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Abstract
Extracellular vesicles (EVs) are nanometric particles that enclose cell-derived 
bioactive molecules in a lipid bilayer and serve as intercellular communication 
tools. Accordingly, in various biological contexts, EVs are reported to engage in 
immune modulation, senescence, and cell proliferation and differentiation. 
Therefore, EVs could be key elements for potential off-the-shelf cell-free therapy. 
Little has been studied regarding EVs derived from human pluripotent stem cells 
(hPSC-EVs), even though hPSCs offer good opportunities for induction of tissue 
regeneration and unlimited proliferative ability. In this review article, we provide 
an overview of studies using hPSC-EVs, focusing on identifying the conditions in 
which the cells are cultivated for the isolation of EVs, how they are characterized, 
and applications already demonstrated. The topics reported in this article 
highlight the incipient status of the studies in the field and the significance of 
hPSC-EVs’ prospective applications as PSC-derived cell-free therapy products.

Key Words: Pluripotent stem cells; Extracellular vesicles; Exosome; Cell-free therapy

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The research on extracellular vesicles (EVs) derived from different cell types, 
such as adult stem cells, has shown potential in the treatment of various pathologies. 
However, little has been explored regarding EVs derived from human pluripotent stem 
cells (hPSC-EVs). In this review, we provide an overview of studies carried out on these 
EVs, highlighting methodologies used for the culture of hPSCs for isolating EVs, their 
characteristics, and potential applications. We note the potential of hPSC-EVs as future 
acellular therapies. However, studies are in the infancy, and more research is needed to 
confirm their benefits.
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INTRODUCTION
Extracellular vesicles (EVs) are nanometric particles that are enclosed by a lipid bilayer and released by 
all cell types. They lack a functional nucleus and are therefore unable to replicate[1]. EVs are composed 
of bioactive factors such as lipids, proteins, and nucleic acids, including mRNAs and non-coding RNAs
[2]. EV is an umbrella term that encompasses a heterogeneous population of membrane vesicles 
generated through a variety of mechanisms. The two major EV subpopulations include microvesicles 
(MVs) and exosomes (EXOs). EXOs are intraluminal vesicles of endosomal origin released when 
multivesicular bodies fuse with the plasma membrane, whereas MVs or ectosomes are generated from 
the outer budding of the plasma membrane[3]. Due to their distinct biogenesis, MVs are generally larger 
(up to 1000 nm in diameter) than EXOs (less than 200 nm). However, these vesicle populations overlap 
not only in terms of size but also in composition[4]. Recently, other nomenclatures were described in the 
“Minimal information for studies of extracellular vesicles 2018” guidelines (MISEV2018) based on the 
physical characteristics of EVs, for example, size (< 200 nm, small EVs; > 200 nm, medium or large EVs) 
or density (low, middle, or high)[1].

Potential uses of EVs, such as for the diagnosis and treatment of pathologies or as potential drug 
carriers, have been investigated. In the field of regenerative medicine, the secretomes of adult stem cells, 
primarily mesenchymal stem/stromal cells (MSCs), including their EVs, are of great interest as they 
have been shown to act mainly in a paracrine manner rather than their potential for differentiation[5]. 
An interesting list of advantages and disadvantages of the use of EVs instead of stem cells has been 
presented by Öztürk et al[6]. Among the advantages of using EVs cited by them and others are low 
immunogenicity and toxicity; minimal risk of malign transformation; minimal risk of getting trapped in 
the lung or causing vasculature obstruction; avoidance of contamination with undesired cell types; 
avoidance of uncontrolled cell division; the ability to manipulate EVs in order to obtain potential 
improvements; optimization of MSC culture to obtain a higher amount of EVs; and their ability to cross 
the blood-brain barrier, among others[4,6]. In addition, EVs mimic the beneficial effects of MSCs in cell 
therapies in a wide range of animal models for different diseases[7-9].

