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A B S T R A C T   

Acute myeloid leukemia (AML) is a very heterogeneous group of disorders with large differences in the per
centage of immature blasts that presently are classified according to the specific mutations that trigger malignant 
proliferation among thousands of mutations reported thus far. It is an aggressive disease for which few targeted 
therapies are available and still has a high recurrence rate and low overall survival. The main reason for AML 
relapse is believed to be due to leukemic stem cells (LSCs) that have unlimited self-renewal capacity and long 
residence in a quiescent state, which promote greater resistance to traditional therapies for this cancer. AML LSCs 
have low oxidative stress levels, which appear to be caused by a combination of low mitochondrial activity and 
high activity of ROS-removing pathways. In this sense, oxidative stress has been thought to be an important new 
potential target for the treatment of AML patients, targeting the eradication of AML LSCs. The aim of this review 
is to discuss some drugs that induce oxidative stress to direct new goals for future research focusing on redox 
imbalance as an effective strategy to eliminate AML LSCs.   

1. Introduction 

Acute myeloid leukemia (AML) is a very heterogeneous group of 
disorders with large differences in the percentage of immature blasts 
that presently are classified according to the specific mutations that 
trigger malignant proliferation among thousands of mutations reported 
thus far [1–5]. The American Cancer Society estimated 20,380 new cases 
of AML and 11,310 deaths in the United States for 2023 [6]. 

According to the French-American-British (FAB) classification, AML 
can be subclassified into undifferentiated acute myeloblastic leukemia, 
acute myeloblastic leukemia with minimal maturation, acute myelo
blastic leukemia with maturation, acute promyelocytic leukemia, acute 
myelomonocytic leukemia, acute myelomonocytic leukemia with 
eosinophilia, acute monocytic leukemia, acute erythroid leukemia and 
acute megakaryoblastic leukemia [7–10]. 

In the most recent update of the World Health Organization (WHO) 
AML classification, there is a separation of AML with defining genetic 
abnormalities from AML defined by differentiation. AML with defining 
genetic abnormalities includes acute promyelocytic leukemia with 
PML::RARA fusion; AML with RUNX1::RUNX1T1 fusion; AML with 

CBFB::MYH11 fusion; AML with DEK::NUP214 fusion; AML with 
RBM15::MRTFA fusion; AML with BCR::ABL1 fusion; AML with KMT2A 
rearrangement; AML with MECOM rearrangement; AML with NUP98 
rearrangement; AML with NPM1 mutation; AML with CEBPA mutation; 
AML myelodysplasia-related; and AML with other defined genetic al
terations. AML defined by differentiation includes AML with minimal 
differentiation, AML without maturation, AML with maturation, acute 
basophilic leukemia, acute myelomonocytic leukemia, acute monocytic 
leukemia, acute erythroid leukemia, and acute megakaryoblastic leu
kemia [11]. 

AML can affect individuals of any age; although it is the most com
mon malignancy in children aged 15 years or younger, it becomes more 
common with aging. Generally, adults correspond to the group of in
dividuals who are most affected by this type of neoplasm, which reduces 
the success of therapeutic alternatives due to age. Thus, the disease has a 
poor prognosis when compared to younger individuals affected by AML 
[4,12–14]. 

AML is an aggressive disease for which few targeted therapies are 
available. The standard protocol for treatment has remained almost 
unchanged for more than four decades and basically consists of the 
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administration of cytarabine (100 mg/m2/day by continuous infusion 
for 7 days) combined with anthracycline (daunorubicin 60 mg/m2/day 
or idarubicin 12 mg/m2/day for 3 days), where blasts can often be 
eliminated, thus achieving remission [15]. 

Usually, the patient undergoes induction therapy with the aim of 
achieving complete remission, and all of the leukemic cells must be 
destroyed. Although most patients are successful in remission, in many 
cases, minimal residual disease (MRD) remains, consequently increasing 
the rate of disease relapse. In this context, AML currently still has a high 
recurrence rate and low overall survival [16–19]. The main reason for 
AML relapse is believed to be due to a subpopulation of leukemia cells 
called leukemia stem cells (LSCs) or leukemia initiating cells (LICs) [3, 
20–24]. 

AML LSCs are a rare blast immature population that are normally in a 
quiescent state and can become active as they have unlimited self- 
renewal capacity that continuously propagates leukemic cell clones 
and a large number of mature AML blast cells. Due to their unlimited 
self-renewal capacity, these cells are characterized by their high repo
pulation potential and long residence in a quiescent state of the G0 
phase, playing a key role in AML relapse and refractoriness [3,24–27]. 

AML LSCs have very similar characteristics to normal hematopoietic 
stem cells (HSCs). The cell cycle quiescence and the high capacity for 
self-renewal make it possible to use similar molecular mechanisms for 
their self-renewal and maintenance of an undifferentiated state that 
allows their differentiation into more developed progenitor cells. Both 
AML LSCs and HSCs express a CD34+CD38− phenotype [23,28–32]. In 
addition, other markers, including CD123 [33], CD96 [34], CLL-1 [35], 
TIM-3 [36], CD93 [37], and CD99 [38], have also been found to be 
expressed in AML LSCs. 

Studies have shown that high levels of oxidative stress are found in 
AML, which seems to affect the proliferation, differentiation and self- 
renewal capacity of HSCs, consequently impairing cell growth. This 
can be explained by the fact that oxidative stress causes a redox 
imbalance, which induces cell damage [39,40]. Under normal condi
tions, controlled levels of oxidative stress play an important role in the 
self-renewal, regeneration and proliferation of HSCs. On the other hand, 
elevated levels of oxidative stress induce fatal oxidative damage to DNA 
and cellular proteins, thus contributing to the differentiation of leukemic 
blasts and favoring the development of AML [41,42]. 

Interestingly, AML LSCs have low oxidative stress levels, which 
appear to be caused by a combination of low mitochondrial activity and 
high activity of ROS-removing pathways. LSCs are highly dependent on 
mitochondrial regulatory mechanisms and are sensitive to oxidative 
stress as a result of their low activity [42,43]. In this sense, oxidative 
stress is thought of as an important new potential target for the treat
ment of AML, including AML LSCs. The aim of this review is to discuss 
some drugs that induce oxidative stress and are able to eliminate AML 
LSCs to direct new goals for future research. Searches were carried out in 
the scientific database PubMed comprising all papers in English pub
lished until November 2022. 

