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Abstract

Background: Leishmaniasis is endemic in 98 countries with an estimated 350 million people at risk and approximately 2
million cases annually. Brazil is one of the most severely affected countries.

Methodology: We applied Bayesian geostatistical negative binomial models to analyze reported incidence data of
cutaneous and visceral leishmaniasis in Brazil covering a 10-year period (2001–2010). Particular emphasis was placed on
spatial and temporal patterns. The models were fitted using integrated nested Laplace approximations to perform fast
approximate Bayesian inference. Bayesian variable selection was employed to determine the most important climatic,
environmental, and socioeconomic predictors of cutaneous and visceral leishmaniasis.

Principal Findings: For both types of leishmaniasis, precipitation and socioeconomic proxies were identified as important
risk factors. The predicted number of cases in 2010 were 30,189 (standard deviation [SD]: 7,676) for cutaneous leishmaniasis
and 4,889 (SD: 288) for visceral leishmaniasis. Our risk maps predicted the highest numbers of infected people in the states
of Minas Gerais and Pará for visceral and cutaneous leishmaniasis, respectively.

Conclusions/Significance: Our spatially explicit, high-resolution incidence maps identified priority areas where
leishmaniasis control efforts should be targeted with the ultimate goal to reduce disease incidence.
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Introduction

Leishmaniasis is a group of neglected tropical diseases that are

caused by parasites of the genus Leishmania. The parasites are

transmitted by female phlebotomine sandflies and the disease

occurs in human in two different clinical forms: (i) cutaneous (CL,

referring to the greater group of American tegumentary

leishmaniasis), which causes skin or mucosal lesion; and (ii)

visceral (VL), which affects organs such as the liver and spleen [1].

The latter, if not diagnosed and treated in the early stages, is

usually fatal [2,3].

In 2002, the World Health Organization (WHO) estimated that

350 million people were at risk of leishmaniasis, with approx-

imately 2 million (1.5 million CL and 0.5 million VL) cases and

59,000 deaths [4]. Recently, 98 countries reported endemic

transmission, with an estimated 0.7–1.2 and 0.2–0.4 million new

cases per year for CL and VL, respectively. Deaths due to VL are

estimated between 20,000 and 40,000 [5]. The burden of

leishmaniasis has been increasing worldwide [2,6]. In Brazil, for

example, the number of CL cases climbed from 6,335 in 1984 to

30,030 in 1996 [7]. From 1990 to 2007 some 560,000 new cases of

leishmaniasis were reported, primarily CL [3,8]. However, after

2005, the total number of CL cases has dropped and remained

stable, just above 20,000.

Strategies for the control of leishmaniasis in Brazil have not

changed over the past 60 years, which might explain why

incidence did not decrease [9]. According to World Health

Assembly (WHA) resolution 60.10, put forward in 2007, a well-

defined implementation of a control program for leishmaniasis is

still lacking [10]. The difficulties in case reporting and detection

are the main obstacles for such a program. At the same time, due

to heterogeneity between the sandfly species, vector control

introduces high costs. Effective control requires reliable maps of

the spatial distribution of the disease, as well as the number of

affected people, so that treatment and other control interventions

can be implemented most cost-effectively.

Bayesian geostatistical models have been applied in the

mapping of malaria [11–14] and neglected tropical diseases [15–

18]. Geostatistical models relate the disease data with potential

predictors and quantify spatial dependence via the covariance
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matrix of a Gaussian process facilitated by adding random effects

at the observed locations. However, covariance matrix computa-

tions hamper implementation of the models on data collected over

large number of locations (.1,000). Different methodologies have

been proposed to address this issue (for a recent review see [19]). A

predictive process approach, developed by Banerjee et al. (2008)

[20], has been successfully applied in infectious disease mapping

(see, for example, [18]). Lindgren et al. (2011) [21] showed that

Gaussian Markov random fields [22] can be used in geostatistical

settings. Rue and colleagues (2009) [23] provide fast computa-

tional algorithms for latent Gaussian models, based on integrated

nested Laplace approximations (INLA).

There are only few studies that assessed the spatio-temporal

distribution, including underlying risk factors, of leishmaniasis.

Chaves et Pascual (2006) [24] explored the temporal association of

CL cases in Costa Rica by taking into account climatic variables.

Chaves et al. (2008) [25] used negative binomial models with

breakpoints to analyze CL incidence in Costa Rica. Valderrama-

Ardila et al. (2010) [26] studied environmental determinants of CL

incidence in an area of Colombia, using spatial models. In

Colombia, the probability of CL presence based on ecological

zones and environmental variables was explored by King et al.

(2004) [27]. In Argentina, Salomón et al. (2012) [28] modeled CL

incidence using maximum entropy modeling. To date, efforts for

estimating the associated risk and the predicted spatial distribution

of leishmaniasis in Brazil are limited to small geographical areas.

