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Abstract: In this review, we provide an overview of the current understanding of the main mecha-
nisms of pharmacological action of essential oils and their components in various biological systems.
A brief introduction on essential oil chemistry is presented to better understand the relationship of
chemical aspects with the bioactivity of these products. Next, the antioxidant, anti-inflammatory,
antitumor, and antimicrobial activities are discussed. The mechanisms of action against various types
of viruses are also addressed. The data show that the multiplicity of pharmacological properties of es-
sential oils occurs due to the chemical diversity in their composition and their ability to interfere with
biological processes at cellular and multicellular levels via interaction with various biological targets.
Therefore, these natural products can be a promising source for the development of new drugs.

Keywords: natural products; metabolites; medicinal plants; volatiles; anti-inflammatory; antioxidant;
antiviral; anticancer; antibacterial; antifungal

1. Introduction

The term essential oil was created in the 16th century and refers to the theory of
“Quinta essentia” proposed by the famous German-Swiss alchemist and physician Paracel-
sus (1493–1541), born by Theophrastus Philippus Aureolus Bombastus von Hohenheim.
Paracelsus defined the role of alchemy by developing plant extracts and herbal medicines.
He believed that the distillation process extracted the most significant part of the plant,
namely, the “quintessence for healing” or “plant’s soul”, separating the “essential” constituents
from the “nonessential” [1,2].

Many authors have tried to supply a definition of essential oils. According to the
“Association Française de NORmalisation” [3] and to the European Pharmacopoeia (Ph. Eur.),
an “essential oil” can be defined as a “product obtained from a natural raw material of
plant origin, either by distillation with water or steam, or from the epicarp of Citrus sp.
fruits by a mechanical process, or by “dry distillation”. Essential oil is then separated from
the aqueous phase by physical means” [3,4].

Plants can synthesize two kinds of oils: fixed and essential oils. Fixed oils are esters of
a glycerol molecule attached to three fatty acids, also called triacylglycerols or triglycerides.
Essential oils (EOs), also known as essences, volatile oils, etheric oils, or aetheroleum, are
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complex natural mixtures of volatile, lipophilic, and odoriferous substances commonly
found in aromatic plants. The majority of essential oils are colorless or pale yellow, liquid
at room temperature, and less dense than water, with very few exceptions (cinnamon,
sassafras, and vetiver). Moreover, essential oil chemical constituents have a low molecular
weight (below 300), and some of them are optically active, soluble in most organic solvents
(ether, alcohol, acetone), and insoluble in water [2,5,6].

EOs have been widely investigated for their therapeutic potential in various patholo-
gies [7–9]. Biological and pharmacological tests using EOs and their chemical constituents
performed via experimental models at the molecular, cellular, and animal levels have
generated promising results in several areas of science [10,11]. Their pharmacological
profile includes antimicrobial, anti-inflammatory, antitumor, antioxidant activities, among
others [10,12–14]. In view of this, in this review, relevant knowledge of the chemistry of
essential oils is presented and their main mechanisms of action related to organic and
infectious disorders are discussed.

2. Materials and Methods

The search was performed on PubMed/MEDLINE, and studies were selected ac-
cording to their relevance and the objectives of this review. The following terms were
used in combination within search strings: “anti-inflammatory”; “antioxidant”; “cancer”;
“chemistry of essential oils”; “tumo(u)r”; “antibacterial”; “essential oils”; “antifungal”;
“antimicrobial”; “antiviral”. The search was restricted to English and experimental studies.

3. Chemistry of Essential Oils

In general, essential oils are composed of approximately 20–60 components at different
concentrations, but some of them may contain more than 300 different substances. However,
two or three components are usually present in large proportions (20–70%) compared to
other constituents present in small concentrations [15]. For example, rotundifolone is the
major component (50–65%) of Mentha x villosa Hudson leaf essential oil [16], 1,8-cineole or
eucalyptol (70–90%) of Eucalyptus globulus Labill. essential oil [17], and cinnamaldehyde
(60–90%) of Cinnamomum zeylanicum Blume bark and leaf essential oil [18]. Typically, the
major components of essential oils are the main components responsible for their biological
properties. However, minor compounds may also play an important role in bioactivity,
either by potentiating the action of major components or through antagonistic or additive
effects [19].

Essential oil components possess distinct primary metabolic precursors and are gener-
ated through different biosynthetic pathways. They can be divided into two main groups:
terpenoids (major group) and non-terpenoids (mainly phenylpropanoids). All of them
are hydrocarbons and their oxygenated derivatives, and may exist in the form of several
chemical classes, including aldehydes, ketones, alcohols, oxides, esters, amines, amides,
phenols, nitrogen and sulfur compounds, and heterocycles [5,20–22].

3.1. Terpenes

Terpenes may be considered to be made up of isoprene units and constitute one of
the largest and most structurally diverse families (>50,000 molecules) of natural products.
Still more numerous than terpenes is a class of compounds named “terpenoids” (or iso-
prenoids). Terpenes are hydrocarbons, while terpenoids are a modified class of terpenes
that present oxygen-containing functional groups, such as ketone, hydroxy, aldehyde, ether,
or carboxylic moieties. Chemical structures of terpenes may range from linear to mono- or
polycyclic compounds, and their skeleton is formed through the condensation of two to
many thousands of 5-carbon-base (C5) units (isoprene units) [23–25].

Isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP)
are the universal precursors of isoprene molecules [26]. In higher plants, two distinct and
independent biochemical routes are involved in isoprenoid biosynthesis: the mevalonate
(MVA) pathway, the first and classically acknowledged route for biosynthesis of DMAPP
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and IPP, and the methylerythritol 4-phosphate (MEP) pathway (non-mevalonate pathway).
Moreover, they may also proceed via a combination of both the MVA and the MEP routes.
The MVA pathway is localized to the cytosol, whereas the MEP pathway is bound to the
plastidic compartment [27,28].

We can classify the terpenes into several categories according to the number of C5 building
blocks in their core structure: hemiterpenes (C5H8), monoterpenes (C10H16), sesquiterpenes
(C15H24), diterpenes (C20H32), triterpenes (C30H48), tetraterpenes or carotenoids (C40H64), and
polyterpenes [(C5H8)n] [29]. Among the terpenic constituents, the mono- and sesquiterpenes
are the most volatile and abundant in essential oils [30,31]. Figure 1 contains a general scheme
for terpenoid biosynthesis.
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Figure 1. General scheme for the biosynthesis of terpenoids.

Monoterpenes (from the Latin mono, or one) are the most representative and simple
terpenes. They are produced from the assembly of two isoprene units (C10), constituting
about 90% of plant essential oils and permitting a very large variety of chemical structures
(around 1000 metabolites). According to their structural variation, monoterpenes can
be divided into different subgroups: acyclics, bornanes, camphanes and isocamphanes,
fenchanes, thujanes, p-menthanes, and caranes and pinanes (Figure 2). The variety of
possibilities in which these basic skeletons can be rearranged results in amazing structural
diversity observed in nature, in which p-menthane-type monoterpenes are the largest group
of naturally occurring monoterpenes [21,32].
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Figure 2. Chemical structures of monoterpenes found in essential oils.

Sesquiterpenes (from the Latin sesqui, or one and a half) are built from the coupling of
three isoprene molecules (C15), occurring naturally in insects and higher plants. They are
the most diverse group of terpenoids and may have acyclic (linear), monocyclic, bicyclic,
or tricyclic frameworks, showing many unique arrangements. Similar to monoterpenes,
sesquiterpenes can also occur as hydrocarbons or contain oxygen functionality, including
carboxylic acids, lactones, alcohols, aldehydes, ketones, and epoxides. Chain extension
with augmentation in a number of cyclizations as well as biochemical modifications (re-
arrangement or oxidation) allows a good variety of structures from the sesquiterpenes
(Figure 3) [21,33].
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Figure 3. Chemical structures of sesquiterpenes found in essential oils.