1.1. Cellular redox homeostasis 

Aerobic organisms use oxygen for cellular respiration, but this pro
cess produces free radicals, which are molecular fragments that can exist 
independently and attempt to bond with other molecules, atoms, or even 
individual electrons to form a stable compound. The transfer of one or 
more electrons from a donor to an acceptor is referred to as an oxidative 
process [44–47]. 

Cellular redox homeostasis is maintained by the balance between 
oxidizing agents and the cellular antioxidant defense system. These 
oxidizing agents are reactive species, which include reactive oxygen 
species (ROS), reactive nitrogen species (RNS), and less commonly 
reactive sulfur species (RSS), and their excess in cells is known as 
oxidative stress [47–52]. These reactive species can be free radicals or 
nonfree radical compounds (Table 1). In living organisms, nonfree 

radical species easily initiate free radical reactions, and oxidative stress 
is usually caused by excess ROS [47]. Most biological processes are 
regulated by redox interactions, which play an important role in the 
regulation of cell signaling, development, health and pathologies [53]. 

Oxidizing compounds can come from endogenous and exogenous 
sources. In mammals, the primary source of ROS is mitochondrial energy 
production during ATP production by the mitochondrial oxidative 
phosphorylation system (OXPHOS). ROS are produced by reactions in 
the electron transport chain (ETC) [42,47,54–56]. Exogenous sources of 
oxidizing compounds include radiation, chemical reagents, certain foods 
and environmental pollutants, and drugs and their metabolites [47,57]. 

Free radicals can affect all cellular macromolecules and cause cell 
and tissue damage. As a result, these radicals may cause damage and 
activate redox signaling pathways, and excess free radicals can lead to 
cell death. Under physiological conditions, the effects of these com
pounds are seen only locally where they are produced [57–60]. 

Antioxidants inhibit oxidation and counteract oxidative stress. These 
antioxidants can be endogenous or exogenous [61]. Endogenous anti
oxidants can be enzymatic or nonenzymatic. Enzymatic antioxidants 
include superoxide dismutases (SODs), superoxide reductases (SORs), 
catalase, glutathione peroxidase (GPx), glutathione reductase (GRx), 
glutathione-S-transferase (GST), thioredoxin reductase (TrxR) and per
oxiredoxins (PRXs). Lipoic acid, glutathione, thioredoxin and L-arginine 
are considered nonenzymatic. On the other hand, some antioxidant 
nutrients cannot be produced by the body and must be obtained exog
enously through foods [47,58,62–65]. 

The summarized mechanism by which these molecules carry out 
their antioxidant action is shown in Fig. 1. Interestingly, antioxidant 
enzymes that control ROS homeostasis are altered in several diseases, 
including cancer [66]. 

SODs convert peroxide into hydrogen peroxide and oxygen. There 
are five types of SODs that differ by the ion in their catalytic site, 
including Fe, Mn, Ni, Cu or Cu and Zn [67]. In mammals, the main SOD 
family is SOD1, with Cu and Zn in the cytoplasm. SOD2 with Mn is in the 

Table 1 
Examples of ROS, RNS and RSS of biological interest.  

Free radical Nonfree radical 

Name Symbol Name Symbol 

ROS 
Oxygen (biradical) O2

●● Hydrogen peroxide H2O2 

Superoxide ion O2
● 

‾ Ozone O3 

Hydroxyl ●OH Singlet oxygen 1O2 

Hydroperoxyl HO2
● Hypobromous acid HOBr 

Carbonate CO3
● 

‾ Hypochlorous acid HOCl 
Peroxyl ROO● Hypoiodous acid HOI 
Alkoxyl RO● Organic peroxides ROOH 
Carbon dioxide radical CO2

● 
‾ Peroxynitrite ONOO‾ 

Peroxynitrate O2NOO‾ 
Peroxynitrous acid ONOOH 
Peroxomono-carbonate HOOCO2‾ 
Carbon monoxide CO 

RNS 
Nitric oxide NO● Nitrosyl cation NO+

Nitrogen dioxide NO2
● Nitrous acid HNO2 

Nitrate radical NO3
● Nitroxyl anion NO‾ 

Dinitrogen trioxide N2O3 

Dinitrogen tetroxide N2O4 

Dinitrogen pentoxide N2O5 

Alkyl peroxynitrites ROONO 
Alkyl peroxynitrates RO2ONO 
Nitryl chloride NO2Cl 
Peroxyacetyl nitrate CH3C(O)OONO2 

RSS 
Thiyl radical S● RS● Hydrogen sulfide H2S 

Disulfide RSSR 
Disulfide-S-monoxide RS(O)SR 
Disulfide-S-dioxide RS(O)2SR 
Sulfenic acid RSOH 
Thiol/sulfide RSR  
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mitochondrial matrix, and both have tumor suppressor activity [68]. 
SOD2 protects cells against oxidative stress, and its loss leads to defec
tive hematopoiesis [69,70]. Polymorphisms in SODs lead to high levels 
of ROS, which may contribute to the malignant transformation of cells 
[71]. 

SORs reduce superoxide and are found in various organisms. They 
have a unique iron ion catalytic site and need electron donors to 
regenerate. They are classified by metallic centers and extra domains 
[67,72,73]. Aside from their antioxidant activity in reducing ROS, little 
is known about the role of SORs in leukemia and LSCs. 

Catalase enzymes convert H2O2 into O2 and H2O. They can be clas
sified into three types based on structure and function, for example, 
typical catalases, peroxidase catalases and manganese catalases. Human 
catalase is a typical catalase with an iron protoporphyrin IX active center 
and NADPH cofactor [74–76]. CATs are crucial in protecting cells 
against oxidative stress and are found in peroxisomes in normal cells. In 
cancer cells, they can impede apoptosis. CAT’s role in tumors is complex 
and can act as both a survival enhancer and tumor suppressor. Studies 
show that elevated catalase expression in AML is associated with a 
positive therapy response, and genetic polymorphisms can alter catalase 
expression and susceptibility to oxidative damage [66,71,75,76]. 

Glutathione is known as the most abundant antioxidant in the cell 
[77]. Glutathiones exist in oxidized and reduced forms: glutathione in its 
oxidized (GSSG) and reduced (GSH) states. GST is an enzyme that helps 
detoxify by conjugating GSH to xenobiotics. It helps metabolize and 
detoxify various harmful substances and protect tissues against oxida
tive damage [78–80]. 