For instance, Shimabukuro et al. (2010) [29] analyzed CL

transmission in the state of São Paulo by using data on sandfly

species presence, while Machado-Coelho et al. (1999) [30]

investigated spatio-temporal clustering in south-east Brazil.

Jirmanus et al. (2012) [31] examined seasonal variation of CL

incidence in Corte de Pedra over a 20-year period and analyzed

demographic characteristics of CL patients. Werneck and Maguire

(2002) [32] used spatial models, with one socioeconomic and one

environmental covariate to explore VL incidence in the city of

Teresina. Assunção et al. (2001) [33] predicted VL rates in Belo

Horizonte employing spatio-temporal models without including

climatic or socioeconomic covariates. The Ministry of Health

(MoH) in Brazil has reported incidence maps for the whole

country but without the use of predictors and of Bayesian

geostatistical approaches [34,35]. More recently, Alvar et al.

(2012) [5] provided worldwide estimates of leishmaniasis and

included incidence maps of Brazil corresponding to raw data

aggregated by state.

In this study, we analyzed incidence data of CL and VL

obtained by the information system for notifiable diseases (ISND)

during 2001 to 2010 from the MoH in Brazil. We employed

Bayesian geostastical negative binomial models, fitted via INLA to

predict the incidence of the diseases, using climatic, environmen-

tal, and socioeconomic covariates. We produced countrywide high

resolution maps for leishmaniasis and estimated the number of

infected people at the unit of the state. The generated incidence

maps and estimates might be useful for decision-makers to

prioritize intervention areas, and optimizing resources allocation

to render control and elimination efforts most cost-effective.

Methods

Ethics Statement
We report a geospatial analysis of CL and VL incidence data in

Brazil. The data were readily obtained from existing databases.

Hence, there are no specific ethical considerations.

Leishmaniasis Incidence Data
Annual incidence data extracted from ISND, were obtained

from 3,895 (for CL) and 2,176 (for VL) municipalities of Brazil.

We have considered autochthonous cases. The municipalities

chosen for the analysis were the ones with reported cases

(including zeros) for at least one year between 2001 and 2010.

Figure 1 shows the municipalities with incidence data and the 10-

year mean incidence rate for both CL and VL.

Climatic and Environmental Data
Climatic data, including altitude, were extracted from World-

clim Global Climate Data [36]. These data consist of 19

bioclimatic variables. Environmental data were obtained from

MODIS [37]. Land surface temperature (LST) data were used as

proxies of day and night temperature. The normalized difference

vegetation index (NDVI) and enhanced vegetation index (EVI)

were considered as proxies for moisture and vegetation. Details of

the data sources are summarized in Table 1. Municipality level

estimates were obtained in ArcMap [38] by aggregating the high

resolution data.

Socioeconomic Data
The socioeconomic indicators used in our study are summarized

in Table 2. They include: (i) rural population and human

development index (HDI) for the year 2000 provided by the

Instituto Brasileiro de Geografia e Estatı́stica (IBGE); (ii) unsatisfied basic

needs (UBN) for 2000 provided by the Pan American Health

Organization (PAHO/WHO); and (iii) infant mortality rate (IMR)

for 2000 and human influence index (HII) for 2005 obtained by

the Center for International Earth Science Information Network

(CIESIN) [39,40]. Population data for 2010 at municipality level

were available from IBGE, while population density at a spatial

resolution of 5|5 km was obtained from CIESIN [41].

Statistical Analysis
The incidence data were modeled via negative binomial

regression. Exploratory analysis was carried out in R [42] to

assess linearity of the covariates. For continuous covariates, we

constructed three new categorical variables with 2, 3, and 4

categories, based on the quantiles of the variables’ distribution.

The Akaike’s information criterion (AIC) was used to select

between a categorical or a linear form of each variable. To

quantify the temporal trend, we included a binary variable,

Author Summary

Leishmaniasis is a neglected tropical disease that causes
approximately 20 to 40 thousand deaths every year. In
Brazil, more than 600,000 clinical cases of leishmaniasis
have been reported since 1990. Almost 90% of these cases
are due to cutaneous leishmaniasis, whereas the remaining
10% are due to visceral leishmaniasis. Understanding of
disease transmission, together with model-based inci-
dence maps, will assist in designing and optimizing
control efforts. We used reported leishmaniasis incidence
data in Brazil covering the period between 2001 and 2010
to explore the association of the disease with climatic,
environmental, and socioeconomic variables, and to
predict its spatial distribution using Bayesian geostatistical
models. We produced countrywide high spatial resolution
maps for both forms of leishmaniasis and estimated the
number of infected people, stratified by state. We believe
that our incidence maps are useful to prioritize the spatial
targeting of prevention and control.

Leishmaniasis Incidence Mapping in Brazil
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splitting the 10-year period in two phases, 2001–2005 and 2006–

2010.