3.2. Phenylpropanoids

Phenylpropanoids constitute a group of organic compounds synthesized by plants
via the shikimate pathway; the aromatic amino acid L-phenylalanine is their biogenetic
precursor. The core of phenylpropanoids consists of a phenyl ring connected to a C3
propane moiety. They are found in the plant kingdom, but are less common than terpenes.
The wonderful diversity of phenylpropanoids derives from the efficient modification of
a very limited set of core structures. Aromatic compounds originated from the shikimate
route (Figure 4) comprise aldehyde, phenol, alcohol, methoxy, and methylenedioxy com-
pounds [34,35]. Chemical structures of different essential oil constituents (mono- and
sesquiterpenes, and phenylpropanoids) are depicted in Figures 2–4.
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Generally, essential oils represent a small fraction of plant composition (less than
5% of vegetal dry matter), occurring in specialized secretory structures, such as secretory
ducts or cavities, glandular trichomes, and oil cells [36,37]. Volatile oils can be extracted
from seeds (Foeniculum vulgare Mill.), flowers (Rosa abietina Gren. ex H. Christ), leaves
(Mentha × piperita L.), barks (Cinnamomum cassia (L.) J. Presl), fruits (Citrus sinensis (L.)
Osbeck; Spondias mombin L.), grasses (Cymbopogon citratus (DC.) Stapf.), tree blossoms
(Cananga odorata (Lam.) Hook. f. & Thomson), rhizomes (Zingiber officinale Roscoe), roots
(Vetiveria zizanoides (L.) Nash), woods (Juniperus virginiana L.), gums (Boswellia ameero Balf.
f.), and bulbs (Allium sativum L.) [38,39]. Typically, essential oils obtained from different
plant organs of the same plant possess specific chemical compositions.

Volatile oils are reasonably widespread in the plant kingdom, being rarely found
in both gymnosperms and monocotyledonous angiosperms, and widely distributed in
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dicotyledonous angiosperms [38]. They are synthesized by more than 17,500 vegetal species,
belonging to several genera distributed in approximately 60 families. Some plant families
are well-known for their ability to produce aromatic plants rich in essential oils, including
Apiaceae (Umbelliferae), Hypericaceae, Myrtaceae, Poaceae, Asteraceae (Compositae),
Lamiaceae (Labiatae), Zingiberaceae, Cupressaceae, Lauraceae, Pinaceae, Piperaceae, and
Rutaceae [40]. All of the essential oils-producing plant families are rich in terpenoids, while
phenylpropanoids are more commonly found in specific plant families, including Apiaceae,
Lamiaceae, Myrtaceae, Piperaceae, and Rutaceae [41].

The chemical composition and quality of essential oils may vary due to various factors,
such as the number and type of molecules, stereochemistry of constituents, and employed
extraction process (hydrodistillation, effleurages, Soxhlet extraction, cold pressing, super-
critical fluid extraction). Furthermore, environmental conditions (climate, cultivation, plant
organ, harvesting time, light intensity, soil composition, age, and vegetative cycle stage
extraction) may also lead to changes in the quality, quantity, and composition of extraction
products [42].

Currently, about 3000 aromatic plants are known to produce essential oils as an
important part of their secondary metabolism, 300 of which are commercially significant
due to their medicinal and industrial values. They are employed in different applications,
such as pharmaceuticals, agronomy, sanitary applications, cosmetics, perfumes, dentistry,
agriculture, and food [24,43].

4. Antioxidants
4.1. Mechanism of Antioxidant Activity of Main Essential Oils and Their Constituents

An essential oil is a complex mixture of components, each of which can potentially
contribute to its antioxidant activity. As the composition can be influenced by many
factors, knowing the efficacy and the mechanism of action of each component allows us
to predict the activity of the oil [44]. From a chemical point of view, antioxidant activity is
defined as the ability of a given compound, present in small amounts, to protect an easily
oxidizable material, such as polyunsaturated lipids, from oxidation [45]. Peroxidation is
a radical-chain reaction responsible for the incorporation of O2 into organic molecules,
leading to the formation of hydroperoxides, epoxides, and other oxygenated derivatives
(Scheme 1). The main chain-carrying radicals of peroxidation are alkylperoxyls (ROO•),
although other short-lived radicals can play a role in initiation (such as HO•, formed by the
Fenton reaction) or in propagation (R• and RO•) [45]. The antioxidant activity is, therefore,
deeply related to the ability of a given molecule to trap ROO• radicals and is described
by two independent parameters: the number of radicals trapped by the antioxidant (also
known as “capacity” or stoichiometric coefficient) and the rate constant of the reaction with
ROO• radicals, kinh. With respect to the chemical mechanism of peroxidation inhibition,
essential oil components can be divided into three main groups: phenols, which act as
radical trapping agents; highly oxidizable compounds, which enhance the termination; and
1,4-cyclohexadienes, which are able to generate the reducing HOO• radical.

4.1.1. Radical Trapping

Phenolic components comprise mainly carvacrol, thymol, and eugenol. Their antioxi-
dant activity is due to the well-known ability of phenols to donate the phenolic H-atom
to ROO• radicals to form resonance-stabilized phenoxyl radicals unable to propagate the
oxidative chain (Scheme 1). A recent study has shown that the kinh and the stoichiometry of
ROO• trapping of phenolic containing essential oils is equal to the sum of the contributions
of their phenolic components [46].
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4.1.2. Termination Enhancers

In specific cases, small quantities of a highly oxidizable essential oil component can
slow down the autoxidation of another oxidizable substrate. The overall effect is strictly
related to the nature of the substrate to be protected, as it must have a small propagation
constant (kp) associated with a low termination constant (kt). Typical values of kp and kt of
the oxidizable substrate are available in the literature [47]. Highly oxidizable essential oil
components are oxidized with the substrate and, if they form peroxyl radicals able to decay
with a high kt, they cause an overall decrease in the ROO• concentration (Scheme 1). An
example of this mechanism has been reported by using cumene as an oxidizable substrate,
that has low values of kp and kt. The diagram of cumene autoxidation rate vs. essential oil
component concentration displays a typical “v” shape because, above a critical concentra-
tion, the autoxidation of the essential oil component becomes prevalent (see Figure 5) [48].
In principle, this mechanism could apply to oxidizable substrates in micellar or emul-
sion systems, where kp and kt are low because they are reduced by diffusion processes.
Highly oxidizable essential oil components, as they are small molecules, can diffuse more
easily, contributing to the decay of ROO• radicals. This mechanism may account for the
antioxidant activity of essential oils having no obvious radical trapping components.
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Figure 5. Rate of O2 uptake during the autoxidation of cumene (3.5 M) in chlorobenzene initiated by
AIBN (0.05 M) at 30 ◦C as a function of the concentration of limonene. The concentration of limonene
(in M and %, v/v) affording the strongest inhibition is indicated by the grey dots. Reprinted from
Reference [48] with permission from Elsevier.