GRx is a GST helper enzyme; together, GST and GRx use NADPH to 
regenerate GSH from GSSG (also known as the glutathione antioxidant 
system). Thus, glutathione functions as a direct scavenger of ROS, and 
polymorphisms in the GST gene have been related to failures in enzy
matic activity, implying greater susceptibility to leukemia [70,71]. 

The maintenance of redox homeostasis can be guaranteed by the 

stability of GSH/GSSG, which enables normal biological processes; on 
the other hand, the accumulation of GSSG/GSH under abnormal con
ditions can result in cell death mediated by oxidative stress [56]. 

GPXs have selenocysteine in their active sites and four isoforms: 
GPX1-4. GPX1 is the most abundant and codes for mitochondrial 
peroxide glutathione. GPX1 gene polymorphism can decrease enzyme 
activity and increase cancer risk in Caucasians [71,81]. GPX4 has been 
shown to be an important enzyme in the detoxification of lipid hydro
peroxides [70]. 

TrxR is part of the thioredoxin antioxidant system, which includes 
NADPH, TrxR, thioredoxin and TXNIP. TXNIP inhibits thioredoxin ac
tivity by binding to it. TrxR is a selenoenzyme that uses NADPH to keep 
thioredoxin reduced [82–84]. Mammals have three TrxR isoforms with 
different locations and expression levels: TrxR 1 in the cytoplasm, TrxR 
2 in mitochondria and TrxR 3 in testis. Two thioredoxin isoforms (Trx1 
and Trx2) are also found in the cytoplasm and mitochondria [82–84]. In 
particular, overexpression of thioredoxin 1 enhanced the antitumor 
function of T cells [85]. 

PRXs are a family of six small antioxidant proteins with essential 
cysteine residues that scavenge cellular ROS. Cysteine residues can be 
oxidized and generate intermolecular disulfides with nearby proteins, 
which are reduced by thioredoxin. PRXs I-IV have sequences for CDK 
phosphorylation and may regulate the cell cycle [70,86–88]. PRX I is 
produced during serum stimulation and oxidative stress. Its loss can 
cause hemolytic anemia and increased malignancies. PRX II loss causes 
hemolytic anemia compensated by increased erythroid progenitor ac
tivity. PRX III is mitochondrial-specific and converts hydrogen peroxide 
to water. Its deficiency causes ROS accumulation and may regulate 
mitochondria-mediated apoptosis [70,88–90]. 

1.2. Pleiotropic effect of oxidative stress in AML 

Oxidative stress has both tumor-promoting and tumor-suppressing 

Fig. 1. Conversion of superoxide to water and oxygen. The enzyme superoxide dismutase converts superoxide to hydrogen peroxide. It can be detoxified to water and 
oxygen using catalase or glutathione peroxidase (GSH, reduced glutathione; GSSG, oxidized glutathione). Hydrogen peroxide spontaneously degrades to the reactive 
hydroxyl radical (●OH). 
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functions [65]. Furthermore, the physiological level of ROS is important 
for the self-renewal, differentiation and proliferation of HSCs [42,91, 
92]. 

HSCs reside in bone marrow in low-oxygen environments known as 
stem cell niches. These hypoxic conditions cause metabolic changes such 
as low mitochondrial activity and low membrane potential [93–96]. 
Quiescent HSCs primarily generate energy through anaerobic glycolysis, 
which reduces the burden of ROS-mediated oxidative stress [42,97]. 

Moreover, HSCs also use the cellular antioxidant system, including 
antioxidant molecules (e.g., glutathione, thioredoxin, NADPH) and 
antioxidant enzymes (e.g., catalase, SOD, glutathione peroxidase). Other 
ROS regulatory mechanisms used by HSCs include the interactions of 
cells with their microenvironment [98] and mitophagy [99], a subtype 
of autophagy where selective degradation of mitochondria occurs, 
which controls mitochondrial quantity and quality. 

On the other hand, an increase in ROS (moderate level of ROS) is 
critical during HSC differentiation, which occurs with an increase in 
mitochondrial activity through OXPHOS [42,92,93]. Therefore, HSCs 
can self-renew (when ROS levels are reduced) or differentiate (when 
ROS levels are moderate/higher) depending on the ROS level [100,101]. 

Nevertheless, HSCs are susceptible to ROS accumulation [70]. Thus, 
when there is a high concentration of ROS, there can be damage to cell 
functions and structures that can result in cell death or abnormal he
matopoiesis, with malignant transformation to LSCs being a crucial 
event for the progression of hematological malignancies such as AML 
and its aggressiveness [40,102]. Studies suggest that ROS accumulation 
actively participates in the conversion of normal HSCs into leukemic 
cells [70,103]. 

Interestingly, the amount of intracellular ROS also differs in AML cell 
subpopulations, where bulk AML cells have a high level of ROS and AML 
LSCs, such as HSCs, have a low level of ROS [42,104]. AML blasts pre
sent high levels of oxygen-derived radicals and thus greater endogenous 
oxidative stress than normal leukocytes. The antioxidant system in these 
cells is normally deficient, so high and persistent levels of ROS produce 
DNA damage leading to mutagenesis [40,71]. 

In AML cells, the main form of ROS is the superoxide anion (O2
•-) 

[40]. In primary human AML cells, where the intrinsic property is the 
altered metabolism of glutathione, it is possible to observe oxidative 

stress that contributes to leukemogenesis [105]. Reduced catalase 
expression may also be responsible for H2O2 accumulation in leukemic 
cells [69]. Furthermore, constitutive activation of NADPH oxidase 2 
(NOX2) has been shown to favor overproduction of ROS and is present in 
more than 60% of AML patients [106]. 

On the other hand, AML LSCs that are characterized by low ROS 
levels exhibit low cellular oxidative status and aberrantly overexpress 
the BCL-2 gene. In this respect, BCL-2 inhibition is able to reduce 
OXPHOS, thus selectively eradicating quiescent LSCs [107]. Thus, in 
AML, a low level of ROS is related to LSC quiescence, while a high level 
favors blast proliferation [108,109]. Fig. 2 shows the behavior of LSCs 
against different levels of ROS. 

