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A B S T R A C T   

This work discloses a unique, comprehensive proteomic dataset of Acinetobacter baumannii strains, both resistant 
and non-resistant to polymyxin B, isolated in Brazil generated using Orbitrap Fusion Lumos. From nearly 4 
million tandem mass spectra, the software DiagnoMass produced 240,685 quality-filtered mass spectral clusters, 
of which PatternLab for proteomics identified 44,553 peptides mapping to 3479 proteins. Crucially, DiagnoMass 
shortlisted 3550 and 1408 unique mass spectral clusters for the resistant and non-resistant strains, respectively, 
with only about a third with sequences (and PTMs) identified by PatternLab. Further open-search attempts via 
FragPipe yielded an additional ~20% identifications, suggesting the remaining unidentified spectra likely arise 
from complex combinations of post-translational modifications and amino-acid substitutions. This highlights the 
untapped potential of the dataset for future discoveries, particularly given the importance of PTMs, which remain 
elusive to nucleotide sequencing approaches but are crucial for understanding biological mechanisms. Our 
innovative approach extends beyond the identifications that are typically subjected to the bias of a search engine; 
we discern which spectral clusters are differential and subject them to increased scrutiny, akin to spectral library 
matching by comparing captured spectra to themselves. Our analysis reveals adaptations in the resistant strain, 
including enhanced detoxification, altered protein synthesis, and metabolic adjustments. 
Significance: We present comprehensive proteomic profiles of non-resistant and resistant Acinetobacter baumannii 
from Brazilian Hospitals strains, and highlight the presence of discriminative and yet unidentified mass spectral 
clusters. Our work emphasizes the importance of exploring this overlooked data, as it could hold the key to 
understanding the complex dynamics of antibiotic resistance. This approach not only informs antimicrobial 
stewardship efforts but also paves the way for the development of innovative diagnostic tools. Thus, our findings 
have profound implications for the field, as far as methods for providing a new perspective on diagnosing 
antibiotic resistance as well as classifying proteomes in general.   

1. Introduction 

Acinetobacter baumannii is a gram-negative coccobacillary bacterium, 

increasingly recognized as a significant public health concern. 
A. baumannii is commonly found in hospital environments and can cause 
various infections, including hospital-acquired pneumonia (HAP), 
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ventilator-associated pneumonia (VAP), and bacteremia [1]. The 
emergence and spread of antibiotic resistance in A. baumannii are a 
complex phenomenon influenced by genetic and environmental factors. 
This microorganism is notorious for its ability to rapidly develop resis-
tance to antibiotics, making it a challenging pathogen to treat [2]. 

Addressing bacterial resistance to antibiotics is crucial; therefore, 
continued research into new antibiotics, efficient vaccines, alternative 
treatments, faster and more sensitive diagnoses, and promoting the 
appropriate use of antibiotics (Antimicrobial Stewardship) to delay the 
development of resistance are essential [3]. Among the various types of 
antibiotics, Carbapenem was once considered the last therapeutic option 
for treating multidrug-resistant A. baumannii (MDR) infections. How-
ever, in recent years, isolates resistant to this class have emerged, 
leading to the clinical application of polymyxins. With the emergence of 
extensively drug-resistant and even pan-drug resistance, clinicians have 
even been forced to use polymyxin B and E (colistin), an antibiotic group 
that can do kidney and nerve damage, to combat these infections [4]. 
Brazilian researchers described the first outbreak of Carbapenem- 
Resistant Acinetobacter baumannii – CRAB, as early as 1999, which 
produced OXA-23 enzyme [5]. It’s important to note that CRABs are 
always MDR isolates, having developed resistance to multiple antibiotic 
classes before becoming resistant to carbapenems. As an aggravator, the 
COVID-19 pandemic has led to an increase in infections by multidrug- 
resistant bacteria, further impacting the global scenario. Unfortu-
nately, during the pandemic, the uncontrolled use of antimicrobials has 
accelerated the decrease of efficiency of these antibiotic classes as well 
[6]. 