4.1.3. Hydroperoxyl Radical (HOO•) Generation

Among the highly oxidizable components, γ-terpinene (γ-T) has a unique behavior,
leading to an unusual antioxidant activity. After H-atom abstraction, γ-T forms an unstable
peroxyl radical which breaks down, yielding para-cymene and a hydroperoxyl (HOO•)
radical (see Scheme 1). This radical has both oxidizing and reducing activity; therefore, it
can donate a H-atom with very high rate constant to ROO•, to the radicals of an antiox-
idant [49], or to mild oxidizers such as ortho- and para-quinones [50]. γ-Terpinene was
shown to reduce the rate of autoxidation of methyl linoleate [51,52] and to prolong the
duration of the antioxidant activity of α-tocopherol and polyphenols at low (30 ◦C) [53]
and high (130 ◦C) [54] temperatures. In addition, γ-T enables the antioxidant activity of
melanins, which are natural polymers rich in ortho-quinone residues [50].
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4.2. Methods Suggested to Explore the Radical Trapping Activity

The antioxidant activity of essential oil components is deeply connected to the nature
and the physical state of the oxidizable substrate and to their interaction with ROO• radicals.
These pieces of information can hardly be obtained by using simplified assays based on
the decay of stable radicals, or without the presence of an oxidizable substrate. The use of
assays such as DPPH, ABTS, FRAP, and ORAC is, therefore, discouraged, despite the appeal
of their simplicity and low cost [45]. More significant insights can instead be achieved
by using methods relying on the autoxidation of biologically relevant substrates, such
as polyunsaturated lipids (i.e., methyl linoleate, unsaturated phospholipids) in different
aggregation states (solution, micelles, vesicles). The oxidation can be accelerated by using
azo initiators, iron salts with peroxides, or simply by heating. Recommended methods to
measure the progress of the reaction are determination of hydroperoxides or conjugated
dienes, formation of malondialdehyde (thiobarbituric reactive substances, TBARS assay),
O2 consumption, β-carotene bleaching test, or consumption of fluorescent probes of lipid
peroxidation such as STY-BODIPY [45]. Examples of determination of the antioxidant
activity of selected essential oils are reported in Table 1.

Table 1. Antioxidant activity of selected essential oils.

Essential Oil Main
Components a Assay Activity Ref.

Thyme (T. vulgaris L.) Carvacrol,
p-cymene

O2 uptake during
inhibited

autoxidation
Yes, similar to BHT [46]

Oregano (O. vulgare L.) Carvacrol,
p-cymene

O2 uptake during
inhibited

autoxidation
Yes, similar to BHT [46]

Savory
(Satureja hortensis L.)

Carvacrol,
p-cymene,
γ-terpinene

O2 uptake during
inhibited

autoxidation
Yes, similar to BHT [46]

Clove buds (E. caryophyllus
Spreng) Eugenol

O2 uptake during
inhibited

autoxidation
Yes, similar to BHT [46]

Cinnamon (C. zeylanicum
Blume) Eugenol

O2 uptake during
inhibited

autoxidation
Yes, similar to BHT [46]

Melaleuca alternifolia (M.
alternifolia Cheel.)

Terpinen-4-ol,
γ-terpinene,
α-terpinene

TBARS Yes, similar to
α-tocopherol [55]

Cinnamomum zeylanicum
bark

Cinnamaldehyde,
eugenol

β-carotene
bleaching

Yes, no
comparison

available
[18,56]

Marine fennel (Crithmum
maritimum L.)

γ-Terpinene,
limonene,

Conjugated dienes,
TBARS

Yes, similar to
α-tocopherol and

BHT
[57]

Common fennel
(Foeniculum vulgare Mill.)

Estragole,
α-pinene, thymol

methyl ether

Conjugated dienes,
TBARS

Yes, similar to
α-tocopherol and

BHT
[57]

(a) only components having a concentration larger than 10% are reported.

5. Antiviral Activity

Essential oils are active against multiple DNA and RNA viruses, including herpes
simplex virus type-1 (HSV-1) and type-2 (HSV-2), poliovirus, adenovirus, dengue virus type-
2, yellow fever virus, influenza virus, respiratory syncytial virus, Zika virus, coronaviruses,
coxsackievirus B-1, and Junin virus [58–61].

Oregano and clove EOs demonstrated potent antiviral activities against adenovirus, cox-
sackievirus B-1, and poliovirus [62]. Melaleuca alternifolia Cheel. (tea tree) EO showed in vivo
antiviral activity against Tobacco Mosaic Virus (TMV) [63]. Several reports have demonstrated
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the antiviral activity of tea tree, manuka, eucalyptus, and thyme EOs against HSV-1 due to their
contents of monoterpenes, phenylpropanes, and sesquiterpenes [64–67]. Melaleuca alternifolia
essential oil and some of its components, such as terpinen-4-ol, terpinolene, and α-terpineol,
inhibited the replication of influenza A/PR/8 virus subtype H1N1 [68]. The mechanism of
antiviral activity appears to be due to inhibition of viral replication. Another study has shown
that EOs of Glechon spathulata Benth., Artemisia arborescens L. and Glechon marifolia Benth. possess
antiviral activities against HSV-1 [69,70], whereas Melissa officinalis L. EO inhibits the replication
of HSV-2 [58]. Eupatorium patens D.Don ex Hook. & Arn. and Artemisia douglasiana Besser. EOs
demonstrated antiviral activity against the dengue virus [68]. Interestingly, Pogostenon cablin
and lemon balm EOs were reported for their antiviral activities against influenza A H2N2 virus
and H9N2, respectively [71,72]. Moreover, lemon balm EO inhibited influenza H9N2 replication
in a dose-dependent manner and the inhibition was enhanced by seltamivir [72].

The antiviral activities of essential oils have been attributed to the ability of essential
oils and their components to interfere with viral entry through viral envelope disruption,
capsid disintegration, or inhibition of viral binding to host cell receptors. Moreover, the
antiviral activities of essential oils could be due to the inhibition of viral replication.

Alterations of viral particles (virus envelope disruption or capsid disintegration) have
been described as antiviral mechanisms of essential oils. Gilling et al. reported that 4%
oregano essential oil expanded the viral particle size of murine norovirus [73]. Moreover,
treatment with 0.5% carvacrol resulted in the expansion of murine norovirus viral particles,
capsid disintegration, and loss of viral infectivity [73].

Garozzo et al. showed that tea tree EO and its major constituent terpinen-4-ol impaired
endolysosomal compartment acidification, which inhibited influenza viral uncoating and
entry into target cells [74]. Marjoram, clary sage, Thymus vulgaris L., Cinnamomum zeylan-
icum Blume., Citrus bergamia Risso & Poit., and anise EOs have also been shown to inhibit
influenza virus with a half maximal inhibitory concentration (IC50) < 100 µg/mL [75,76]. It
was reported that curcuma EO constituent germacrone demonstrated high efficacy against
influenza virus with IC50 of 6.03 µM and selectivity index (SI) of >41 [77]. Germacrone
was also shown to inhibit not only the influenza virus but also feline caliciviruses [78].
Moreover, carvacrol, eugenol, and β-santalol have demonstrated potent anti-influenza
virus activities [74,79], including Cinnamomum zeylanicum Blume. essential oil [80].

Feriotto et al. demonstrated that EOs of Thymus vulgaris L., Cymbopogon citratus (DC.)
Stapf, and Rosmarinus officinalis L. bound to Tat protein of HIV and destabilized the Tat/TAR-
RNA complex, which is required for HIV replication, at IC50s of 0.05–0.83 µg/mL [81]. The
antiviral activity of thymol, carvacrol and other components of these essential oils has been
reported [76,82,83]. Therefore, it is suggested that these components can contribute to the
inhibitory action of essential oils that contain them against different viruses. Another study
found that Cymbopogon nardus (L.) Rendle. EO inhibited HIV-1 reverse transcriptase with
an IC50 of 1.2 mg/mL, and the activity was attributed to β-citronellol [84].