MSC-derived EV (MSC-EV) has been extensively studied and has demonstrated several promising 
effects, as reviewed by Gowen et al[10], Tieu et al[11], Fuloria et al[12], Kou et al[13], and Yudintceva et al
[14]. However, despite the high potential of MSC-EVs, several factors limit their use. Recently some 
reviews highlighted the difficulty of establishing criteria to define the specific characteristics of MSC-EV 
and discussed the great variation in the MSC-EV preparations[15,16]. Disadvantages of MSCs as a 
source for EVs include the variability between cells derived from different tissues, the variability 
between different donors, their limited ability to proliferate, the fact that they enter senescence, and 
genomic instability after a few passages[17]. This raises the question of whether pluripotent stem cell 
(PSC) derived EVs have a similar to or better therapeutic potential than adult stem cell-derived EVs.

In this context, our objective is to show, using a non-systematic search, studies that use or charac-
terize EVs derived from human PSC (hPSC-EVs) to understand the advances in the area. We also aim to 
identify the conditions in which the cells are cultivated for the isolation of EVs, how these are charac-
terized, and any demonstrated applications (in vivo or in vitro).

HPSC-EVS
Overview of hPSCs
hPSCs are characterized by unlimited proliferation and the potential to generate specialized cell lineages
[18]. Human embryonic stem cells (hESC) were first isolated from human blastocysts in 1998 by 
Thomson et al[19], and to date, hundreds of hESC lineages have been established worldwide. hESC-
based therapeutic technologies have applications in many diseases and conditions, such as spinal cord 
injuries, age-related tissue degeneration, and diabetes[20]. However, ethical issues related to using cells 
from embryos have hindered the application of hESCs in research and treatment, leading to the 
development of the induced PSC (iPSC) technology by Takahashi and Yamanaka[21] and Takahashi et al
[22]. Since the generation of the first iPSC, many research groups have developed human iPSC (hiPSC) 
lineages reprogrammed from different adult cells, and obtained lineages very similar to hESC in terms 
of morphology and differentiation potential[23]. For more information about hPSCs, see Karagiannis et 
al[24], Liu et al[25], and Yamanaka[26].
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Especially after the discovery of hiPSCs, pluripotent cells represented a promising alternative for 
regenerative medicine, transplants, disease modeling, and many other research applications[27-29]. The 
possibility of generating pluripotent cells from patients and, from them, differentiated cells for tissue 
repair may mitigate common transplant issues, such as immunologic rejection. Nevertheless, the 
immunogenicity of pluripotent cells remains controversial[30], and the potential for tumorigenesis 
hinders the wide application of these cells in clinics. The risks of contaminating the differentiated cell 
populations with remaining pluripotent or proliferative cells, as well as the transmission of active 
pluripotency transcription factors or the acquisition of mutations by the pluripotent cells during in vitro 
culture[26,31], limit the acceptance of hPSC-based therapies. Therefore, cell-free therapeutic approaches, 
including EVs, offer promising possibilities for applying hPSC-derived products[32].

It seems that the role of the secretomes of these cells has only recently begun to be investigated, 
possibly due to the difficulties still encountered in using hPSCs in the clinic. Some interesting studies 
show that EVs from ESCs could help with embryo implantation[33] and maintaining ESC stemness[34], 
while others have investigated the biogenesis of ESC-EVs[35,36], although they used murine PSCs. We 
will focus this review on studies with hPSCs due to their potential clinical applications.

HPSC-EVs: Isolation and characterization methodologies
The first investigation on the isolation of EVs from hPSC dates from 2015. In this initial approach, EVs 
were isolated from hiPSC cultured in Essential 8™ medium using differential centrifugation (DF)/
ultracentrifugation (UC). It was shown that the hiPSC-derived EVs (hiPSC-EV) contain a variety of 
microRNAs (miRNAs) (such as miR-382, miR-611, and others) related to pathways such as focal 
adhesion, Wnt, PI3K-Akt, and MAPK signaling, as well as proteins related to processes involved in 
signal transduction, receptor binding, and others. In addition, the EVs positively affected the 
metabolism, proliferation, apoptosis rate, and differentiation capacity of cardiac MSCs. Better results 
were obtained when cells were exposed for only 22 h to EVs[37]. This initial attempt demonstrated how 
hPSC-EVs could be beneficial and of interest for future acellular therapy applications.