In addition to promoting leukemogenesis in AML, ROS can promote 
chemotherapy resistance. An example is arsenic trioxide, an antileu
kemic drug used for the treatment of AML. Although it is commonly 
used, many patients have high therapeutic resistance because some 
signaling pathways, such as JAK2/STAT3, reduce the antileukemic ac
tivity of arsenic trioxide, reducing the amount of ROS and protecting the 
cell from apoptosis. Based on this, a study demonstrated that the use of 
potent inhibitors of the JAK2/STAT3 pathway is an alternative to in
crease the sensitivity of AML cells to combined treatment with arsenic 
trioxide by increasing ROS and DNA damage. In this work, the authors 
demonstrated that the increase in ROS increased the rate of apoptosis in 
AML cells treated with the combination of arsenic trioxide and rux
olitinib, thus revealing that the antileukemic effect of arsenic trioxide is 
mediated by the elevation of ROS and DNA damage [110]. 

Regarding the tumor-suppressing properties of oxidative stress, 
elevated oxidative damage and enhanced ROS-dependent death 
signaling can also successfully stop some stages of tumorigenesis and 
make tumor cells more susceptible to cell death [65,111]. Increased 
oxidative stress associated with cancer progression causes metabolic 
reprogramming of cells, allowing them to tolerate the negative effects of 
increased ROS [112,113]. As a result, tumor cells become more 
dependent on the cellular antioxidant system. Furthermore, ROS accu
mulation can lead to senescence and various forms of cell death, espe
cially ferroptosis, which is caused by iron-dependent lipid peroxidation 
[114–116]. 

Fig. 2. The behavior of LSCs against different levels of ROS.  
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1.3. Emerging drugs targeting oxidative stress to eliminate AML LSCs 

Some drugs have been reported as pro-oxidant agents causing se
lective cell death against AML LSCs and have been discussed in this 
section as emerging drug therapies in AML patients. Table 2 summarizes 
the selected drugs. Among them, venetoclax is the only one in clinical 
use to treat AML patients, and navitoclax, chidamide, fenretinide, 
hydroxychloroquine, karonudib, niclosamide and triptolide are under 
clinical trials (Table 3). 

1.4. Synthetic small molecules 

1.4.1. BCL-2 inhibitors 
As mentioned above, the different ROS levels found in AML LSCs 

interfere with some cellular characteristics as well as drug responsive
ness. CD34+ AML cells exhibit low levels of ROS, showing increased 
expression of genes related to stress, drug resistance and poor prognosis 
[117]. Furthermore, CD34+ AML cells with low ROS levels exhibited 
increased sensitivity to BCL2 inhibitors, including venetoclax (also 
known as ABT-199), navitoclax (also known as ABT-263) and ABT-737. 
These small molecules reduce OXPHOS, increase ROS and selectively 
eliminate AML LSCs [107,117,118]. 

Venetoclax is a United States Food and Drug Administration (US- 
FDA)-approved highly selective molecule that was designed to specif
ically target the BH3 domain of BCL2 [119]. Although venetoclax alone 
has only modest clinical efficacy in AML, it achieves high response rates 
when combined with azacitidine or low-dose cytarabine [120,121]. 
Many AML patients, on the other hand, do not respond or develop 

resistance to venetoclax treatment because their AML LSCs can also use 
fatty acid oxidation (FAO) to feed OXPHOS [122–124]. 

More recently, Hoang et al. [125] reported that venetoclax combined 
with arsenic trioxide enhanced apoptosis in AML LSCs derived from both 
venetoclax-sensitive and venetoclax-resistant primary AML cells. In 
particular, Cho et al. [126] reported that arsenic trioxide synergistically 
promotes venetoclax anti-AML LSC effects by downregulating 
Mcl-1.8-Chloro-adenosine [122,127] and CDK7 inhibitors [128] have 
also been reported to enhance the anti-AML LSC activity of venetoclax. 

Lachowiez et al. [129] reported a clinical trial evaluating the efficacy 
and safety of the intensive chemotherapy and venetoclax combination 
regimen compared with the intensive chemotherapy alone regimen in 
patients with AML. After a 30-month follow-up, the venetoclax plus 
intensive chemotherapy cohort had an MRD-negative composite com
plete response rate of 64 (86%) of 74 patients, compared to 86 (61%) of 
140 patients in the intensive chemotherapy cohort. Although the overall 
survival did not significantly differ between these two cohorts, ven
etoclax plus intensive chemotherapy improved event-free survival. 

1.4.2. Disulfiram/copper 
Disulfiram is a U.S. FDA-approved drug to treat alcoholism that acts 

as an aldehyde dehydrogenase inhibitor. The action of disulfiram com
bined with copper was studied in three AML cell lines, KG-1, NB4 and U- 
937. This combination caused disruption of ROS balance, cell cycle ar
rest and apoptosis in AML cells along with increased expression of the 
tumor suppressor FOXO and decreased expression of the MYC oncogene 
[130]. 

Xu et al. [131] demonstrated the antileukemic activity of disulfiram 
in combination with copper, where these compounds exhibited the 
ability to target CD34+CD38− LSC-like cells sorted from AML KG-1a and 
Kasumi-1 cell lines, as well as primary CD34+ AML samples. Apoptotic 
cell death induction and suppression of colony formation were observed 
in disulfiram/copper-treated AML cells but not in their normal coun
terparts. These effects were associated with oxidative stress by acti
vating the ROS-JNK pathway and inhibiting NF-kB signaling. 

1.4.3. Niclosamide 
Niclosamide is an orally bioavailable chlorinated salicylanilide 

approved by the US-FDA as an anthelmintic agent. In a study performed 
by Jin et al. [132], niclosamide was able to induce cell death in the 
CD34+CD38− subpopulation from AML primary cells, preserving those 
from normal bone marrow. Increased ROS and inhibition of NF-kB 
signaling were also found in niclosamide-treated AML HL-60 cells. 
Elimination of ROS by the glutathione precursor N-acetylcysteine 
decreased niclosamide-induced apoptosis, suggesting that niclosamide 
increased ROS levels to induce apoptosis in AML HL-60 cells. In nu/nu 
BALB/c mice bearing HL-60 xenografts, niclosamide (40 mg/kg) 
inhibited tumor growth and NF-kB signaling. 