Significant numbers of studies have shown that EOs from Star Anise, Australian
tea tree, oregano, Eucalyptus caesia Benth., and Mentha suaveolens Ehrh. exhibit antiviral
activities against HSV-1 due to adsorption on viral particles and inhibition of viral attach-
ment to host cells [65,76,85]. Star anise EO was found to be the most potent, with an IC50
of 1 µg/mL and a selectivity index (SI) of 160 [76]. Analysis of EOs’ active ingredients
identified thymol and carvacrol with antiviral activity (IC50 of 7 µM) and β-caryophyllene
(IC50 of 0.25 µg/mL and SI of 140) as the most active anti-HSV-1 components [86,87]. The
inhibitory activity of β-caryophyllene was also reported against the dengue-2 virus, with
an IC50 of 22.5 µM and SI of 71.1 [76]. In fact, studies have shown anti-HSV-1 activities also
of eugenol, limonene, β-pinene, farnesol, and p-cymene [86–89]. These findings indicate
that essential oils from plants containing appreciable amounts of these components, such
as β-caryophyllene, could exhibit antiviral activity, including against HSV-1.

EOs have been shown to be effective not only against enveloped viruses but also
against non-enveloped viruses. An in silico study suggested that Lavandula stoechas L.
essential oil could inhibit SARS-CoV-2 [90]. Osmunda regalis L. EO showed anti-coxsackie
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viral activity, with an IC50 of 2.24 µg/mL and SI of 789.84, which indicate its high efficacy
and low toxicity [76]. It has been reported by another group that oregano EO and its major
component, carvacrol, is an effective antiviral against human rotavirus [91]. The previous
data (Table 2) indicate that EOs and their constituents, either individually or in combination,
may serve as potential antivirals against several viral pathogens.

Table 2. Antiviral activities and mechanisms of essential oils’ constituents.

Constituent Source Target Virus Mechanism IC50 SI Reference

Germacrone Curcuma longa L. Influenza
Inhibits multiple

steps in the viral life
cycle

6.03 µM >41 [77]

Eugenol Cinnamomum zeylanicum
Blume. Influenza Not determined <3.1 µL/mL Not determined [80]

β-Santalol Santalum album L. Influenza Inhibits viral
replication 10–100 µg/mL Not determined [79]

Carvacrol Thymus vulgaris L.

Influenza Not determined 2.6 µg/mL <0.15

[76,86]HSV-1
Inhibits viral

attachment to host
cells

7 µM 43

Human rotavirus Inhibits viral
replication 27.9 µg/mL 33

β-Citronellol Cymbopogon nardus (L.)
Rendle. HIV-1 Inhibits reverse

transcriptase 2.6 mg/mL Not determined [84]

β-Caryophyllene

Cinnamomum zeylanicum
Blume. and Syzygium

aromaticum (L.) Merrill &
Perry

HSV-1
Inhibits viral

attachment to host
cells

0.25 µg/mL 140

[87,92,93]

Dengue-2 virus
Inhibits multiple

steps in viral
life cycle

22.5 µM 71.1

Limonene Citrus bergamia
Risso & Poit. HSV-1

Inhibits viral
attachment to host

cells
5.9 µg/mL 10.2 [76,88]

β-Pinene Pinus pinaster Aiton HSV-1
Inhibits viral

attachment to host
cells

3.5 µg/mL 24.3 [88,94]

Thymol Thymus vulgaris L. HSV-1
Inhibits viral

attachment to host
cells

7 µM 43 [82,86]

Farnesol Matricaria chamomilla L. HSV-1
Inhibits viral

attachment to host
cells

3.5 µg/mL 11.4 [61,87]

p-Cymene Thymus vulgaris L. HSV-1
Inhibits viral

attachment to host
cells

>0.1% Not determined [89]

6. Antimicrobial Activity

Essential oils are recognized for their role in protecting plant structures against microor-
ganisms. This supports the scientific hypothesis that such oils and their constituents may also
present antimicrobial effects against pathogens of human interest. Most scientific investiga-
tions to evaluate the antimicrobial effects of essential oils and their constituents are conducted
to determine the presence or absence of pharmacological effects and the lowest concentrations
capable of inhibiting microbial growth. Research techniques, in general, seek to standardize
methodological procedures and define breakpoints, and are thus recommended by research
institutions, such as the Clinical and Laboratory Standards Institute (CLSI) and the European
Committee on Antimicrobial Susceptibility Testing (EUCAST), which, in many countries, are
in turn recognized by regulatory agencies for drug registration. Generally, the techniques
include the adoption of agar diffusion and dilution methods [95].

Pharmacological knowledge of antimicrobial activity must involve elucidating the
mechanism of action of the evaluated oil and providing information concerning possible
toxicological effects and drug interactions. In addition, knowledge of the molecular aspects
involved in the observed effects helps to advance proposals involving possible structural
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changes (to discover new molecules). In this review, we highlight the main mechanisms of
action of essential oils and their constituents, which involve their antibacterial, antifungal,
antiviral, and antiparasitic activities.

6.1. Antibacterial Activity

Although different microbial species represent different molecular targets, the modes
of action of substances with antimicrobial activity generally involve functional components
of the plasma membrane, the cell wall, cell duplication, or protein synthesis [96].

Observing the effect of essential oils on bacterial morphology helps to understand
possible mechanisms of action. Microscopic visualization of changes in the cell wall,
the membrane, or cell shape, revealed that the essential oil of Citrus medica L. promoted
action against Escherichia coli and Staphylococcus aureus, with cell wrinkling, formation
of holes in the bacterial surface, or even plasma membrane ruptures [97]. Essential oils
from Origanum species showed antibacterial activity against Haemophilus influenzae and
Haemophilus parainfluenzae. Scanning electron microscopy analyses of the H. influenzae and
H. parainfluenzae biofilms showed a decrease in the appearance of bacterial clusters due to
the action of O. majorana L. essential oil [98].

Due to hydrophobicity, EOs likely act on lipids of the bacterial plasma membrane or mito-
chondria, functionally impairing these structures, by promoting increased proton permeability,
which is measured through membrane electrical conductivity tests [99]. The essential oil of
mustard showed damage to bacterial cell membranes of E. coli and Salmonella typhi with loss
of cellular structures essential for the survival of the microorganism, through the occurrence of
ATP depletion and decreased intracellular pH [100]. The essential oil of Origanum compactum
Benth. is capable of inducing the dissipation of gradients of potassium ions, causing loss of
action potential in the membrane of Pseudomonas aeruginosa [101]. Observations from scanning
electron microscopy indicated that the essential oil of O. compactum Benth. promoted cell
wall damage in E. coli and Bacillus subtilis [102]. The rupture of the membrane and cell wall
is directly related to the decrease in ATP production at the cell membrane. Carvacrol and
thymol promote a decrease in the amount of intracellular ATP and increase extracellular ATP
in E. coli. This effect indicates a disrupter on the cytoplasmic membrane [103].

Additionally, the chemical diversity in the composition of essential oils increases the
possibility of existing constituents that can impair the synthesis of proteins. Analysis
by sodium dodecyl sulfate–polyacrylamide gel electrophoresis confirmed by Western
blotting indicated that carvacrol and p-cymene can promote a decrease in protein synthesis
in E. coli [104]. Essential oils may also show mutagenic activity [105]. This effect can be
analyzed in gene modulation studies [106,107]. The essential oil of Syzygium aromaticum (L.)
Merrill & Perry showed action on the formation of bacterial biofilms, affecting the quorum
sensing activity [108].