Gibbs variable selection [43] was performed in WinBUGS [44]

with the inclusion of an independent random effect at municipality

level and a year specific auto-correlated term. All the covariates

were assigned a 0.5 prior probability to be included in the final

model. The total number of candidate covariates was 45.

The covariates giving rise to the model with the highest

posterior probability were subsequently used to fit a Bayesian

geostatistical negative binomial model with spatially structured

random effects at municipality level. The spatial correlation was

considered to be decreasing with distance between any pair of

locations. The temporal random effects were modeled by auto-

regressive terms of order 1. More specifically, we assumed that the

reported number of CL and VL cases, for location i and year t,
follow a negative binomial distribution with mean mit and

dispersion parameter k. Covariates and random effects were

modeled on the log scale of mit, that is log(mit)~log(Pi)z

Xit
T bzwizet, where Xit and b are the vectors of covariates and

coefficients, respectively, and Pi is the population of the i-th

municipality. The spatial random effects w~(w1,:::,wN )T take

into account the spatial dependence of the data by assuming they

follow a zero-mean multivariate normal distribution with Matérn

covariance function (see, for example, [45]). et is the auto-

correlated error term with et*N(ret{1,t2
2) for tw1, and

e1*N(0,t1
2) with t1

2~t2
2=(1{r2), and r is the auto-correla-

tion.

The large number of municipalities included in our modeling

approach challenges geostatistical model fit, and thus resulting in

extremely slow Markov chain Monte Carlo (MCMC) runs. To

overcome computational burden, we estimated model parameters

via INLA, using the homonymous R-package (available at www.

r-inla.org). Details on model fit and the related R-code are

provided in the supporting information texts S1 and S2,

respectively.

Model validation was performed by fitting the model to a

randomly selected subset of 80% of the locations and predicting

the mean of the remaining 20% (test data). Bayesian credible

intervals (BCI) of 95% probability are calculated and the

percentage of observations included in these intervals is reported

(coverage), as well as the square root of the mean square error

(RMSE) of the test data.

A number of municipalities had not reported any cases of

leishmaniasis for some years. As it was unclear whether these

missing values in our dataset corresponded to true zeros or a lack

of reporting cases, a separate analysis was carried out with missing

values considered as zeros.

Results

Descriptive Results
Figure 2 shows the annual incidence rates of CL and VL per

10,000 people in Brazil for the period 2001–2010. A decrease of

CL rates is observed after 2005, while VL rates remained stable.

The maximum annual number of cases at the unit of the

municipality was 1,820 for CL (Manaus) and 262 for VL

(Araguaı́na).

Model Estimates
Estimates, BCIs, and confidence intervals (CIs) of the multivar-

iate Bayesian geostatistical and non-spatial models for CL are

presented in Table 3. After 2005, the incidence of CL dropped by

approximately 20%, which is in line with the results shown in

Figure 2. Higher temperature diurnal range, temperature of

wettest quarter, annual precipitation, precipitation seasonality,

precipitation of warmest quarter, and EVI are positively associated

with CL. On the other hand, higher LST is negatively associated

with CL incidence. The following socioeconomic variables were

associated with low incidence rates of CL: percentage of people

with potable water at home, percentage of people with sanitation,

Figure 1. Raw incidence rates. Raw incidence rates (per 10,000) averaged over a 10-year period (2001–2010) for cutaneous leishmaniasis (left) and
visceral leishmaniasis (right). Municipalities colored in blue, were excluded from analysis due to missing data.
doi:10.1371/journal.pntd.0002213.g001

Leishmaniasis Incidence Mapping in Brazil
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percentage of people that own their house, and HII. A higher

incidence rate was observed for men, as revealed by the negative

relation between the CL incidence and the percentage of women

living in an area.

Parameter estimates of VL are summarized in Table 4. The

most suitable climatic and environmental factors for VL are: low

altitude, low annual precipitation, increased temperature diurnal

range, and none extreme precipitation during the warmest

quarter. With regard to socioeconomic variables, similar as in

CL, effects of the two socioeconomic variables (i.e., percentage of

people with sanitation at home and percentage of people that own

their house) were associated with lower incidence of VL. Mean

temperature diurnal range was the only climatic variable

associated with a lower rate of VL incidence.

For both diseases the spatial variance was higher than the

temporal one. Estimates of the range parameter indicate that

spatial correlation becomes negligible for distances above 88.3 and

109.1 km for CL and VL, respectively.

Model Validation
The model of CL had a RMSE of 14.2 when predicted over

the 20% randomly selected locations. One third of the cases

(34%) were included in 95% BCIs of the posterior predictive

distribution. The respective estimates for VL were 4.11 and

23%.