Despite the potential of hPSC-EVs, we observed that the number of publications in this area is still 
low, and most of the existing publications date from the last five years (Figure 1A, Table 1). Some 
studies evaluate EVs that were isolated during the differentiation process or from cells that differen-
tiated from PSCs, such as hiPSC-derived keratinocytes[38]; hPSC-derived cardiac progenitors or 
cardiomyocytes[39-41]; hPSC-derived MSCs[42-44]; hiPSC-derived neurons[45-47]; and hESC-derived 
chondroprogenitor cells[48]. However, our review explores studies that isolated EVs from undifferen-
tiated hPSCs.

Using a non-systematic search, we found 36 studies that isolate hPSC-EVs mainly from the hiPSC 
lineages (Figure 1B). Table 1 summarizes these studies, highlighting the cell culture medium used to 
culture the PSC, time of conditioned medium collection, EV isolation method, and EV mean size. The 
most common culture media were commercial, with defined components (Figure 1D). The two most 
common media used were mTeSR™1 (StemCell Technologies) and Essential 8™ medium (Thermo 
Fisher) (Table 1). A study published by Luo et al[49] aimed to optimize culture conditions for isolation of 
hiPSC-EVs. Using DMEM with different concentrations of EV-depleted KnockOut™ Serum Repla-
cement (ED-KSR), they observed that cells remained viable at a 0.5% ED-KSR concentration and were 
able to isolate EVs from PSCs cultured in this condition efficiently. However, after 5 d of culture, there 
was a reduction in the expression of some pluripotency markers. Thus, although it may be cheaper than 
commercial media, it is necessary to consider the additional step of centrifugation of the KSR to remove 
particles, as well as the effects of the change in pluripotency-related parameters on the composition and 
potential of the EVs.

The biggest variations in EV isolation methods relate to the collection time of the conditioned 
medium: Many studies do not state the conditioning time. In most studies, however, the EVs were 
isolated after 24 h of cell culture or every 24 h for 3-5 consecutive days (Table 1), avoiding exceeding the 
80%-90% cell confluence in the cell cultures. This collection time is possibly related to the nature of 
PSCs, as the culture medium must be changed daily, and cells must not reach 100% confluence to 
guarantee their viability and pluripotency.

Other relevant aspects of EVs are their size, morphology, and estimated particle concentrations. Most 
studies presented the information listed in MISEV2018, including positive and negative protein markers 
in EVs, usually using the western blot technique (31/36 articles) and performing a single EV analysis 
mainly using transmission electron microscopy (31/36 articles) to verify EV morphology and 
nanoparticle tracking analysis (20/36 articles) to verify their mean size and concentration (Figure 1C). 
The greatest number of studies used small EVs/EXOs, with sizes up to 200 nm (small EVs) (Table 1).

The most common method for hPSC-EV isolation is DF (here defined as the initial centrifugations to 
remove cellular debris and apoptotic bodies) followed by UC (Table 1). Although this is the most 
common method used, it is unsuitable for isolating EVs from large-scale experiments and clinical trials. 
Using a large-scale 2D culture, Andrade et al[69] isolated hPSC-EVs using tangential flow filtration 
(TFF) with or without subsequent UC (TFF + UC). The isolated EVs presented a size of approximately 
100 nm, regardless of whether UC had been performed, with similar particle concentration, although 
TFF + UC resulted in a smaller number of proteins. The effect of different culture conditions (hypoxia - 
1% O2, physiological hypoxia - 5% O2, and normoxia) on the therapeutic potential of hPSC-EVs was also 



Matos BM et al. hPSC-EVs: From now to the future

WJSC https://www.wjgnet.com 456 May 26, 2023 Volume 15 Issue 5

Table 1 Human pluripotent stem cell-derived extracellular vesicles: Methods of isolation and vesicle size

Ref. Culture medium EV collection time EV isolation method EV mean size 
(nm)

Bobis-Wozowicz et 
al[37], 2015

Essential 8™ medium NI (cells in 70%-90% 
confluency)

DC + UC 146

Ju et al[50], 2017 PSCeasy medium (Cellapy) 24 h DC + UC 122, 132

Zhou et al[51], 2017 mTeSR™-1 medium NI (cells in 60%-90% 
confluency)

DC + 0.22 μm filter + UC 101

Ding et al[52], 2018 mTeSR™-1 medium 48 h DC + UC 103.1

Kaur et al[53], 2018 Essential 8™ Flex medium 48 h DC + UC or miR-CURY™ Exosome Isolation 
Kit (Exiqon A/S)