6.2. Antifungal Activity

Essential oils and their constituents act on fungal cell structures in a manner similar to
that described for their antibacterial activity: the oils cause changes in functions that are
essential for microbial survival. The main targets for these substances are involved in the
maintenance of the fungal membrane and cell wall.

Changes in the permeability of the plasma membrane are largely related to the effects
of essential oils involving ergosterol. The most studied mechanisms of action include
both ergosterol biosynthesis modulation and direct ergosterol binding; these effects were
visualized for essential oils of Anethum graveolens L. and Coriandrum sativum L., respec-
tively [109,110]. It has not yet been fully elucidated, but the enzymes involved in the
formation of ergosterol can also function as pharmacological targets.

The effect of essential oils of Anethum graveolens L. on the fungal cell membrane promotes
an increase in proton pumping activity, with consequent acidification induced by the presence of
glucose in the external environment. The action on the mitochondrial membrane may contribute
to decreasing intracellular ATPase activity, possibly by action on mitochondrial dehydrogenases.
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This cellular damage can be measured by the increased production of reactive oxygen species
(ROS), an important biochemical marker for the apoptosis process [111,112].

Inhibiting the formation of the fungal cell wall is another potential mechanism of
action of essential oils and their constituents. In vitro experimental models, supplemented
with sorbitol (an osmotic protector) in the culture medium, and in silico computational
studies indicate that certain oils can act on enzymes such as delta-14-sterol reductase and
1,3-β-glucan synthase, which are involved in cell wall synthesis [113,114].

Evaluation of the effect of essential oils and their constituents on fungal micromorphol-
ogy has helped augment our knowledge of their mechanisms of action. The essential oil of
C. sativum caused a significant reduction in the development of hyphae, pseudohyphae,
chlamydoconidia, and blastoconidia in Candida albicans [109]. The essential oil of C. sativum
L. commonly has a significant amount of linalool and a smaller amount of gamma-terpinene
in its chemical composition [112]. These monoterpenes have antifungal action against
various strains of fungi [115,116]. Therefore, they may contribute to the antifungal activity
of essential oils that contain them. Table 3 presents the principal targets involved in the
activity of essential oils and their constituents against fungi and bacteria.

Table 3. Main mechanisms of action of essential oils and their constituents against different microorganisms.

Antimicrobial Activity Mechanism of Action References

Antibacterial Plasmatic membrane and wall cell alteration. [97]
Change in electrical conductivity of plasma

membrane. [99]

Decrease in ATP production. [100]
Change in protein synthesis. [104]

Inhibition of biofilm formation. [108]
Gene modulation. [106]

Antifungal Action on wall cell and plasmatic membrane. [109]
Inhibition of ergosterol synthesis. [110,112]

Decreasing intracellular ATPase activity and
increasing production of Ros. [110]

Changes on fungal micromorphology. [117]

7. Antitumor Activity

The in vitro cytotoxic and in vivo antitumor effects of EOs have been widely reported.
In particular, many mechanisms of action have been proposed. These include induction of
apoptotic cell death that was related to the increase in the level of reactive oxygen species
(ROS), suppression of the AKT/mTOR and NF-κB pathways, and activation of the MAPK
pathway. For example, EO from the bulb of Allium sativum L. caused cytotoxicity in leukemia
cells through the increase in ROS and induction of apoptosis and differentiation [118], while
Zataria multiflora Boiss. EO increased ROS and induced apoptosis in colon cancer cells [119].
The EO from seeds of Litsea cubeba (Lour.) Pers. induced apoptotic cell death by suppressing
the AKT/mTOR pathway [120]. On the other hand, the cytotoxicity of Cedrus deodara (Roxb.
ex D. Don) G. Don bark EO [121] and Euphorbia intisy Drake stem EO [122] was related to the
inhibition of the NF-κB pathway. Moreover, Artemisia capillaris Thunb. EO induced apoptotic
cell death by activating MAPK [123]. These mechanisms of cytotoxic action are related to the
chemical composition of each EO. For example, the in vivo studies carried out on perillyl alcohol
showed that this monoterpene can inhibit the prenylation of specific proteins by type I and type
II geranylgeranyl-protein transferases. However, it has been shown that it does not alter the
farnesyl-protein transferase enzyme in NIH3T3 cells [124]. In addition, the cytotoxic action of
perillyl alcohol was investigated against pancreatic cancer cells. It is suggested to inhibit the
prenylation of growth-regulatory proteins, such as K-Ras and H-Ras [125]. Furthermore, studies
on thymoquinone, an essential oil component found in the Nigella sativa L. plant, showed
that it induces p53-independent apoptosis, as reported in tests using human osteosarcoma
cells [126]. Psidium guajava L. leaf essential oil showed significant cytotoxic activity against
human oral epidermal carcinoma. The main chemical constituents of this oil are limonene
(38.01%) and β-caryophyllene (27.98%) [127]. Limonene has antitumor action via several
mechanisms of action [13,128,129]. For example, it induces apoptosis of lung cancer cells by
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promoting autophagy in lung cancer cells [130]. The antitumor action of β-caryophyllene has
also been reported. This compound enhances the antitumor activity of cisplatin in lung cancer
cell lines via regulation of the cell cycle and apoptosis signaling molecules [131], in addition
to other mechanisms of action in several tumor cell lines [128,129]. Therefore, limonene and
β-caryophyllene may contribute to the antitumor activity of Psidium guajava L. leaf essential oil
and other antitumor oils in which these constituents are present in significant amounts. Table 4
summarizes some cytotoxic/antitumor mechanisms related to EOs.

Table 4. Some antitumor mechanisms of action have been reported for essential oils.

EO Bearing Plants Part of the Plant Used Main Chemical Constituents Mechanisms Reported References

Euphorbia intisy Drake stem heptacosane and phytol suppression of P-gp
protein/inhibition of NF-κB [122]

Chenopodium botrys L. aerial parts
α-eudesmol, elemol acetate,

elemol, and
α-chenopodiol-6-acetate

induction of
apoptosis/augmentation of
expression of p21 and p53

[132]

Ridolfia segetum (L.) Moris - α-phellandrene, terpinolene,
ß-phellandrene, and dillapiol

induction of apoptosis/p21
stabilization [133]

Allium sativum L. bulb diallyl disulfide and diallyl
trisulfide

augmentation of ROS, induction
of apoptosis, and differentiation [118]

Vitex agnus-castus L. leaves 1,8-cineole, eucalyptol, oleic acid,
and caryophyllene

induction of apoptosis through
triggering both extrinsic and

intrinsic pathways
[134]

Virola surinamensis (Rol. ex Rottb.)
Warb. bark and leaves

aristolene, α-gurjunene,
valencene, germacrene d,
δ-guaiene, β-elemene,

α-farnesene, bicyclogermacrene,
and α-cubebene

induction of apoptotic cell death [135]

Cedrus deodara (Roxb. ex D. Don)
G. Don bark 9-octadecenoic acid, copaene, and

9(E),11(E)- conjugated linoleic acid
induction of apoptosis/inhibition

of NF-κB [121]

Conobea scoparioides (Cham. &
Schltdl.) Benth. leaves thymol methyl ether, thymol, and

α-phellandrene induction of apoptotic cell death [136]

Zataria multiflora Boiss. - - augmentation of ROS and
induction of apoptosis [119]

Cyperus articulatus L. rhizome
muskatone, cyclocolorenone,

α-pinene, pogostol, α-copaene,
and caryophyllene oxide

induction of apoptotic cell death [137]