Incidence Maps
Model-based predictions were obtained over a grid of

136,841 pixels at 8|8 km spatial resolution. The rates (per

10,000 people) of the predictions for CL and VL in 2010 are

depicted in Figures 3 and 4, respectively. The decreasing trend of

CL cases is apparent by comparing the maps for the year of 2010

(Figure 3) with that of 2001 (Figure 5). For instance, in 2010 lower

rates were observed in west and north-west Brazil in the states of

Amazonas and Roraima. Incidence maps under the assumption

that missing cases were zeros are provided in supporting

information text S3.

Country and State Estimates
The incidence rate map was overlaid with the population map

of Brazil to estimate the number of cases per pixel. By aggregating

the number of pixels per state, we estimated the number of

infected people for both diseases (Table 5). The total number of

cases predicted for 2010 was 30,189 (standard deviation (SD):

7,676) for CL and 4,889 (SD: 288) for VL. The highest prediction

Table 1. Climatic and environmental predictors used for geostatistical modeling of leishmaniasis in Brazil.

Source Data type Data period Temporal resolution Spatial resolution

Shuttle Radar Topography
Mission (SRTM) data

Digital elevation model (DEM) 2000 Once 1 km

Moderate Resolution Imaging
Spectroradiometer (MODIS)/Terra

Land surface temperature
(LST) for day and night

2005–2009 8 days 1 km

Normalized difference
vegetation index (NDVI)

2005–2009 16 days 1 km

Enhanced vegetation index (EVI) 2005–2009 16 days 1 km

Worldclim global climate Annual mean temperature 1950–2000 Once 1 km

Mean temperature diurnal range 1950–2000 Once 1 km

Isothermality 1950–2000 Once 1 km

Temperature seasonality 1950–2000 Once 1 km

Maximum temperature of
warmest month

1950–2000 Once 1 km

Maximum temperature of
coldest month

1950–2000 Once 1 km

Temperature annual range 1950–2000 Once 1 km

Mean temperature of
wettest quarter

1950–2000 Once 1 km

Mean temperature of
driest quarter

1950–2000 Once 1 km

Mean temperature of
warmest quarter

1950–2000 Once 1 km

Mean temperature of coldest quarter 1950–2000 Once 1 km

Annual precipitation 1950–2000 Once 1 km

Precipitation of wettest month 1950–2000 Once 1 km

Precipitation of driest month 1950–2000 Once 1 km

Precipitation seasonality 1950–2000 Once 1 km

Precipitation of wettest quarter 1950–2000 Once 1 km

Precipitation of driest quarter 1950–2000 Once 1 km

Precipitation of warmest quarter 1950–2000 Once 1 km

Precipitation of coldest quarter 1950–2000 Once 1 km

doi:10.1371/journal.pntd.0002213.t001

Leishmaniasis Incidence Mapping in Brazil
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Table 2. Socioeconomic predictors used for geostatistical modeling of leishmaniasis in Brazil for 2001–2010.

Source Data type Data period Resolution

Instituto Brasileiro de Geografia
e Estatı́stica (IBGE) (census data)

Population data 2010 Municipality

Human development index (HDI) 2000 Municipality

Rural population 2000 Municipality

Pan American Health Organization
(unsatisfied basic needs) (census data)

Bras0_3 (% of pupils enrolled in
primary school)

2000 Municipality

Bras0_4 (% of pupils completing
primary school)

2000 Municipality

Bras0_5 (rate literacy 15 to 24 years) 2000 Municipality

Bras0_6 (girls and boys primary school) 2000 Municipality

Bras0_7 (girls and boys high school) 2000 Municipality

Bras0_8 (girls and boys
undergraduate school)

2000 Municipality

Bras0_9 (relation literacy women
and men 15 to 24 years)

2000 Municipality

Bras0_10 (% women with non-farming occupation) 2000 Municipality

Bras0_11 (% people with potable water
at home)

2000 Municipality

Bras0_12 (% people with sanitation at home) 2000 Municipality

Bras0_13 (% people with energy at home) 2000 Municipality

Bras0_14 (% people that own their house) 2000 Municipality

Bras0_15 (index secure tenure house) 2000 Municipality

Bras0_16 (unemployment rate) 2000 Municipality

Bras0_17 (% of houses with phone) 2000 Municipality

Bras0_18 (% of house with computer) 2000 Municipality

Bras2_11 (% of people overcrowding) 2000 Municipality

Bras2_15 (% of people subsistence) 2000 Municipality

Infant mortality rate (IMR) 2000 Municipality

Center for International Earth Science
Information Network (CIESIN)

Human influence index (HII) 2005 1 km

doi:10.1371/journal.pntd.0002213.t002

Figure 2. Temporal trend of observed countrywide incidence rates per 10,000.
doi:10.1371/journal.pntd.0002213.g002
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Table 3. Parameter estimates for cutaneous leishmaniasis (CL) in Brazil for 2001–2010.