1.4.4. GNPIPP12MA 
A study developed a treatment strategy against AML LSCs based on 

bioprinted GSH nanocomposites loaded with an N6-methyladenosine 
(m6A) fat mass and obesity-associated (FTO) demethylase inhibitor 
(GNPIPP12MA) with the aim of achieving synergistic GSH depletion of 
the FTO/m6A pathway and consequently targeting leukemia develop
ment. GNPIPP12MA was able to target AML Kasumi-1 and 
CD34+CD38− AML cells, leading to cell death by ferroptosis in a ROS- 
dependent mechanism with low effect in cells from normal bone 
morrow. It was also effective in the AML C1498 mouse model and 
increased the effect of the anti-PDL-1 antibody in this in vivo model 
[133]. 

1.4.5. 3-Deazaneplanocin A 
3-Deazaneplanocin A is a histone methyltransferase inhibitor that 

induces disruption in polycomb-repressive complex 2 (PRC2), causing 
apoptosis in cancer cells. Zhou et al. [134] demonstrated that 

Table 2 
Drugs that target oxidative stress to eliminate AML LSCs.  

Drugs Oxidative stress-associated 
mechanism 

References 

2-methoxyestradiol HIF-1α inhibition [154] 
3-Deazaneplanocin A Histone methyltransferase 

inhibition 
Thioredoxin inhibition 

[134] 

4-benzyl,2-methyl,1,2,4- 
thiadiazolidine 

GSK3b inhibition 
PKC inhibition 
FLT3 inhibition 

[141] 

4-hydroxy-2-nonenal NF-kB inhibition [153] 
ABT-737 BCL-2 inhibition [107] 
Avocatin B Fatty acid β-oxidation inhibition [150] 
Celastrol NF-kB inhibition [153] 
Chidamide Histone deacetylase inhibition 

JNK inhibition 
NF-kB inhibition 

[135] 

Diosmetin Estrogen receptor inhibition [155] 
Disulfiram/copper JNK activation 

NF-kB inhibition 
[131] 

Fenretinide NF-κB inhibition 
Wnt inhibition 

[139,140] 

GNPIPP12MA FTO inhibition [133] 
Hydroxychloroquine Autophagy inhibition [138] 
Karonudib (also known as 

TH1579) 
MTH1 inhibition [108] 

Mefloquine Lysosomal disruption [142] 
Micheliolide NF-kB inhibition [149] 
Navitoclax (also known as ABT- 

263) 
BCL-2 inhibition [107] 

Niclosamide NF-kB inhibition [132] 
Oridonin Thioredoxin inhibition 

Thioredoxin reductase 
inhibition 

[159] 

Parthenolide NF-κB inhibition / p53 
activation 

[144] 

Peperomin E Thioredoxin reductase 
inhibition 

[157] 

Piplartine Glutathione inhibition [142] 
Triptolide HIF-1α inhibition [152] 
Venetoclax (also known as ABT- 

199) 
BCL-2 inhibition [117]  
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Table 3 
Drugs that target oxidative stress to eliminate AML LSCs and are tested in clinical trials as anti-AML therapy.  

ID Study Title Conditions Interventions Phase First Posted Current Status 

NCT05305859 Venetoclax Combining Chidamide and 
Azacitidine (VCA) in the Treatment of 
R/R AML 

Leukemia, Myeloid, 
Acute 
Relapsed Adult AML 
Refractory Leukemia 

Drug: venetoclax combining chidamide 
and azacitidine (VCA) 

Phase 2 March 31, 
2022 

Recruiting 

NCT05330364 Study of Chidamide Combined With 
Cladribine in Refractory/Relapsed 
Acute Myeloid Leukemia 

Acute Myeloid 
Leukemia 

Drug: Chidamide Drug: Cladribine Phase 2 April 15, 
2022 

Recruiting 

NCT05603884 VCA Regimen Followed by D-MAG 
Regimen on the Treatment of Elderly 
Patients With Newly Diagnosed Acute 
Myeloid Leukemia (AML) 

Leukemia, Myeloid, 
Acute 
AML Stage, Adult 

Drug: Venetoclax Combining Chidamide 
and Azacitidine (VCA) regimen followed 
by dicitabine combined with liposome 
mitoxantrone, cytarabine, and G-CSF (D- 
MAG) regimen 

Phase 2 November 
3, 2022 

Not yet recruiting 

NCT02886559 Chidamide Plus DCAG for Relapsed/ 
Refractory AML 

AMLRelapse Drug: Chidamide plus DCAG regimen Phase 1 
Phase 2 

September 
1, 2016 

Unknown 

NCT03031262 Efficacy and Safety of Chidamide in 
CBF Leukemia 

AML Drug: Cytarabine Drug: Chidamide Phase 1 
Phase 2 

January 25, 
2017 

Unknown 

NCT03985007 CDIAG Regimen in the Treatment of 
Relapsed or Refractory Acute Myeloid 
Leukemia 

Acute Myeloid 
Leukemia, Relapsed, 
Adult 

Drug: CDIAG regimen Phase 2 June 13, 
2019 

Completed 

NCT05029141 New Double Epigenetic Regimen in 
the Treatment of Relapsed or 
Refractory Acute Myeloid Leukemia 

Acute Myeloid 
Leukemia 
Refractory Acute 
Leukemia 
Relapsed Adult AML 

Drug: CAHAG regimen 
Drug: Placebo regimen 

Phase 2 August 31, 
2021 

Active, not 
recruiting 

NCT05659992 Clinical Study of Venetoclax 
Combined With CACAG Regimen in 
the Treatment of Newly Diagnosed 
Acute Myeloid Leukemia 

Acute Myeloid 
Leukemia 

Drug: azacytidine; cytarabine; 
aclamycin; Chidamide; venetoclax; 
granulocyte 

Phase 1 December 
21, 2022 

Recruiting 

NCT03453255 DCHA as Postremission Therapy for 
AML With t(8; 21) 

Chemotherapy Drug: Chemotherapy Phase 1 
Phase 2 

March 5, 
2018 

Unknown 

NCT05682755 Chidamide Prevents Recurrence of 
High-risk AML After Allo-HSCT 

Leukemia, Myeloid, 
Acute 

Drug: Chidamide Phase 1 
Phase 2 

January 12, 
2023 

Recruiting 

NCT05270200 Single Arm Study of Post-transplant 
Azacitidine and Chidamide for 
Prevention of Acute Myelogenous 
Leukemia Relapse 