Cymbopogon citratus (DC.) Stapf leaves and culms myrcene, neral and geranial induction of apoptotic cell death [138]

Croton tiglium L. fruits

17-octadecynoic acid,
tetradecanoic acid,

17-octadecynoic acid methyl ester,
n-hexadecanoic acid, n-decanoic
acid, linoleic acid ethyl ester, and

iso-propyl 9-octadecenoate

induction of apoptotic cell death
and inhibition of migration [139]

Zataria multiflora Boiss. -
carvacrol, γ-terpinene, carvacrol

methyl ether,
p-cymene, and thymol

immunomodulation [140]

Origanum majorana L. - - p38 MAPK-mediated protective
autophagy and apoptosis [141]

Pinus koraiensis Siebold & Zucc. pinecones α-pinene, limonene, and β-pinene induction of apoptosis via the
HIPPO/YAP signaling pathway [142]

Croton matourensis Aubl. leaves
β-caryophyllene, thunbergol,

cembrene, p-cymene, and
β-elemene

induction of apoptotic cell death [143]

Origanum vulgare L. - thymol, ρ-cymene, γ-terpinene,
and carvacrol

inhibition of lipogenesis and
induction of apoptosis [144]

Aniba parviflora (Meisn.) Mez bark linalool, α-humulene, δ-cadinene,
α-copaene, and germacrene b induction of apoptotic cell death [145]

Guatteria megalophylla Diels leaves
spathulenol, γ-muurolene,

bicyclogermacrene, β-elemene,
and δ-elemene

induction of apoptotic cell death [146]

Litsea cubeba (Lour.) Pers. seed citronellal, neo-isopulegol,
isopulegol, and citronellol

induction of apoptotic cell death
by suppression of AKT/mTOR

pathway
[120]

Artemisia capillaris Thunb. - - induction of apoptotic cell death
by activation of MAPK [123]
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8. Anti-Inflammatory Activity
8.1. Inflammatory Response

Inflammation is a complex protective response against harmful exogenous stimuli or
endogenous signaling, where the immune system plays a key role in eliminating the initial
cause and preserving the cellular and tissue structure, which culminates in maintaining
homeostasis [147]. The persistence of this response in the absence of aggressive stimuli
has no biological relevance and can cause severe tissue damage. For example, chronic
inflammation is associated with carcinogenesis and obesity. Therefore, there is a need for
clinical intervention [148–150].

The triggers of the inflammatory response involve cellular stimulation with the release
of mediators, such as pro-inflammatory cytokines (i.e., TNF-α, IL-1β, IL-6, and IL-8),
which promote the activation of macrophages and mast cells, that potentiate this effect by
activating endothelial cells, increasing vascular permeability, leakage of fluids, proteins,
and influx of immune cells (polymorphonuclear) from the circulation to the inflamed
site [151]. However, this response, when uncontrolled, can lead to tissue injury.

In this context, several studies have revealed biological applications of essential oils in
controlling the inflammatory response, based on their use in traditional medicine [152,153].
Here, we focus on the anti-inflammatory effects and mechanisms of action of essential oils
and their main constituents; details can be seen in Figure 6.
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8.2. Anti-Inflammatory Mechanisms
8.2.1. Inhibition of the Release of Mediators by Inflammatory Cells

Geranium essential oil is obtained from leaves of Pelargonium graveolens L., a plant
species of the Geraniaceae family, widely known as geranium, which is native to South
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Africa [154]. Geranium essential oil has been used in traditional medicine for treating
inflammatory skin conditions, due to its anti-inflammatory, antiseptic, antifungal, and
antibacterial potential [155,156]. Using cultured mast cells (CMC) stimulated with IgE,
Kobayashi and colleagues (2016) showed that geranium essential oil reduced significantly,
and dose-dependently, the β-hexosaminidase secretion, but did not inhibit its activity. This
enzyme is released when mast cells, resident cells involved in the tissue allergic and in-
flammatory response, are activated and consequently degranulated [157]. Thus, this result
suggests that geranium essential oil suppresses IgE-induced allergic response by inhibition
of mast cell degranulation. The authors also characterized the chemical constituents of
this essential oil and demonstrated the inhibitory effect of citronellol (54.6% inhibition),
citronellyl formate (33.8% inhibition), and geraniol (32.2% inhibition) against mast cell
degranulation. Additionally, citronellol inhibited IgE-induced TNF-α production in CMCs,
a critical pro-inflammatory cytokine of inflammation, mediating edema, neutrophils re-
cruitment, and activation of T cells to the inflamed site [158,159]. These results support the
application of geranium essential oil and especially its major constituent, citronellol, in the
treatment of allergic conditions.

α-Phellandrene is a monoterpene found in essential oils of a variety of plants, such
as Schinus molle L. [160], Monodora myristica (Gaertn.) Dunal [161], and Anethum grave-
olens L. [162]. Studies have demonstrated the protective effect of α-phellandrene against
ifosfamide-induced hemorrhagic cystitis [163], as well as wound healing [164], antihy-
peralgesic, and antidepressive properties [165]. Regarding the modulatory role on the
inflammatory response, a study showed that α-phellandrene inhibited leukocyte influx
and a number of rolling neutrophils or adhered to vascular endothelium, associated with
carrageenan-induced acute inflammation [166]. These events of inflammation begin with
the release of signaling molecules, such as cytokines and chemokines, released by resistant
cells and have a fundamental role in the activation of the vascular endothelium, increasing
the expression of adhesion molecules [167]. In this sense, the anti-inflammatory effect of the
α-phellandrene can be explained, at least in part, by the reduction of the pro-inflammatory
cytokines TNF-α and IL-6. Consistent with these results, recently, Gonçalves and collabora-
tors (2020) reported the modulatory effect of α-phellandrene on TNF-α and IL-1β secretion
using an experimental model of hemorrhagic cystitis in mice [163]. In addition, the treat-
ment with α-phellandrene reduced the number of degranulated mast cells when mesenteric
tissues were incubated with compound 48/80 (a stimulator of mast cell degranulation) [166].
Thus, these results suggest that α-phellandrene promotes mast cell stabilization, reducing
the release of pro-inflammatory mediators and modulating inflammatory response.

Bergapten is a furocoumarin that consists of the main component of bergamot essential
oil (Citrus bergamia Risso & Poit.) [168] and Cnidium monnieri (L.) Cuss. [169], a member
of the Umbelliferae family of plants. Due to its pharmacological activity, bergapten has
been used for the management of skin disorders, such as psoriasis, dermatitis, mycosis,
and vitiligo. Experimentally, recent studies have reported its anti-inflammatory [170] and
anti-allergic [171] effects, and its prevention of osteoporosis [172]. A possible mechanism
by which bergapten controls inflammation was recently reported by Adakudugu and
collaborators (2020) using an animal model of colitis. Rats treated with bergapten had
a reduction in macro- and microscopic colonic lesions and colon weight-to-length ratio,
an indicator of colonic edema, promoted by the damaging agent acetic acid. Associated
with this, bergapten decreased the number of degranulated mast cells, compared to the
acetic acid group [173]. Mast cells are strongly associated with irritable bowel disease (IBD).
Barbara and collaborators (2004) demonstrated the effects of these resident cells and their
degranulated state: increase in histamine and tryptase significantly increased the colonic
mucosa of IBS patients [174]. Thus, it is possible that bergapten promotes mast cell granule
stabilization, reducing the release of pro-inflammatory mediators, which culminates in
reduced colonic damage.
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8.2.2. Interaction with Sensory Receptors

