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Abstract: (1) Background: Malaria is a public health problem worldwide. Despite global efforts to
control it, antimalarial drug resistance remains a great challenge. In 2009, our team identified, for the
first time in Brazil, chloroquine (CQ)-susceptible Plasmodium falciparum parasites in isolates from the
Brazilian Amazon. The present study extends those observations to include survey samples from
2010 to 2018 from the Amazonas and Acre states for the purpose of tracking pfcrt molecular changes
in P. falciparum parasites. (2) Objective: to investigate SNPs in the P. falciparum gene associated with
chemoresistance to CQ (pfcrt). (3) Methods: Sixty-six P. falciparum samples from the Amazonas and
Acre states were collected from 2010 to 2018 in patients diagnosed at the Reference Research Center
for Treatment and Diagnosis of Malaria (CPD-Mal/Fiocruz), FMT-HVD and Acre Health Units. These
samples were subjected to PCR and DNA Sanger sequencing to identify mutations in pfcrt (C72S,
M74I, N75E, and K76T). (4) Results: Of the 66 P. falciparum samples genotyped for pfcrt, 94% carried
CQ-resistant genotypes and only 4 showed a CQ pfcrt sensitive-wild type genotype, i.e., 1 from
Barcelos and 3 from Manaus. (5) Conclusion: CQ-resistant P. falciparum populations are fixed, and
thus, CQ cannot be reintroduced in malaria falciparum therapy.

Keywords: chloroquine; chemoresistance; malaria; P. falciparum; pfcrt

1. Introduction

Tens of thousands of years after the Plasmodia that infected hominids became estab-
lished as parasites that cause disease in humans, malaria is still a major public health
problem worldwide in the third millennium of the Christian era. According to the World
Malaria Report, 247 million cases and 619 thousand malaria-related deaths were reported in
2021 [1]. Plasmodium falciparum is responsible for the most virulent and dangerous malaria
in humans [1,2]. In 2021, in the Brazilian Amazon Basin, 138,988 cases—representing 99.92%
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of the Brazilian cases—were reported. Among them, 21,614 (15.55%) were caused by P.
falciparum [2].

Despite numerous advances in the use and efficacy of vaccines, there is still heavy
reliance on antimalarials for the prevention and treatment of malaria; these drugs are
considered the most important malaria control measures [3]. However, with the contin-
ued use of antimalarials, P. falciparum gradually develops drug resistance that spreads
rapidly [4]. Therefore, antimalarial drug resistance has become one of the major challenges
in eliminating the disease [5]. The emergence of drug-resistant strains may be influenced
by parasites and host factors, such as parasite mutation frequency, patient adherence to
therapy, selection pressure, and host immunity, in addition to drug quality [6].

Before artemisinin-based combination therapies (ACTs) were approved worldwide
as first-line therapy for uncomplicated falciparum malaria in 2007, chloroquine (CQ) was
widely used in Brazil, especially up to the 1980s, to treat acute infections with P. falciparum as
a safe, inexpensive, and effective antimalarial drug [7–9]. Mefloquine was then introduced
as a therapeutic alternative for multidrug-resistant falciparum malaria; it was used until the
introduction of ACTs in Brazil, with relative safety, alone or in association with artemisinin
derivatives in cases of severe malaria and multidrug-resistant P. falciparum parasites [10].
Currently, after reports of cases of resistance to mefloquine [10], this drug is only used in
combination with artesunate for the treatment of acute, uncomplicated malaria caused by
P. falciparum. It is indicated for cases of P. falciparum mono-infection, as well as for mixed
infections with P. vivax (with subsequent treatment of its hypnozoite forms).

Since the first reports of P. falciparum resistance to antimalarial drugs in the nineteenth
century, molecular epidemiological surveillance has been essential for the early detection
and prevention of the spread of resistant parasites [11,12] by identifying and monitor-
ing genetic polymorphisms associated with parasite resistance, mainly single nucleotide
polymorphisms (SNPs) [8,12].

Mutations in the P. falciparum chloroquine resistance transporter gene (pfcrt), a member
of the drug metabolite transporter superfamily, have been associated with reduced suscep-
tibility to CQ [11]. The K76T pfcrt polymorphism is considered the molecular marker of CQ
resistance (CQR) [13] and is associated with CQ treatment failure [14,15]. However, studies
have suggested that the K76T mutation does not act alone but in conjunction with other
pfcrt mutations, such as those at positions 72, 73, 74, and 75 [16–18]. Thus, CQR strains
of P. falciparum could carry triple CVIET (mostly in Southeast Asia and Africa) or double
SVMNT mutants (South America) [19–22].

In 2009, our team identified, for the first time in Brazil, the presence of P. falciparum
parasites sensitive to CQ in the Brazilian Amazon [23]. The present study extends these
observations to include survey samples from 2010 to 2018 from the Amazonas and Acre.
Due to the limitations of in vivo and in vitro studies to survey chemoresistant parasites in
endemic areas where reinfections are common, molecular analysis of parasite mutations as-
sociated with chemoresistance is an important tool. These findings prompted us to conduct
a study to track molecular changes in P. falciparum parasites through the investigation of
SNPs in the pfcrt gene in parasites from the Amazonas and Acre Brazilian states.