100-200

Kobayashi et al[54], 
2018

DMEM-F12 + NEAA, 200 mM L-
gln, KSR, 0.1 M BME

2-3 d before passage MagCapture Exosome Isolation Kit PS 
(Wako)

100

Oh et al[55], 2018 Essential 8 medium Daily, from day 2 to 
day 5

0.45 μm filter + ExoQuick-TC kit 85.8

Peng et al[56], 2018 mTeSR™-1 medium 24 h (cells in about 80% 
confluency)

MV: DC + 16500 g, 1 h; EXO: DC + 120000 g, 2 
h

MV = 200-600; 
EXO = 40-80

Saito et al[57], 2018 mTeSR™-1 medium NI DC + concentration in 100-KDa filter + 
MagCapture™ Exosome Isolation Kit PS

179

Chen et al[58], 2019 mTeSR™-1 medium NI DC + UC 50-150

Liu et al[59], 2019 Essential 8™ medium Daily, for 3-5 d DC + concentration in 100-kDa filter + SEC 150

Marzano et al[60], 
2019

mTeSR™-1 medium Daily, for 4 d 0.22 μm filter + concentration in 100-kDa filter 
+ Total Exosome Isolation Reagent (Thermo 
Fisher) or DC + UC

about 240

Povero et al[61], 
2019

NI 24-48 h DC + UC 300-400

Sun et al[62], 2019 mTeSR™-1 medium 48 h DC + concentration in 100-kDa filter + 
Exosome Isolation Kit (PureExo) + UC + 0.22 
μm filter

70-100 (cell-
dependent)

Zhu et al[63], 2019 mTeSR™-1 medium 48h (cells 80%-90% 
confluency)

DC + 0.22 μm filter + UC 70.2

Collino et al[64], 
2020

mTeSR™-1 medium 24 h DC + UC 119

Hu et al[65], 2021 ncEpic hPSC medium NI DC + 0.22 μm filter + UC 72.4 ± 21.3

Kurtzwald-Josefson 
et al[66], 2020

DMEM/F12 Ham 1:1 + 20% KSR, 
1% NEAA, 1% L-gln, 0.2% BME, 4 
ng/mL rhFGF basic

24 h (cells in about 80% 
confluency)

Total exosome isolation reagent (Thermo 
Fisher Scientific)

115 ± 7

Liu et al[67], 2020 mTeSR™-1 medium NI DC + UC 50-75

Wang et al[68], 2020 PGM1 medium NI DC + 0.22 μm filter + UC 30-120

Andrade et al[69], 
2021

mTeSR™-1 mediuma Daily, for 4-5 days TFF with or without subsequent UC 103-109

Ashok et al[39], 2021 StemMACS medium with 10 μM 
ROCK inhibitor and 0.2% Pluronic 
F68

Days 3, 4, and 5 prior to 
differentiation

DC + 0.22 μm filter + UC + SG 50

Hu et al[65], 2021 ncEpic hPSC medium NI DC + 0.22 μm filter + UC -100

Karnas et al[70], 
2021

Essential 8™ medium NI DC + UC 215.7

Ke et al[71], 2021 Exo-depleted FBS 48 h MV: DC + 16500 g, 60 min; Exo: DC + 120000 
g, 120 min

MV = 200-600; Exo 
= 40-80

Luo et al[49], 2021 DMEM/F12 + KSR (0.5%, 2.5%, 5%, 
or 20%)

Daily, for 5 d DC + 0.45 μm filter + concentration in 10-kDa 
filter + 0.22 μm filter + UC or ExoQuick-TC 
kit (SystemBioscience)

187.8, 168.2

Saito et al[46], 2021 StemFit AK-03N medium 
(Ajinomoto)

NI 15000 × g, 30 min + 0.22 μm filter + UC 70
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Wang et al[72], 2021 mTeSR™-1 medium NI DC + UC 120-140

Xia et al[73], 2021 Nuwacell hiPSC/hESCs medium 24 h DC + 0.22 μm filter + UC 50-150

Bi et al[74], 2022 ncTarget medium (Nuwacell. Ltd, 
China)

24 h (cells in about 80% 
confluency)