Carvacrol is a monoterpene phenol found in aromatic plants’ essential oils, including
those of Origanum dictamnus L., O. majorana L., Satureja montana L., and Thymus vulgaris
L. [175]. The biological activities of this monoterpene include antinociceptive [176], anxi-
olytic [177], and anti-inflammatory [178] effects. The possible interaction of carvacrol and
its semisynthetic derivative, carvacryl acetate, with membrane receptors has been stud-
ied [179,180]. The administration of carvacrol or carvacryl acetate reduced 5-fluorouracil-
induced intestinal mucositis, as observed by inhibition of inflammatory (i.e., TNF-α, IL-1β,
KC, MPO, NF-Kb, and COX-2) and oxidative stress (i.e., GSH and MDA) markers. Addi-
tionally, the pharmacological blocker of the TRPA1 receptor with HC-030031 reversed the
protective effect of carvacrol or carvacryl acetate. The TRPA1 receptor acts as a chemosen-
sor for cell damage signals in the lumen gastrointestinal and modulates digestive func-
tions [181], in addition to involvement in the regulation of vascular tone by the release of
vasodilator neuropeptides [182]. Additionally, results of molecular docking revealed that
carvacrol binds, with a strong affinity to amino acid residues, to the active site of the TRPA1
receptor [179,180]. Together, these results strongly suggest that the anti-inflammatory
effects of carvacrol and carvacryl acetate are mediated, at least in part, by its interaction
with the TRPA1 receptor.

Eucalyptol is a monoterpene oxide that is the major constituent of essential oils of
medicinal plants such as Eucalyptus tereticornis Sm., Eucalyptus globulus Labill. [183], and
Croton rhamnifolioides Pax & K.Hoffm. [184]. This monoterpene is used as a therapeutic
alternative for respiratory diseases (i.e., asthma, bronchitis, and sinusitis) and pain manage-
ment [183,185]. The anti-inflammatory effect of eucalyptol and possible action mechanism
was evaluated using two animal models of inflammation: (1) Complete Freund’s Adjuvant
(CFA)-induced paw inflammation and (2) Lipopolysaccharide (LPS)-induced pulmonary
inflammation [186]. Using the first experimental model, the authors showed that eucalyp-
tol strongly reduced paw edema, mechanical allodynia, and pro-inflammatory cytokines
(IL-1β, TNF-α, IL-6) levels. In addition, the eucalyptol administration reduced the poly-
morphonuclear (PMN) infiltration, primarily neutrophils, as well as pro-inflammatory
cytokines in the bronchoalveolar lavage fluid (BALF) of mice submitted to pulmonary
inflammation. After elucidating the anti-inflammatory effect of eucalyptol, the authors
used TRPM8−/− mice to investigate the possible key role of the TRPM8 receptor in this
effect. Eucalyptus is known to interact with TRP receptors, including TRPM8, where it has
a reducing effect on visceral hypersensitivity [187]. In addition, studies have shown that the
activation of the TRPM8 receptor can suppress the inflammatory response in colitis mod-
els [188] and during cold stress [189]. In this sense, Caceres and colleagues demonstrated
that genetic deletion of the TRPM8 receptor completely abolished the anti-inflammatory
effects of eucalyptol in both models and suggested that TRPM8 agonists can be a potential
target for inflammatory conditions [186].

8.2.3. Suppression of the NLRP3 Inflammasome

Cinnamomum osmophloeum Kanehira is a native plant species in Taiwan, popularly
known as pseudo-cinnamomum or indigenous cinnamon, used in traditional medicine as a
therapeutic alternative to treat arthritis and relieve pain and fever. Several research groups
have added to the study of the biological activities of essential oils from C. osmophloeum
and their main compounds.

In this context, Lee and collaborators (2015) studied the key mechanism involved
in the control of inflammatory response promoted by essential oil from C. osmophloeum,
linalool chemotype, which also includes cinnamaldehyde as a constituent. Using an
experimental model of systemic inflammatory response syndrome (SIRS)-induced endo-
toxin from Salmonella typhimurium, the authors reported that the essential oil reduced
pro-inflammatory cytokine levels, suppressed the TLR4, MD2, and MyD88 expression in
mesenteric lymph nodes (MLNs) and ileum mucosa, and reversed the activation of NF-κB
in both tissues. In addition, essential oil from C. osmophloeum suppressed NLRP3, ASC, and
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caspase-1 expression in MLNs and ileum [190]. During the SIRS, the endotoxin interacts
with TLR4, which recruits and ligates to Myd88, a signaling cascade for activation of NF-κB
and, consequently, gene overexpression of pro-inflammatory mediators. In addition, TLR4
is involved in the activation of NRPL3 inflammasome, a complex of NRLP3, ASC, and
pro-caspase-1, culminating in cleavage of precursors pro-IL-1β and pro-IL-18 into mature
IL-1β and IL-18 [191]. Studies reported that linalool, the main constituent of essential
oil from C. osmophloeum, reduces the LPS-induced lung and liver inflammation [192,193].
These results strongly suggest that the protective response promoted by essential oil from
C. osmophloeum is dependent on linalool content.

Pulegone is a monoterpenic compound, serving as the major component of essential
oils from plants of Mentha and Schizonepeta genera [194]. Studies reported the potential
biological activity of this monoterpene, such as antispasmodic [195], analgesic [196], and
reduction of atopic dermatitis [197]. The anti-inflammatory activity of pulegone was
recently reported by Yang and colleagues (2019) in an animal model of LPS-induced sepsis.
Pulegone ameliorated histological changes in lung tissues and reduced the levels of IL-1β,
IL-5, MIP-1β, M-CSF, and GM-CSF in the serum of septic mice. Additionally, pulegone also
reduced the mRNA and protein expression of ASC, NLRP3, caspase-1, and P2X7R [198]. In
another study, the modulatory effects of pulegone on the NLRP3 inflammasome signaling
pathway were investigated in an in vitro model of inflammation in THP-1 cells, established
using LPS + ATP or the cellular toxin nigericin. Compared to LPS + ATP/nigericin group,
pulegone was able to reduce the secretion of IL-1β and IL-18, as well as ROS levels. Using
molecular tools (PCR analysis and immunofluorescence), the authors demonstrated that
pulegone reduced the expression of NLRP3, ASC, caspase-1, and IL-1β, as well as co-
localization of the NLRP3 and ASC proteins [199]. Thus, these studies reported the ability
of pulegone to regulate inflammation by mechanisms that depend, at least in part, on the
suppression of the NALP inflammasome.

8.2.4. Effects on NF-κB Signaling Pathway

Citrus aurantium L. var. amara Engl is a member of the family Rutaceae, widely dis-
tributed in Southeast Asia, especially in China, and used in the popular medicine and food
industry. This species is known in the literature as a rich source of bioactive compounds,
such as flavonoids [200], polysaccharides, [201], and essential oils [202]. Shen and col-
leagues (2017), using an in vitro model of LPS-stimulated RAW264.7 macrophages, showed
that essential oil from C. aurantium suppressed the secretion of pro-inflammatory cytokines
(IL-6, TNF-α, and IL-1β), NO production, and COX-2 expression. According to the authors,
this potent anti-inflammatory effect promoted by essential oils is related to the inhibition
of the NF-κB signaling pathway, determined by the inhibitory effect on NF-κB nuclear
translocation, IκBα phosphorylation and degradation, and phosphorylation-dependent IκB
kinase activation. Associated with this, the essential oil from C. aurantium also inhibited
the phosphorylation of JNK and p38, which suggests an inhibitory effect on MAPK. The
NF-κB signaling pathways play a pivotal role in regulating the expression of several genes
involved in the initiation and development of the inflammatory response, such as proin-
flammatory cytokines, chemokines, and adhesion molecules [203]. The results also revealed
that linalool (64.6 ± 0.04%), α-terpineol (7.61 ± 0.03%), (R)-limonene (6.15 ± 0.04%), and
linalyl acetate (5.02 ± 0.03%) are major constituents of this essential oil [201]. In summary,
these results suggest that essential oil from C. aurantium reduces the LPS-induced inflam-
matory response in RAW264.7 macrophages by suppression of MAPK/NF-κB signaling
pathways, and its components can act in association or individually to induce this biological
effect [201].