Bayesian geostatistical Non-spatial

Variable IRR (95% BCI) IRR (95% CI)

Mean temperature diurnal range (6C)

,9.36 1.00 1.00

9.36–10.90 1.46 (1.19, 1.78) 1.00 (0.94, 1.06)

10.90–11.86 1.79 (1.42, 2.27) 1.15 (1.08, 1.22)

.11.86 2.08 (1.56, 2.75) 1.62 (1.50, 1.75)

Mean temperature of wettest quarter (6C) 1.30 (1.18, 1.44) 1.19 (1.16, 1.22)

Annual precipitation (mm) 1.70 (1.54, 1.88) 1.24 (1.21, 1.27)

Precipitation seasonality 1.71 (1.50, 1.95) 1.13 (1.10, 1.16)

Precipitation of warmest quarter (mm)

,207 1.00 1.00

207–369 1.20 (0.99, 1.44) 1.18 (1.12, 1.25)

369–530 1.29 (1.54, 1.88) 1.67 (1.55, 1.81)

.530 0.88 (0.66, 1.15) 0.74 (0.68, 0.81)

EVI

,35.78 1.00 1.00

35.78–39.06 1.31 (1.18, 1.46) 1.70 (1.61, 1.79)

39.06–42.73 1.65 (1.45, 1.89) 1.82 (1.71, 1.93)

.42.73 2.14 (1.46, 2.54) 2.39 (2.22, 2.57)

Day LST (6C) 0.74 (0.66, 0.83) 0.81 (0.78, 0.83)

% People with potable water at home

,40.57 1.00 1.00

40.57–71.72 1.00 (0.90, 1.12) 1.18 (1.12, 1.25)

71.72–95.69 0.78 (0.67, 0.92) 0.56 (0.52, 0.60)

.95.69 0.68 (0.56, 0.84) 0.39 (0.36, 0.43)

% People with sanitation at home 0.81 (0.76, 0.86) 0.82 (0.79, 0.84)

% People that own their house 0.92 (0.88, 0.96) 0.90 (0.88, 0.92)

% of women 0.82 (0.77, 0.86) 0.74 (0.72, 0.76)

HII

,17.02 1.00 1.00

17.02–20.30 0.86 (0.76, 0.98) 0.79 (0.75, 0.84)

20.30–23.48 0.73 (0.63, 0.85) 0.54 (0.50, 0.57)

.23.48 0.70 (0.59, 0.83) 0.45 (0.42, 0.48)

Period

2001–2005 1.00 1.00

2005–2010 0.80 (0.67, 0.95) 0.83 (0.80, 0.86)

Mean (95% BCI)

s2 (spatial variance) 1.45 (1.35, 1.56)

Range (km) 88.3 (82.2, 94.9)

t2
2 (temporal variance) 0.02 (0.01, 0.03)

r (temporal correlation) 0.74 (0.30, 0.95)

k (dispersion) 2.23 (2.15, 2.32)

Parameter estimates for CL based on a Bayesian geostatistical and a multiple non-spatial negative binomial regression model. Coefficients are presented in terms of
incidence rate ratios (IRR). BCI, Bayesian credible interval; CI, confidence interval.
doi:10.1371/journal.pntd.0002213.t003

Leishmaniasis Incidence Mapping in Brazil
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Table 4. Parameter estimates for visceral leishmaniasis (VL) in Brazil for 2001–2010.

Variable
Bayesian geostatistical
IRR (95% BCI)

Non-spatial
IRR (95% CI)

Altitude (m)

,163 1.00 1.00

163–341 0.93 (0.75, 1.16) 0.76 (0.70, 0.84)

341–560 0.96 (0.74, 1.25) 0.70 (0.63, 0.78)

.560 0.81 (0.61, 1.09) 0.53 (0.48, 0.60)

Mean temperature diurnal range (6C)

,9.00 1.00 1.00

9.00–10.38 1.17 (0.92, 1.48) 1.58 (1.45, 1.73)

10.38–11.80 1.81 (1.33, 2.47) 3.05 (2.79, 3.34)

.11.80 2.47 (1.74, 3.48) 4.70 (4.26, 5.20)

Annual precipitation (mm)

,832 1.00 1.00

832–1212 0.89 (0.73, 1.10) 0.81 (0.74, 0.88)

1212–1512 0.64 (0.48, 0.85) 0.63 (0.57, 0.69)

.1512 0.59 (0.42, 0.82) 0.59 (0.52, 0.65)

Precipitation of warmest quarter (mm)

,130 1.00 1.00

130–205 1.10 (0.89, 1.37) 1.25 (1.15, 1.36)

205–359 0.88 (0.67, 1.15) 1.11 (1.02, 1.21)

.359 0.54 (0.39, 0.76) 0.68 (0.60, 0.76)