DC + UC + 0.22 μm filter + UC hESC = 133.1; 
hIPSC = 157.7

Gu et al[75], 2022 mTeSR™-1 medium NI 0.45 μm filter + concentration in 100-kDa filter 
+ GC + 0.22 μm filter + UC

143.5

Gupta et al[76], 2022 StemFlex™ medium 48 h DC + one-step sucrose cushion UC 123.6 ± 60

Hsueh et al[77], 2023 StemFlex™ medium 48 h DC + UC 136.8

Li et al[78], 2023 ncEpic hPSC medium NI DC + UC 74.70 ± 20.77

Li et al[79], 2022 mTeSR™-1 medium NI DC + 0.22 μm filter + UC 50.75-105.7

Pan et al[80], 2022 mTeSR™-1 medium 24 h (cells in about 80% 
confluency)

DC + UC 142.2 ± 64.1

DC: Differential centrifugation; EXO: Exosome; FBS: Fetal bovine serum; MV: Microvesicle; NI: Not informed; SEC: Size exclusion chromatography; SG: 
Sucrose gradient; TFF: Tangential flow filtration; UC: Ultracentrifugation; hPSC: Human pluripotent stem cell; hESC: Human embryonic stem cells; hIPSC: 
Human induced pluripotent stem cell; KSR: KnockOut™ Serum Replacement.

Figure 1 Overview of studies on human pluripotent stem cell-derived extracellular vesicles published between 2012 and 2022. A: Timeline 
of published articles on human pluripotent stem cell-derived extracellular vesicles (hPSC-EVs). 1Two articles were published online in 2022 but published in print in 
2023; B: Analysis of the percentage of articles that use human embryonic stem cells, human induced pluripotent stem cell, or both cell types to isolate EVs; C: 
Methods used in the studies to characterize hPSC-EVs. The graphic depicts the number of articles using certain techniques/total number of articles included in the 
analysis; D: Analysis of media used to culture hPSC to isolate the EVs. AFM: Atomic force microscopy; DLS: Dynamic light scattering; FC: Flow cytometry; NTA: 
Nanoparticle tracking analysis; qPCR: Quantitative polymerase chain reaction; SRM: Super-resolution microscopy; TEM: Transmission electron microscopy; TRPS: 
Tunable resistive pulse sensing; WB: Western blot; hESC: Human embryonic stem cells; hIPSC: Human induced pluripotent stem cell.
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investigated. The results showed that EVs derived from hPSC cultured in 1% O2 (hypoxia) had greater 
angiogenic potential than those derived under other conditions and that better results were achieved 
when obtaining EVs using TFF[69].

Another highly discussed topic about PSCs is the possible formation of teratomas, as well as the 
biodistribution of these cells when applied in in vivo models. These concerns also extend to PSC-EVs. To 
clarify these points, Gu et al[75] evaluated the safety and biodistribution of hiPSC-EVs. They used 
several approaches to show that PSC-EVs are safe, have no adverse effects on cells (e.g., do not cause 
hemolysis), are not genotoxic, and can be administered by different routes (nasal, intramuscular, or 
intravenous) without generating adverse effects (e.g., inflammation at the site or pathological changes in 
the organs of rats).

Potential therapeutic applications of hPSC-EVs
Although few investigations have been carried out with hPSC-EVs, we notice that almost all of them 
have already applied hPSC-EVs to different disease models, both in vitro and in vivo. PSC-EVs have been 
described as having: Protective effects in in vitro and in vivo models of ischemia-reperfusion kidney 
injury[64]; neural protective abilities[60]; the capacity to modulate neuroinflammation and protect 
against ischemic stroke through Treg cell expansion[73]; antifibrotic effects in vivo and in in vivo models 
of liver injury[61,72]; and reduced cartilage degradation in an osteoarthritis model[77]. They have 
shown improvements in wound closure, angiogenesis, and increased nerve fiber density in a wound-
healing diabetic mouse model[54,79]; and improved recovery of ovarian function in a premature 
ovarian failure mouse model[67]. EVs were also associated with acellular nerve grafts, demonstrating 
their potential to repair peripheral nerve defects[80].