Eucalyptus, a genus of the family Myrtaceae, represents several species widely dis-
tributed in the world which are of importance economically and for human health. Among
them, the species Eucalyptus citriodora Hook. (known as lemon-scented eucalyptus) has
been reported in the literature for the extraction of essential oils and their biological po-
tential, such as pesticidal [204], antifungal [205], analgesic, and anti-inflammatory [206].
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Recently, Ho and collaborators (2020) reported the anti-inflammatory mechanism of Euca-
lyptus essential oil against LPS-stimulated RAW264.7 macrophages. The authors initially
demonstrated that Eucalyptus essential oil inhibits LPS-induced NO production. Poste-
riorly, the essential oils were fractionated in eight subfractions (A-H), where fraction F
presented high NO inhibitory activity, without affecting cell viability. Furthermore, it re-
duced the TNF-α and IL-6 levels, and the COX and NOS expression. Using NF-κB reporter
cells (RAW Blue macrophages), the authors showed that NF-κB transcriptional activity was
inhibited by fraction F in LPS-stimulated macrophages. This effect was confirmed by the
suppressive effect of fraction F on phosphorylation levels of IKK-α and IκB-α. In addition,
the mechanism of this anti-inflammatory effect was best elucidated by the demonstration
of inhibited phosphorylation levels of JNK1/2, p38, and PKC by fraction F, which, when
phosphorylated, promote downregulation of the NFkB signaling pathway, reducing the
gene transcription essential to inflammatory response maintenance. In this study, the
authors also elucidated the chemical composition of fraction F: methylsyringol (41.3%),
4-hydroxyl-benzenemethanol (24.4%), citronellic acid (12.7%), trans, cis-iridolactone (7.6%),
menthol (4.6%), 2-phenyl ethyl anthranilate (2.2%), manool (1.8%), citronellyl anthrani-
late (1.1%), and citronellyltiglate (1.1%) [207]. To our knowledge, there are no reports
of biological activities of the first three major compounds. Among the others, menthol
is the most studied, and several studies have demonstrated its potential for regulating
inflammation by inhibiting the synthesis/release of inflammatory mediators, such as IL-1β,
COX-2, PGE2, and TNF-α in animal models of colitis [208], cutaneous carcinoma [209], and
cystitis [210]. It was reported that essential oil extracted from Artemisia annua L. inhibits
osteoclast differentiation. It was suggested that this action occurs via reduced TRAF6
activation and interaction on the MAPK pathway and NF-κB pathway. In addition, it
probably also inhibits the expression of osteoclast-related genes. The essential oil of this
plant has several volatile components, such as borneol, terpinen-4-ol, and eucalyptol. These
compounds have anti-inflammatory action via different mechanisms of action [211,212].
Therefore, they can contribute to the pharmacological activity.

8.2.5. Regulation of the Intestinal Microbiota and Barrier Function

Using an experimental model of colitis, Zhang and colleagues reported that essential
oil of Zanthoxylum bungeanum Maxim. pericarp (ZBEO) ameliorated clinical features of
DSS-induced colitis, such as weight loss, disease activity index (DAI), colonic edema,
and histopathological alterations. Furthermore, the MPO activity (an enzyme present
in granules of PMN) and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-12) levels
were reduced in animals treated with ZBEO. This anti-inflammatory effect promoted
by ZBEO is fundamental for the regulation of colonic inflammation, since it is known
that pro-inflammatory cytokines play a critical role in inflammatory bowel disease (IBD),
where they promote the signaling for polymorphonuclear migration to the inflamed site,
producing oxidative stress and consequent tissue damage [213]. The authors also studied
the barrier function associated with colon damage and demonstrated that ZBEO recovered
the expression of TJ protein, ZO-1. Maintaining the integrity of the intestinal mucosa is
crucial to prevent the entry of bacteria or other harmful agents. Thus, when there is a
disorganization in the rearrangement of junctional proteins, the deep layers of the intestinal
wall are reached by luminous contents, leading to a disease state, both intestinal and
systemic [214]. It is known that the intestinal microbiota plays a key role in the protection of
the epithelium against aggressive stimuli. In this context, the authors showed that animals
treated with ZBEO modulated the intestinal bacterial composition, suppressing the E. coli
and increasing Lactobacillus and Bifidobacteria levels [215]. These results suggest that ZBOE
can be an important product for the pharmaceutical and nutritional industries, due to its
potential to regulate microbiota and intestinal inflammation.

Thymol is a natural monoterpene phenolic compound, serving as the main constituent
of the essential oils from plants of the genera Lippia and Thymus. Studies have shown the bio-
logical activity of thymol in models of depression [216] and sciatic nerve excitability [217], as
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well as a potential antileishmanial agent [218]. Recently, Omonijo and collaborators, using
an LPS-induced inflammation model in IPEC-J2 cells, demonstrated that thymol reduced
ROS production and pro-inflammatory cytokine levels altered by LPS. These results sug-
gest that thymol, a phenolic compound, can reduce oxidative stress due to its antioxidant
effect and possible modulation of inflammatory signaling pathways (i.e., MAPK/NFkB),
leading to a reduction in the inflammatory response and maintenance of cell homeostasis.
Additionally, the authors demonstrated that, with a reduction in the oxidative inflam-
matory response related to LPS, thymol also attenuated the barrier function impairment,
as demonstrated by a reduced drop in the TEER and permeability, as well as increased
ZO-1 and actin. These data reflect the effect of thymol in the maintenance of epithelial
barrier integrity, a pivot factor that reduces the inflammation response. On the other hand,
the expression of nutrient (carbohydrates, amino acids, and proteins) transporters altered
by LPS incubation had not been altered by thymol treatment [219]. Thus, monoterpenes
consist of potential compounds to enhance the intestinal barrier function, associated with
inflammatory response and oxidative stress, reinforcing its use as a nutritional supplement.
In fact, thymol comprises 32.68% of the essential oil of Lippia gracilis Schauer leaves. This oil
has anti-inflammatory activity [220]. In a study carried out with the essential oil of thyme
(Thymus vulgaris L.) and its major component, thymol, both showed anti-inflammatory
action, evidencing the contribution of this monoterpene in the pharmacological action of
the oils that contain it in their chemical composition [221].

9. Conclusions

The diversity of chemical compounds found in essential oils, with components in vari-
able amounts and proportions, explains their variability of biological and pharmacological
activities. The lipophilic profile of these components contributes to their ability to penetrate
cells and tissues to reach biological targets and carry out the pharmacological response.
In addition, the antioxidant activity of some constituents of essential oils suggests their
possible action in restoring balance in pathological disorders associated with oxidative
stress, including inflammatory and tumoral processes. Conversely, the bioactivity in anti-
infectious screenings shows the ease with which essential oils and their constituents cross
the biological membranes of infected cells and/or microorganisms and cause their death.
The evidence of these biological events makes this class of natural products a promising
source in the search for new drug candidates.
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