2. Materials and Methods
2.1. Blood Samples and Malaria Diagnosis

Samples were collected from P. falciparum-infected symptomatic patients who attended
the Ambulatório de Síndromes Febris Agudas/Acute Febrile Syndrome Outpatient Clinic at
the National Institute of Infectology (INI), Rio de Janeiro, a member of the Reference Center
for Research, Diagnosis, and Training of Malaria—CPD-Mal/Fiocruz, RJ for the Extra-
Amazonian region (22◦ 54′ S W 43◦ 12′ W). Blood samples were also collected in Manaus
(3.1190◦ S, 60.0217◦ W), the capital of Amazon state, at the Fundação de Medicina Tropical
Doutor Heitor Vieira Dourado (FMT-HVD) and in field conditions in the municipality
of Guajará (bordering the Amazonas and Acre states; 02◦58′18′ ′ S and 57◦40′38′ ′ W) and
in two municipalities of Acre state: Cruzeiro do Sul (07◦37′50′ ′ S and 72◦40′13′ ′ W) and
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Mâncio Lima (07◦36′49′ ′ S and 72◦53′47′ ′ W) (Table 1 and Figure 1). Independently of blood
collection locality, P. falciparum diagnosis was made by light microscopy (Giemsa-stained
thick blood droplets) in situ and by species-specific polymerase chain reaction (PCR) [24]
at the Fiocruz Malaria Research Laboratory—the headquarters of the CPD-Mal—where the
samples were stored.

Table 1. Localities of P. falciparum parasite blood collection by year.

Year

Sample Collection

Rio de Janeiro (n = 2) Amazonas (n = 32) Acre (n = 34)

CPDMAL 1 FMT-HVD 2 GJ 3 CZS 4 ML 5

2010 - 22 - - -
2013 - 4 - - -
2014 - 1 - - -
2016 - - 1 11 8
2017 1 6 - - - -
2018 1 7 - 2 9 6

1 Reference Center for Malaria Treatment and Diagnosis of Brazilian Ministry of Health. 2 Fundação de Medicina
Tropical Doutor Heitor Vieira Dourado, Amazonas state. 3 Guajará municipality, Amazonas state; 4 Cruzeiro do
Sul municipality, Acre state; 5 Mâncio Lima municipality, Acre state; 6 Manaus municipality, Amazonas state;
7 Barcelos municipality, Amazonas state.
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Figure 1. Brazilian map highlighting the Acre and Amazonas states and the municipalities of parasite
infection.

2.2. DNA Extraction, Amplification, and Sequencing

The DNA from 1 mL blood samples was extracted using a QIAamp™ DNA Blood Midi
Kit (QIAGEN), according to the manufacturer’s instructions. PCRs were performed to am-
plify the pfcrt fragment gene according to previously described protocols [25]. PCR products
were analyzed by electrophoresis on 2% agarose gel and visualized under a UV transillumi-
nator (DigiDoc-It, UVP, Upland, CA, USA). Each PCR product was purified using Wizard™
SV Gel and the PCR Clean-Up System (Promega, WI, USA), following the manufacturer’s
procedure. Purified DNA sequencing was carried out through Big Dye™ Terminator Cycle
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Sequencing Ready Reaction version 3.1 (Applied Biosystems, Carlsbad, CA, USA), with
3.2 µM of forward and reverse PCR primers. DNA sequences to investigate C72S, M74I,
N75E/D, and K76T were determined using an ABI Prism DNA Analyzer™ 3730 (Applied
Biosystems, CA, USA), on the Fiocruz Genomic Platform PDTIS/Fiocruz RPT01A. Nu-
cleotide sequences were aligned using the ClustalW multiple sequence aligner in the BioEdit
software [26]. The PF3D7_1343700 strain was used as a reference sequence (from PlasmoDB:
http://www.plasmoDB.org, accessed on 20 March 2023). DNA sequences were deposited
in GenBank (the NIH’s genetic sequence database; www.ncbi/nlm/nih.gov/GenBank,
accessed on 21 March 2023) with the accession numbers OQ672386-OQ672451.

3. Results

PCR amplicons (145-bp) of the pfcrt gene covering codons 72–76 were sequenced. The
prevalence of C72S and K76T mutations was 92% (61/66). All parasites from Cruzeiro
do Sul and Mâncio Lima Acre municipalities, as well as those from Guajará Amazonas
municipality, showed both C72S and K76T polymorphisms, i.e., exhibiting the double
mutant SVMNT haplotype. Only four samples from Amazonas municipalities—three from
Manaus and one from Barcelos—were pfcrt CVMNK wild type. The remaining sample from
Manaus presented mutations at codons 74 (M74I), 75 (N75E), and 76 (K76T), displaying
the triple mutant CVIET haplotype (Table 2).