Precipitation of coldest quarter (mm) 1.12 (0.97, 1.29) 1.26 (1.20, 1.31)

% People with sanitation at house

,2 1.00 1.00

2225 0.91 (0.82, 1.02) 0.89 (0.83, 0.96)

.25 0.62 (0.54, 0.73) 0.60 (0.55, 0.66)

% People that own their house

,81.51 1.00 1.00

81.51–87.23 0.88 (0.77, 1.00) 1.04 (0.96, 1.13)

87.23–90.76 0.88 (0.77, 1.01) 0.99 (0.91, 1.07)

.90.76 0.71 (0.61, 0.83) 0.86 (0.79, 0.94)

Period

2001–2005 1.00 1.00

2006–2010 1.16 (0.94, 1.35) 1.24 (1.18, 1.31)

Mean (95% BCI)

s2 (spatial variance) 1.09 (0.97, 1.23)

Range (km) 109.1 (96.3, 124.6)

t2
2 (temporal variance) 0.01 (0.00, 0.03)

r (temporal correlation) 0.35 (20.25, 0.86)

k (dispersion) 1.74 (1.62, 1.88)

Parameter estimates for VL based on a Bayesian geostatistical and a multiple non-spatial negative binomial regression model. Coefficients are presented in terms of
incidence rate ratios (IRR). BCI, Bayesian credible interval; CI, confidence interval.
doi:10.1371/journal.pntd.0002213.t004

Leishmaniasis Incidence Mapping in Brazil
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for CL occurred in the state of Pará (4,332), while for VL in Minas

Gerais (693). The corresponding country and state estimates under

the assumption that missing cases were zeros are reported in

supporting information text S3.

Discussion

We provide countrywide, model-based incidence maps for

both cutaneous and visceral leishmaniasis in Brazil, at a high

spatial resolution (8|8 km). Furthermore, we explored the

underlying spatial processes, identified risk factors, and dis-

played high incidence areas. Taken together, our investigations

provide a deeper understanding of the determinants of the two

diseases. We employed Bayesian geostatistical models fitted on

readily available incidence data from the MoH in Brazil, and

used Bayesian variable selection to identify environmental and

socioeconomic predictors. Although analyses for mapping

leishmaniasis incidence data at state level were previously

conducted, they rarely used rigorous statistical modeling

approaches to take into account spatio-temporal correlations.

However, ignoring correlation, risk factor analyses and predic-

tions may be incorrect.

Our results indicate that humid warm climates with high

vegetation indexes are associated with high incidence of CL. In

contrast, high temperatures are associated with lower incidence

of CL. A study in sub-Andean zone in Colombia [26] also

reported a negative association between incidence of CL and

temperatures exceeding a minimum cut-off of 20.6uC. The

association between vegetation and CL incidence found in our

study, corroborates previous observations [26] and may point

to the role of deforestation driving CL outbreaks due to vector

proliferations [46]. Our analysis suggests a higher incidence

Figure 3. Geostatistical model-based predicted incidence rates per 10,000 for cutaneous leishmaniasis in Brazil in 2010.
doi:10.1371/journal.pntd.0002213.g003
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rate for males, which has also been reported by the MoH in

Brazil [34]. These observations might be explained by gender-

specific occupational exposure within endemic areas [47]. The

climatic conditions suitable for VL transmission are different to

those of CL. A spatial analysis, done for the Islamic Republic of

Iran, including environmental covariates, revealed that precip-

itation was positively associated with CL incidence [48]. On the

other hand, the incidence of VL was not associated with the

presence of vegetation and the role of annual precipitation is

negative, which might reflect extreme conditions. An inverse

relation of VL incidence and the mean of 3-year precipitation

has been reported in a previous study in north-east Brazil [49].

VL shows higher incidence rates in lowlands as revealed by the

negative altitude effect, which is in accordance with previous

observations [50].

There was an association between socioeconomic factors with

the diseases’ incidence, confirming earlier reports that the

population with the lowest socioeconomic status is affected the

most [2]. Indeed, the higher the proportion of people with access

to clean water and improved sanitation, the lower the infection

rate. In fact, control programs which focus on improving

sanitation were associated with lower incidence rates. The intimate

connection between poor living conditions and leishmaniasis has

been discussed before [32].

Our analysis underscores the importance of rigorous geostatis-

tical modeling in identifying factors related to transmission. Results

from non-spatial analogue models may identify different predictors

or even estimate a different direction of the effects. The strong

spatial correlations estimated by our models may suggest that we

missed out important spatially structured predictors. For instance,

Figure 4. Geostatistical model-based predicted incidence rates per 10,000 for visceral leishmaniasis in Brazil in 2010.
doi:10.1371/journal.pntd.0002213.g004
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vector and reservoir presence would drive such models. In

addition, the analysis was based on incidence data aggregated

over municipalities. Since the observed data are already available

at municipality level, it is unlikely that predictions at the same level

would be more informative. The strength of the predictive models

is their ability to generate estimates in areas where no data are

available. Data at higher spatial resolution may be able to obtain

more precise estimates.