It was also demonstrated that MVs, but not EXOs, dedifferentiated Müller cells into retinal progenitor 
cells in vitro[71]. Other studies showed the ability of PSC-EVs to promote regeneration of diseased or 
damaged retinas[56] and to accelerate corneal epithelium defect healing in vivo[68]. Other potential uses 
cited for PSC-EVs are: In antitumoral activity[51,63]; in angiogenesis stimulation[69]; as a gene delivery 
vector[50]; to increase the functional properties of cord blood-derived hematopoietic stem and 
progenitor cells[70]; and to improve the number of beating EBs depending on the hiPSC origin[66].

One noteworthy effect shown in some studies is the capacity of PSC-EVs to “rejuvenate” different cell 
types, such as senescent endothelial cells[52,58], senescent human dermal fibroblasts[55], senescent 
chondrocytes[77], and others. Considering this potential, the hPSC-EVs, hESC-EVs, and hiPSC-EVs were 
investigated as therapeutic tools for age-related diseases. Regarding neurological diseases, the hPSC-
EVs showed potential in recovery of senescent hippocampal neural stem cells in rats with vascular 
dementia - partially through the transfer of miRNAs that inhibit mTORC1 activation - resulting in an 
improvement in disease status (e.g., reverse cognitive impairment)[81]. Furthermore, using mice of 
varying ages, hPSC-EVs were found to rejuvenate hippocampal neural stem cells partly through the 
transfer of SMAD proteins that activate myelin transcription factor 1 (MYT1), which is reduced in 
senescent cells, and activates a signaling cascade in the MYT1-Egln3-Sirt1 axis[81].

In an ischemic stroke model, hPSC-EVs reduced the expression of inflammatory cytokines and 
leukocyte infiltration, and increased the number of regulatory T cells and other immunomodulatory 
effects that alleviate neurological deficits[73]. They also reduced blood-brain barrier damage in aged 
stroke mice through blood-brain barrier rejuvenation, partially through the transfer of AKT1 and CALM 
from EVs to endothelial cells leading to activation of the endothelial nitric oxide synthase-Sirt1 axis[78]. 
Therefore, hPSC-EVs could be a promising cell-free therapy to treat age-related diseases associated with 
cellular senescence.

In order to evaluate the benefit of hPSC-EVs compared to other EVs, one interesting study 
demonstrated that both hiPSC-EVs and hMSC-EVs, isolated through size exclusion chromatography 
(Table 1), could improve the proliferation of senescent MSCs and alleviate cellular aging in a replicative 
aging model, possibly modulating reactive oxygen species production with peroxiredoxins presented in 
EVs. However, despite the similar effects, EVs derived from iPSCs enter target cells more efficiently, 
and the production of hiPSC-EVs was about 16-fold higher than that of MSC-EVs (using the same 
culture medium)[59].

hPSC-EV composition
Even though many articles described the effects of hPSC-EVs, few made deeper characterizations of, for 
example, the protein and miRNA content of these EVs. Some performed proteomic analysis to help 
explain some of the effects[59] or as a control (time 0) to study the differentiation process[39,46]. In one 
interesting approach using high-density lectin microarray, Saito et al[57] demonstrated that rBC2LCN, a 
specific lectin for hPSCs, bound to hiPSC-derived EVs but not to adipose-derived stem cell-, hemodi-
afiltration-, or chondrocyte-derived EVs, which suggests a particular glycan-signature for hiPSC-EVs, 
resembling the glycome signature of the cell surface.

One recent study that provided a detailed description of the contents of hPSC-EVs was conducted by 
Bi et al[74]. The proteomics of hESC-, hiPSC-, and hMSC-EXOs showed that the main enriched proteins 
were related to distinct pathways between vesicles of pluripotent and multipotent cells. In hPSCs, EXO 
content was more focused on development, metabolism, and anti-aging properties, and in hMSCs, it 
was related to immune regulation. Another study in 2022 also indicated that hMSC-EV content is 
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strongly related to immune regulation while hPSC-EV content does not present many of the proteins 
related to this function[76]. Actually, 79 proteins were found to be shared between hMSC- and hPSC-
EVs, yet the main biological processes related to them were DNA regulation, signal transduction and 
cell communication[76]. Liu et al[59] also compared the protein content of hiPSC-EVs and hMSC-EVs 
and described more than 1100 proteins shared between the different EVs, allowing to identify proteins 
that could be responsible for the anti-senescent effect observed in the study.