Leukemia, Myeloid, 
Acute 

Drug: Azacitidine Drug: Chidamide Phase 1 
Phase 2 

March 8, 
2022 

Recruiting 

NCT01187810 Fenretinide in Children With 
Recurrent/Resistant ALL, AML, and 
NHL 

Acute Myelogenous 
Leukemia 
Acute Lymphoblastic 
Leukemia 
Non-Hodgkin’s 
Lymphoma 

Drug: Fenretinide Drug: Cytarabine Drug: 
Methotrexate 

Phase 1 August 24, 
2010 

Terminated (drug 
supply) 

NCT00104923 Fenretinide in Treating Patients With 
Refractory or Relapsed Hematologic 
Cancer 

Chronic 
Myeloproliferative 
Disorders 
Leukemia 
Lymphoma 
Multiple Myeloma and 
Plasma Cell Neoplasm 

Drug: fenretinide Phase 1 March 4, 
2005 

Completed 

NCT02631252 Phase I Study of Mitoxantrone and 
Etoposide Combined With 
Hydroxychloroquine, for Relapsed 
Acute Myelogenous Leukemia 

Leukemia, Acute 
Myelogenous 

Drug: Hydroxychloroquine 
Drug: Mitoxantrone 
Drug: Etoposide 

Phase 1 December 
16, 2015 

Terminated 
(Inability to accrue) 

NCT04077307 A Study in Leukemia Patients With 
Karonudib (MAATEO) 

Leukemia Drug: Karonudib Phase 1 September 
4, 2019 

Unknown 

NCT05222984 Navitoclax, Venetoclax, and 
Decitabine for the Treatment of 
Relapsed or Refractory Acute Myeloid 
Leukemia Previously Treated With 
Venetoclax 

Recurrent Acute 
Myeloid Leukemia 
Refractory Acute 
Myeloid Leukemia 

Drug: Decitabine Biological: Navitoclax 
Drug: Venetoclax 

Phase 1 February 3, 
2022 

Recruiting 

NCT05455294 Combination Navitoclax, Venetoclax 
and Decitabine for Advanced Myeloid 
Neoplasms 

Myeloid Malignancy 
Myelodysplastic 
Syndromes 
Myelofibrosis 
Acute Myeloid 
Leukemia 
Myeloproliferative 
Neoplasm 

Drug: Navitoclax 
Drug: Venetoclax 
Drug: Decitabine 

Phase 1 July 13, 
2022 

Recruiting 

NCT05188170 Niclosamide in Pediatric Patients With 
Relapsed and Refractory AML 

Acute Myeloid 
Leukemia 

Drug: Niclosamide Phase 1 January 12, 
2022 

Recruiting 

NCT03347994 Minnelide in Adult Patients With 
Relapsed or Refractory Acute Myeloid 
Leukemia 

Acute Myeloid 
Leukemia 

Drug: Minnelide Phase 1 November 
20, 2017 

Withdrawn 
(Discordance in 
contractual 
language and 
terms) 
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3-deazaneplanocin induces apoptosis in both AML cell lines and 
patient-derived CD34+CD38− AML-enriched subpopulations. Inhibition 
of thioredoxin activity and augmentation of ROS were also found in 
3-deazaneplanocin A-treated AML cells. 

1.4.6. Chidamide 
Chidamide, a benzamide-type selective histone deacetylase (HDAC) 

inhibitor developed in China, induces cell cycle arrest and apoptosis in 
cancer cells. It induced apoptosis in AML cell lines and primary AML 
CD34+ cells. Chidamide caused ROS-mediated apoptotic cell death by 
modulation of antiapoptotic and proapoptotic proteins in the BCL2 
family, activation of caspase-3 and cleavage of PARP, along with 
downregulation of the JNK and NF-κB pathways through activation of 
CD40 [135]. 

1.4.7. Hydroxychloroquine 
Hydroxychloroquine is a U.S. FDA-approved drug to treat malaria 

and acute and chronic inflammatory diseases, such as rheumatoid 
arthritis and systemic lupus erythematosus. It is also an autophagy in
hibitor with the ability to induce ROS-mediated apoptosis in cancer cells 
[136,137]. In a study with AML LSCs performed by Folkerts et al. [138], 
MOLM13 and NB4 AML cell lines and primary AML CD34+ cells were 
more sensitive to hydroxychloroquine than normal bone marrow CD34+

cells. Next, primary AML CD34+ cells were separated into low ROS and 
high ROS subtractions. Primary AML CD34+ cells with low ROS levels 
showed higher basal autophagy and were more sensitive to hydroxy
chloroquine than AML CD34+ cells with high ROS levels. 

1.4.8. Karonudib 
Karonudib (also known as TH1579) is an oral inhibitor of MTH1, an 

enzyme preventing oxidized dNTP incorporation in DNA. It was able to 
eliminate both primary blast AML and primary CD34+CD38− AML cells 
while sparing normal cells. Karonudib caused mitotic arrest, increased 
ROS levels and improved oxidative DNA damage in AML HL-60 cells. 
Karonudib (45 and 90 mg/kg twice daily, three times a week) inhibited 
AML development and enhanced survival in NSG mice transplanted 
intravenously with AML HL60Adp luciferase-expressing cells [108]. 

1.4.9. Fenretinide 
Fenretinide is a synthetic retinoid derivative with action in cancer 

cells. It was able to induce cell death and inhibit the formation of col
onies in primary AML CD34+ cells without affecting their normal 
counterparts. Fenretinide also caused the generation of ROS, increased 
stress responses and apoptosis-related gene transcripts and reduced NF- 
κB and Wnt signaling. It also inhibited the in vivo engraftment of AML 
LSCs but not HSCs [139]. 

Zhao et al. [140] demonstrated that it induces ROS production and 
NF-κB inhibition in AML MV4-11 cells. In addition, primary AML CD34+

cells with FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication 
(ITD) mutations were more sensitive to fenretinide than those without 
FLT3-ITD mutations. 

1.4.10. 4-Benzyl,2-methyl,1,2,4-thiadiazolidine 
4-Benzyl,2-methyl,1,2,4-thiadiazolidine, a member of the thiadia

zolidine class, is a non-ATP competitive inhibitor of glycogen synthase 
kinase 3β (GSK3b). It caused cell death in different subtypes of leukemia, 
including primary CD34+CD38− AML cells, without affecting HSCs. 
Induction of oxidative stress and inhibition of the PKC and FLT3 
signaling pathways were also found in 4-benzyl,2-methyl,1,2,4-thiadia
zolidine-treated primary AML cells [141]. 