Incidence data were missing for some municipalities and some

years in the 10-year observation period. These missing values

could indicate true zero cases; however ‘‘zeros’’ have been

recorded in the dataset in addition to the missing data. In our

analysis we treated non-reported cases as missing. This may

partially explain the overestimation of the total number of cases.

To address this issue, we carried out a separate analysis, assuming

that non-reported cases are zeros. The point estimates of predicted

cases per state and the smooth maps are given in the supporting

information text S3. This analysis provided estimates of the total

numbers of cases in the country which were closer to the reported

ones in ISND. Maia-Elkhoury et al. (2007) [51] estimated 42%

and 45% (depending on source comparison) of under-reporting for

VL in ISND using a capture-recapture method. Alvar et al. (2012)

[5] pointed that these percentages correspond to 1.3–1.7-fold

degrees of under-reporting. Our total VL predicted cases fall

within this interval. We are not aware of similar estimation of CL

under-reporting for ISND. By assuming a similar amount of

under-reporting for CL (due to the same source), the total number

of predicted cases of our analysis lies within the above interval.

Overestimation of the predicted cases may also arise because the

incidence is very low and models cannot predict exact zeros. An

estimate slightly higher than zero at pixel level will overestimate

the total number of cases. The more pixels aggregated, the larger

Figure 5. Geostatistical model-based predicted incidence rates per 10,000 for cutaneous leishmaniasis in Brazil in 2001.
doi:10.1371/journal.pntd.0002213.g005

Leishmaniasis Incidence Mapping in Brazil

PLOS Neglected Tropical Diseases | www.plosntds.org 10 May 2013 | Volume 7 | Issue 5 | e2213



the overestimation. Hence, the model will overestimate, for

example, treatment needs. Rounding to zero pixel-level cases

predicted less than 0.1, the total number of model-based estimates

of VL cases at country level drops to 3,320 from 4,889 and for CL

to 28,164 from 30,189. However, this cut-off is arbitrary. For

decision making, thresholds of predicted cases could be applied.

These could be defined by some optimality criteria, which balance

cost of not providing timely treatment on one hand and cost of

administering drugs which were not required on the other hand.

Our study has several limitations that are offered for consid-

eration. Brazil is the fifth largest country of the world and can be

divided into different ecological zones. We assumed a single

relation between risk factors and the incidence of leishmaniasis,

which might not be able to capture properly the geographical

distribution. Non-stationary models allowing for different spatial

dependencies and covariate distribution in a specific area [52,53]

may improve predictive ability. We did not include a space-time

interaction, but instead assumed a constant spatial process over

time. To perform such an analysis, data are needed for specific

time periods and for each municipality. In our study, this would

require either dropping a large number of municipalities from the

study or incorporating the estimation of their values in the

modeling process. The latter might result in identifiability

problems of the parameters, and hence, we only considered

additive effects. We assumed constant effects of the predictors over

time and therefore could not explain the temporal trends of CL

from the trends of the predictors considered in the study. The

coverages of the test data for both diseases might seem low, but do

not account for the zero cases. The 2.5% quantile cannot be zero,

and thus all the zero incidence cases will be missed. To illustrate

this, we rounded the lower quantile (which of course increases the

credibility level) and recalculated the coverages resulting in 66%

for CL and 71% for VL. In addition, 50% and 38% municipalities

had 0 reported cases for CL and VL, respectively. Giardina et al.

(2012) [54] showed that zero-inflated (ZI) models gave better

predictions than standard geostatistical models for predicting

malaria risk using sparse malaria survey data. ZI models with an

invariable probability of ZI were also fitted, but according to the

deviance information criterion (DIC) they showed similar fits to

the data and the probability of ZI was very low (of the magnitude

1026). Cross-validatory measures (i.e., coverage and RMSE) did

not improve when ZI models were fitted. Non-linearity was

addressed by categorizing the predictors. Alternative approaches

(i.e., polynomial terms or splines) may provide more flexible ways

to model the relation between disease and predictors, and

potentially give more accurate estimates. We have chosen

categorical covariates because they offer easier epidemiological

interpretation.