Table 2. pfcrt haplotypes in 66 P. falciparum samples from Amazonas (Manaus, Barcelos, and Gua-
jará/GJ) and Acre (Cruzeiro do Sul/CZS and Mâncio Lima/ML) Brazilian states.

Haplotype 1 Locality Total (%)

Manaus
(n = 28)

Barcelos
(n = 1)

GJ
(n = 3)

CZS
(n = 20)

ML
(n = 14)

CVMNK 2 3 (11%) 1 (100%) - - - 4 (6%)
SVMNT 3 24 (86%) - 3 (100%) 20 (100%) 14 (100%) 61 (92%)
CVIET 4 1 (4%) - - - - 1 (1%)

1 The bold character represents a non-synonymous mutation. 2 Reference Pf3D7 wild haplotype sequence. 3 S:
codon 72; T: codon 76. 4 I: codon 74; E: codon 75; T: codon 76.

4. Discussion

The P. falciparum has demonstrated its ability to develop resistance to all drugs that
have been used against it on a large scale, continuously threatening global efforts to
control malaria, a leading infectious cause of human morbidity and mortality. Although
Africa bears by far the heaviest burden of malaria, CQ-resistant parasites first emerged in
Southeast Asia and America [27]. This fact underscores the importance of studying and
understanding the genotype of circulating parasites in malaria-endemic areas, since the
strong pressure of drugs can lead to the establishment of drug resistance alleles, even if
they generate a fitness cost for parasites in the absence of drug pressure [28]. Therefore,
understanding the evolution of drug target genes under changing drug policy is crucial for
drug efficacy monitoring using molecular markers.

Polymorphisms in the amino acid positions 72–76 of the pfcrt gene are reliable markers
for CQR of P. falciparum parasites, of which K76T mutation is predominant [16,29]. In our
study, the high prevalence of the 76T allele in isolates from Acre and Amazonas agrees
with other studies in Brazil [30,31], and 76T mutation was found in two CQR haplotypes,
CVIET and SVMNT, which was consistent with our initial hypothesis.

The CVIET haplotype is predominant in many African [21,32] and Southeast Asian
countries in which CQ has been withdrawn for at least ten years after [33–35]; however, it
has also been observed in P. falciparum parasites from South America [36], while SVMNT
is dominant in South America and Oceania [37]. In Brazil, the CVIET haplotype was
rarely encountered (it was found in only one sample from the municipality of Manaus), as
previously seen in isolates from Amazonas and Rondônia [38]. This low CVIET haplotype

http://www.plasmoDB.org
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frequency in Brazilian isolates suggests that this allele might have been recently introduced
through human migration between Africa and South America.

On the other hand, the SVMNT haplotype is mainly detected in South America and
is rarely found in Africa [21,39] and Southeast Asia [33–35]. A study released in 2022
claimed that the SVMNT haplotype originated independently in South America [22], and
it was suggested that this haplotype might be responsible for the initial CQR sweeps
across the Amazon in the early 1960s [38]. SVMNT was more prevalent than other mutant
haplotypes found in this survey, corroborating previous findings in Brazil [24] and showing
its persistence, despite a decline in CQ use.

Our team reported, for the first time, the presence of wild-type haplotypes circulating
in Brazilian isolates [23]. Now, almost ten years later, we found this haplotype in only four
isolates from the Amazonas state (three from Manaus and one from Barcelos). Considering
that in Brazil, CQ has not been used to treat P. falciparum since the 1980s, a higher percentage
of parasites sensitive to CQ would theoretically be expected. In fact, up to 90% of the
samples showing a reversal of pfcrt from the CQ-resistant to the CQ-sensitive genotype
were taken 19 years after the withdrawal of CQ in Kenya, in contrast to the results observed
in the present study [40]. Thus, the high level of K76T pfcrt mutations observed in Brazilian
endemic areas is suggestive of a sustained CQ pressure on P. falciparum parasites. In fact,
CQ is used in the treatment of vivax malaria, leading to continuous exposure to this drug.
Alternatively, the presence of a K76T mutation might have a positive effect on the fitness of
the parasite, settling down in the parasitic population of the region, or lesser opportunities
for competition because of a lower rate of polyclonal infections and a relative lack of
competing wild-type parasites [41] Additionally, C350R substitution on the pfcrt gene
could also participate in the restoration of CQ susceptibility, as suggested elsewhere [28].
Since the C350R mutation is in exon 10, and the primers we used flank the exon 2 region,
comprising amino acids located at codons 43-91, studies are in progress to answer this
question.

5. Conclusions

We conclude that the P. falciparum SVMNT haplotype is fixed in Brazilian endemic
areas. This notwithstanding, molecular surveillance of the P. falciparum pfcrt gene to monitor
trends in the emergence and spread of CQ-sensitive P. falciparum haplotypes in parasites in
Brazilian endemic areas can help to understand the evolutionary dynamics of antimalarial
drug resistance in the Amazon Basin, where more than 99% of Brazilian malaria cases occur
and where P. falciparum resistance to CQ keeps being the rule.
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