1.4.11. Mefloquine 
Mefloquine is a U.S. FDA-approved antimalarial agent. Similar to 

chloroquine and hydroxychloroquine, it is an autophagy inhibitor. 
Mefloquine induced cell death in AML cell lines, primary bulk AML cells 
and primary AML progenitor cells more effectively than in normal he
matopoietic progenitor cells. Induction of oxidative stress and lysosomal 
disruption were found in mefloquine-treated TEX and OCI-AML2 cells. 
Mefloquine also showed antileukemic activity on mouse leukemic 
MDAY-D2 cells and human leukemic OCI-AML2 or K562 cells (50 mg/kg 
daily by oral gavage), as well as on primary human AML cells (100 mg/ 
kg daily by oral gavage) growing in xenografted mice [142]. 

1.5. Natural product compounds 

1.5.1. Parthenolide and analogs 
Parthenolide, a natural component extracted from the species 

Tanacetum parthenium, has been identified to inhibit the ability of LSCs 
to respond to oxidative stress by making LSCs sensitive to cell death 
[143]. It induced robust apoptosis in primary human AML cells and blast 
crisis CML cells while sparing HSCs. When compared to cytarabine 
chemotherapy, parthenolide is much more specific for leukemia cells. It 
also induced NF-κB inhibition, proapoptotic activation of the tumor 
suppressor p53 and increased production of ROS, suggesting that this 
molecule activity triggers LSC-specific apoptosis [144]. Furthermore, 
Kim et al. [145] demonstrated that parthenolide activity is greater in cell 
lines with high myeloperoxidase leukemia than in cell lines with low 
myeloperoxidase leukemia. 

In contrast, parthenolide has poor pharmacological properties, 
limiting its potential clinical use. Therefore, many parthenolide analogs 
have been synthesized and evaluated against leukemia cells. 
Dimethylamino-parthenolide, an orally bioavailable parthenolide 
analog, caused cell death in human primary LSCs from both myeloid and 
lymphoid leukemias and was cytotoxic to bulk leukemic cells. It also 
induces oxidative stress, inhibits NF-kB signaling and activates the p53 
pathway [146]. A C1–C10-modified parthenolide analog was also found 
to inhibit AML LSCs along with improved ROS induction and less 
toxicity to healthy bone marrow cells [147]. Darwish et al. [148] 
developed PLGA-antiCD44-parthenolide nanoparticles with enhanced 
bioavailability and selectivity to target AML cells. 

1.5.2. Micheliolide 
Micheliolide is a guaianolide sesquiterpene lactone isolated from 

Michelia compressa and Michelia champaca that is structurally related to 
parthenolide. It caused apoptosis in AML KG-1a cells, primary bulk AML 
cells and primary CD34+CD38− AML cells but not in HSCs. These effects 
were associated with inhibition of NF-κB signaling and generation of 
intracellular ROS. Micheliolide derivative DMAMCL administered orally 
at doses of 25, 50 and 100 mg/kg for seven treatments every other day 
increased survival in mice xenotransplanted with primary human AML 
cells [149]. 

1.5.3. Avocatin B 
Avocatin B is an avocado-derived lipid mixture containing avoca

dene and avocadyne (two 17-carbon polyhydroxylated fatty alcohols). It 
is a fatty acid β-oxidation inhibitor that induces cell death in AML cell 
lines, primary bulk AML and progenitor AML cells without affecting 
HSCs. Avocatin B inhibited fatty acid oxidation and decreased NADPH 
levels in AML TEX cells, resulting in ROS-dependent apoptotic cell 
death. These effects were related to the CPT1 enzyme, which facilitates 
the lipid transport of mitochondria [150]. 

1.5.4. Triptolide 
Triptolide, a diterpenoid triepoxide from the medicinal plant Trip

terygium wilfordii Hook F, has attracted extensive exploration due to its 
multiple biological activities [151]. Triptolide demonstrated the ability 

*All studies were accessed at www.clinicaltrials.gov on March 28th, 2023 by using the search term "AML" and the drugs that are presented in Table 2 (with exception of 
venetoclax that is already in clinical use). 
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to induce apoptosis in CD34+CD38− LSC-like cells sorted from AML 
KG-1a cells. Moreover, triptolide enhanced the proapoptotic effect of 
idarubicin, increased the levels of ROS and decreased the 
colony-forming ability of CD34+CD38− LSC-like cells from AML KG-1a 
cells. A reduction in the expression of Nrf2 and HIF-1α was also observed 
in cells treated with the combination of triptolide and idarubicin [152]. 

1.5.5. Celastrol 
Celastrol (also known as tripterine) is a pentacyclic nortriterpene 

quinone isolated from the root of Tripterygium wilfordii and Tripterygium 
regelii. Celastrol was selected by in silico study due its similar properties 
to parthenolide. It was able to eliminate bulk primary AML as well 
primary CD34+CD38− AML cells with less effect on HSCs. Celastrol also 
impaired engraftment of primary AML cells in immunocompromised 
mice. Induction of apoptosis associated with oxidative stress, Nrf2 
activation and NF-kB signaling inhibition were also observed in 
celastrol-treated AML cells [153]. 

1.5.6. 4-hydroxy-2-nonenal 
4-Hydroxy-2-nonenal is an α,β-unsaturated hydroxyalkenal pro

duced in cells during oxidative stress by lipid peroxidation. Similar to 
celastrol, 4-hydroxy-2-nonenal was selected as an anti-AML compound 
for the in silico study. It also exhibited toxicity to primary AML 
CD34+CD38− cells and impaired engraftment of primary AML cells in 
immunocompromised mice. 4-Hydroxy-2-nonenal also caused oxidative 
stress-mediated apoptosis, Nrf2 activation and inhibition of NF-kB 
signaling in primary AML cells [153]. 