Considering the protein content of hESCs and hiPSC-EXOs, Bi et al[74] suggested that hESC-EXOs are 
more prone to regulate development and pluripotency pathways, and hiPSC-EXOs have a stronger 
correlation with metabolism. Regarding the most enriched miRNAs for both hPSC-EVs, it was shown 
that they were related to cell cycle and metabolism regulation. Interestingly, miRNAs found in both 
hESC-EXOs and hiPSC-EXOs were involved in cell differentiation, development, and cell cycle, even 
though the hiPSC-EXO set of miRNAs seemed to play a less significant role in these functions than the 
hESC-EXO set[74].

In order to explore whether apoptosis-linked gene 2-interacting protein X (ALIX), a protein present in 
the endosomal sorting complex required for the transport and biogenesis of EXOs, could regulate the 
protein content of EV, Sun et al[62] isolated EVs from hiPSCs in which ALIX was overexpressed (using 
lentiviral transduction) or were knocked out (using CRISP-Cas9 system). EVs isolated from these cell 
lineages were of similar size, although EVs generated from knockout cells were slightly larger. The 
evaluation of protein content in EVs showed that those derived from knockout cells had fewer proteins, 
while EVs from overexpressing cells presented a higher number of proteins. These differences could be 
related to the differences demonstrated in functional assays, e.g., cell viability, apoptosis inhibition, and 
formation of capillary-like structures, where EVs from overexpressing cells had better effects. So, EVs 
with different protein profiles could have different therapeutic applications.

CONCLUSION
Although hPSC cultivation has been carried out for some time, the requirements for in vitro culture of 
these cells are very specific, as many factors are necessary to maintain them in their undifferentiated 
state. This, together with the cost, could be one of the reasons why secretomes and isolation of hPSC-
EVs have not been extensively studied so far. Commercial media are now defined with a few 
components that are no longer as expensive as before, which may have contributed to the increase in 
publications in recent years.

An overview of the hPSC-EV studies is shown in Figure 2, which illustrates the potential use of these 
EVs for regenerative medicine. Regarding EV characterization, we observed in the publications that 
hPSC-EVs follow the basic requirements described in MISEV2018. However, despite the recent increase 
in research in this area, further characterization of the content of these EVs needs to be carried out. In 
addition, studies with modified cells aimed to enrich the content of EVs with some specific protein or 
miRNA may be of great interest. One interesting approach requiring more extensive discussion is the 
possible use of hPSC-EVs in reprogramming adult cells into PSCs. A recent study used EVs derived 
from ESCs undergoing cardiac differentiation to transdifferentiate fibroblasts to cardiomyocyte-like cells 
with relatively high efficiency[82].

Our review shows that hPSC-EVs have therapeutic potential, although no publications demonstrate 
that they are effectively better than other EVs, such as hMSC-EVs. hPSC can be obtained from different 
sources (embryonic or reprogrammed from adult cells) and, despite showing some heterogeneity 
between lineages, they are highly similar in their main characteristics: They are pluripotent and with a 
high proliferative capacity. The latter makes it possible to obtain a large number of EVs. It should be 
noted that PSC-EV derived from different hPSC lineages may show some variability in their content. 
But considering the fact that we can isolate EVs from a single source (a homogenous culture), this can 
possibly bring less variability between batches compared to other common EV sources. However, 
studies in this area are still needed as current results are highly variable. Alternatives to EVs include the 
use of cell-engineered nanovesicles generated by serial extrusion of hiPSCs, as described by Lee et al
[83], which presented similar results to PSC-EVs, but with higher production yield. However, more 
studies are needed to verify the viability of this method for future applications. Thus, challenges that 
remain are the large-scale production of EVs, which in the case of hPSC cultivation can be expensive, 
and the investment in efficient methodologies for EV isolation that could be used in good manufac-
turing practices for future acellular therapies.
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Figure 2 Diagram of pluripotent stem cell-derived extracellular vesicle isolation, its most common characterizations, and the applications 
described or indicated for these extracellular vesicles. EV: Extracellular vesicle; miRNA: MicroRNA; lncRNA: Long noncoding RNA; PSC: Pluripotent stem 
cell. The images were obtained from Servier Medical Art (http://smart.servier.com), licensed under a Creative Commons Attribution 3.0 Unported License.
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