunoepidemiological surveys in endemic areas.
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