1.5.7. 2-methoxyestradiol 
2-Methoxyestradiol is a 17-estradiol endogenous metabolite that 

interacts with estrogen receptors and microtubules. Zhe et al. [154] 
reported that 2-methoxyestradiol is able to induce apoptosis in HL-60 
and Kasumi-1 AML cell lines along with inhibition of HIF-1α and its 
target genes VEGF, GLUT1 and HO-1. It also reduced the CD34+ cell 
subpopulation of bone marrow from AML patients, with a lower effect 
on CD34+ cells from normal bone marrow, in a superior manner to 
cytarabine. This molecule also increased intracellular ROS, and its effect 
was prevented using the antioxidant N-acetylcysteine. 

1.5.8. Diosmetin 
Diosmetin is a flavonoid molecule from citrus fruits that has a variety 

of pharmacological properties. Diosmetin presented in vitro anti-AML 
activity against a panel of AML cell lines (KG-1a, U937, OCI-AML2 
and TEX) and impaired engraftment of TEX cells in immunocompro
mised mice. Mechanistically, diosmetin is an estrogen receptor β (ERβ) 
agonist. In particular, primary AML cells with high levels of ERβ were 
more sensitive than primary AML cells with low ERβ. Interestingly, 
knockdown of ERβ induced resistance to diosmetin cytotoxicity, while 
ERβ overexpression improved sensitivity to diosmetin. This effect was 
associated with the activation of ROS signaling. Moreover, diosmetin 
(50 mg/kg every other day) administered for 6 weeks reduced engraft
ment of primary AML cells but not HSCs in immunocompromised mice 
[155]. 

1.5.9. Peperomin E 
Peperomin E, a secolignan isolated from the Chinese medicinal plant 

Peperomia dindygulensis (Piperaceae), has been reported to selectively 
and effectively target and initiate oxidative stress-induced apoptosis in 
KG-1a CD34+CD38− cells [156]. 

Peperomin E and its orally bioavailable analog 6-methyl(hydrox
yethyl)amino-2,6-dihydropeperomin E also eliminate KG-1a CD34+

cells and primary CD34+ AML cells. 6-Methyl(hydroxyethyl)amino-2,6- 
dihydropeperomin E (25 and 50 mg/kg/day for 5 weeks) reduced the 
growth of KG-1a CD34+ cells in immunocompromised mice. It also 
induced oxidative stress-mediated apoptosis in KG-1a CD34+ cells 
through inhibition of thioredoxin reductase [157]. 

1.5.10. Oridonin 
Oridonin, a diterpene extracted from the species Rabdosia rubescens, 

caused apoptotic cell death in t(8; 21) leukemia cells, induced cleavage 
of the AML1-ETO oncoprotein resulting from t(8; 21) and reduced tumor 
growth in immunocompromised mice inoculated with t(8; 21)- 
harboring Kasumi-1 cells [158]. Oridonin also selectively induced 
ROS-mediated apoptosis by directly binding to glutathione and inhib
iting thioredoxin/thioredoxin reductase in t(8; 21) AML cells. Inhibition 
of c-Kit + AML LSCs in bone marrow from AML1-ETO9a leukemia mice 
was also observed after treatment with oridonin in vitro and in vivo 
[159]. 

1.5.11. Piplartine 
Piplartine, also known as piperlongumine, is a natural molecule from 

the genus Piper with multiple activities [160–166]. Investigating a tar
geted therapy based on the eradication of CD34+ AML cells that have 
acquired aberrant glutathione metabolism, Pei et al. [143] used agents 
known to act directly on the aberrant glutathione pathway, such as 
piplartine and/or piplartine, in combination with cytarabine and idar
ubicin in AML cells. Their work demonstrated that these compounds 
were able to induce glutathione depletion and lead to a reduction in the 
primary AML CD34+CD38− subpopulation. 

2. Conclusion 

As we discuss in this review, oxidative stress has both tumor- 
promoting and tumor-suppressing functions. Under low conditions, 
ROS participate in the self-renewal of HSCs, while an increase in the 
level of ROS is necessary for the proliferation and differentiation of 
HSCs, but excessive levels of ROS induce oxidative damage to cellular 
DNA and proteins, resulting in cell death or favoring the development of 
AML. In AML, a low level of ROS is related to the quiescence of LSCs, 
while a high level of ROS is found in AML blasts and participates in cell 
proliferation. In both cases, the increase in ROS in AML bulk and/or 
AML LSCs can induce apoptotic death and suppress AML cell prolifera
tion. Currently, there are some potential drugs able to eliminate AML 
LSCs via ROS increase and, consequently, reduce the probability of 
disease recurrence. Among them, navitoclax, chidamide, fenretinide, 
hydroxychloroquine, karonudib, niclosamide, and triptolide are under 
clinical trials, and venetoclax is a drug approved by the US-FDA to treat 
patients with AML. Future research targeting oxidative stress as an 
efficient approach to eradicate AML LSCs should be undertaken. 
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H. Döhner, P.J. Campbell, Genomic classification and prognosis in acute myeloid 
leukemia, N. Engl. J. Med. 374 (2016) 2209–2221, https://doi.org/10.1056/ 
NEJMoa1516192. 

[2] N.J. Short, M.E. Rytting, J.E. Cortes, Acute myeloid leukaemia, Lancet 392 (2018) 
593–606, https://doi.org/10.1016/s0140-6736(18)31041-9. 

[3] A.C.B.D.C. Rodrigues, R.G.A. Costa, S.L.R. Silva, I.R.S.B. Dias, R.B. Dias, D. 
P. Bezerra, Cell signaling pathways as molecular targets to eliminate AML stem 
cells, Crit. Rev. Oncol. Hematol. 160 (2021), 103277, https://doi.org/10.1016/j. 
critrevonc.2021.103277. 

[4] G. Granroth, N. Khera, C. Arana Yi, Progress and challenges in survivorship after 
acute myeloid leukemia in adults, Curr Hematol Malig Rep 17 (2022) 243–253, 
https://doi.org/10.1007/s11899-022-00680-6. 
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B. Denys, R. Dillon, M. Feuring-Buske, M.L. Guzman, T. Haferlach, L. Han, J. 
K. Herzig, J.L. Jorgensen, W. Kern, M.Y. Konopleva, F. Lacombe, M. Libura, 
A. Majchrzak, L. Maurillo, Y. Ofran, J. Philippe, A. Plesa, C. Preudhomme, 
F. Ravandi, C. Roumier, M. Subklewe, F. Thol, A.A. van de Loosdrecht, B.A. van 
der Reijden, A. Venditti, A. Wierzbowska, P.J.M. Valk, B.L. Wood, R.B. Walter, 
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