In conclusion, we present the first high-resolution model-based

estimates of CL and VL in Brazil. We used INLA, a novel

inferential approach in the field of neglected tropical diseases. Our

incidence maps, together with the predicted number of CL and

VL cases, constitute useful tools for decision making and

prioritization of disease control intervention. Recent developments

in Bayesian geostatistical computation (e.g., INLA) already enable

analyses of surveillance data in almost ‘‘real’’ time. Updates of

these maps could be automatized, and hence performed shortly

after data collection and reporting. We anticipate that in near

future surveillance programs will integrate these methods in their

systems. The possibility to aggregate over any desired level, such as

the catchment area of health facilities, would further help planning

drug delivery and other control measures. In particular, these

maps could identify communities where enhanced prevention

measures are warranted. Environmental predictors are important

for identifying high incidence areas, while improving socioeco-

nomic status might constitute the single most important factor to

enhance control programs. The current methodology should be

further developed to address the aforementioned limitations and

provide more accurate spatial and temporal predictions of

leishmaniasis incidence.
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Table 5. Country and state predicted cases of cutaneous
leishmaniasis (CL) and visceral leishmaniasis (VL) in Brazil in
2010.

State CL cases (SD) VL cases (SD)

Acre 1,511.0 (647.3) 7.8 (3.0)

Alagoas 151.7 (30.4) 115.4 (20.4)

Amapá 466.5 (52.1) 8.3 (4.9)

Amazonas 1,829.1 (858.0) 26.6 (6.2)

Bahia 3,402.3 (905.0) 467.1 (50.7)

Ceará 1,637.2 (345.0) 599.4 (100.6)

Distrito Federal 67.3 (32.4) 14.1 (5.6)

Espı́rito Santo 248.6 (75.7) 31.6 (8.0)

Goiás 634.6 (169.0) 89.0 (11.5)

Maranhão 3,417.3 (855.3) 500.0 (59.8)

Mato Grosso 3,383.2 (1461.1) 68.3 (9.9)

Mato Grosso do Sul 258.0 (488.8) 204.1 (65.0)

Minas Gerais 1,947.6 (110.4) 692.7 (67.7)

Pará 4,331.6 (1129.0) 406.6 (52.1)

Paraı́ba 190.1 (195.7) 79.1 (10.7)

Paraná 1,082.6 (412.6) 82.3 (17.7)

Pernambuco 895.0 (40.2) 184.2 (25.4)

Piauı́ 199.4 (55.7) 276.0 (40.0)

Rio de Janeiro 281.7 (748.3) 48.0 (16.5)

Rio Grande do Norte 77.3 (17.5) 108.0 (15.2)

Rio Grande do Sul 182.4 (58.8) 109.0 (24.1)

Rondônia 1,896.8 (724.2) 32.1 (9.6)

Roraima 173.8 (171.5) 7.9 (2.6)

Santa Catarina 194.3 (78.8) 61.0 (18.7)

São Paulo 1,006.8 (90.6) 343.4 (28.3)

Sergipe 70.2 (15.7) 68.1 (11.4)

Tocantins 652.9 (229.7) 258.5 (40.1)

Total 30,189.1 (7,675.8) 4,888.7 (288.3)

SD, standard deviation.
doi:10.1371/journal.pntd.0002213.t005
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Geostatistical model-based estimates of schistosomiasis prevalence among

individuals aged #20 years in West Africa. PLoS Negl Trop Dis 5: e1194.

19. Jona Lasinio G, Mastrantonio G, Pollice A (2012) Discussing the ‘‘big n

problem’’. Stat Methods Appl 22: 97–112.

20. Banerjee S, Gelfand AE, Finley A, Sang H (2008) Gaussian predictive process

models for large spatial data sets. J R Stat Soc Ser B Stat Methodol 70: 825–848.

21. Lindgren F, Rue H, Lindström J (2011) An explicit link between Gaussian fields

and Gaussian Markov random fields: the stochastic partial differential equation

approach. J R Stat Soc Ser B Stat Methodol 73: 423–498.

22. Rue H, Held L (2005) Gaussian Markov Random Fields: Theory and

Applications. Boca Raton: Chapman and Hall/CRC. 281 p.

23. Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent

Gaussian models by using integrated nested Laplace approximations. J R Stat

Soc Ser B Stat Methodol 71: 319–392.

24. Chaves LF, Pascual M (2006) Climate cycles and forecasts of cutaneous

leishmaniasis, a nonstationary vector-borne disease. PLoS Med 3: e295.

25. Chaves LF, Cohen JM, Pascual M, Wilson ML (2008) Social exclusion modifies

climate and deforestation impacts on a vector-borne disease. PLoS Negl Trop

Dis 2: e176.

26. Valderrama-Ardila C, Alexander N, Ferro C, Cadena H, Marı́n D, et al. (2010)

Environmental risk factors for the incidence of American cutaneous leishman-

iasis in a sub-Andean Zone of Colombia (Chaparral, Tolima). Am J Trop Med

Hyg 82: 243–250.

27. King RJ, Campbell-Lendrum DH, Davies CR (2004) Predicting geographic

variation in cutaneous leishmaniasis, Colombia. Emerg Infect Dis 10: 598–

607.

28. Salomón OD, Quintana MG, Mastrángelo AV, Fernández MS (2012)
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