In 2019, Murray’s published data estimated deaths associated with 
bacterial antimicrobial resistance reaching 4.95 million, a figure seven 
times higher than the reports described by the Centers for Disease 
Control and Prevention in 2013 and O’Neill in 2016 [7,8]. Particularly 
alarming is the situation in the southern region of Brazil, where recent 
research revealed an extensive presence of drug-resistant A. baumannii; 
from 2017 to 2020, 659 isolates were analyzed [9]. Polymyxin B 
remained the only antimicrobial with in vitro efficacy. In another report, 
an outbreak of carbapenem-resistant strains in an intensive care unit was 
detailed [10], thus deepening our concerns. With escalating resistance, 
the necessity for stringent surveillance and conscientious antimicrobial 
stewardship becomes even more pressing. 

Brazil, with its extensive population, diverse healthcare infrastruc-
ture, including the Unified Health System (SUS), and its network of 
Central Public Health Laboratories (LACENs), provides a unique setting 
for exploring the emergence and spread of antibiotic resistance in 
A. baumannii. This intricate assembly of public health services and 
diagnostic laboratories nationwide offers a comprehensive and nuanced 
perspective on the country’s ongoing efforts to combat antibiotic resis-
tance. With this as motivation, our data descriptor originates from the 
joint efforts of these systems and aims to contribute to a broader un-
derstanding of the molecular underpinnings of resistance and the drivers 
behind the emergence of multidrug-resistant strains within the country. 
Here, we provide and explore proteomic profiles of A. baumannii strains 
originating from the states of Paraná and Santa Catarina. It is important 
to note the escalating prevalence of polymyxin-resistant A. baumannii 
strains in Brazil, especially in this region. This trend urges a deeper 
understanding of these strains and underscores the need for novel 
therapeutic options. Such knowledge is crucial in devising innovative 
therapeutic strategies, surveillance control, and preserving the efficacy 
of our current antibiotic arsenal and thus should serve as an example for 
similar investigations worldwide [11]. 

Proteomics is a powerful tool for understanding local antibiotic- 
resistant bacteria, providing a comprehensive view of their proteome 
[12]. This information can identify specific proteins involved in anti-
biotic resistance and understand cellular changes in response to anti-
biotic exposure. Proteomics can also serve as a diagnostic tool to detect 
resistance-related proteins, such as beta-lactamases and 
aminoglycoside-modifying enzymes [13]. However, the presence of 

these enzymes doesn’t definitively indicate active resistance, which 
could be latent or suppressed under certain conditions [14]. Moreover, 
resistance could be conferred by post-translational modifications, which 
are undetectable by DNA sequencing approaches, and amino acid sub-
stitutions, which are frequently missed by proteomic search engines 
[15]. Current solutions, such as Bruker’s MALDI Biotyper, exemplify the 
utility of mass spectrometry in bacterial diagnostics. However, these 
systems typically rely on single spectra, which limits their discriminative 
power for diagnosing resistant bacteria. In contrast, shotgun proteomics 
profiles provide a more expansive and detailed analysis of protein 
fragments, enhancing the discriminatory power when identifying and 
classifying bacterial strains. In this vein, the studies by Ping Wang et al. 
and Zhenbo Xu et al. provide comprehensive proteomic analyses of 
Acinetobacter baumannii, revealing significant differences between drug- 
resistant and drug-susceptible isolates, and identifying differentially 
expressed proteins that may influence drug resistance, particularly those 
located in the periplasmic or outer membrane of the cell [16,17]. 

This data descriptor presents proteomic profiles of polymyxin- 
resistant A. baumannii strains from Brazilian hospitals, highlighting 
regional variations. By cross-examining proteomic data across diverse 
strains and resistance profiles, our dataset uncovers unique evolutionary 
trends and adaptations under antibiotic pressure. These insights inform 
Antimicrobial Stewardship in Brazilian healthcare settings and can be 
instrumental in developing diagnostic tools and slowing the develop-
ment of further resistance. 

We utilized DiagnoMass [18] to investigate the proteomic data, 
grouping similar spectra into spectral clusters, transcending the limita-
tions of traditional search engines that introduce bias towards identifi-
able portions of the provided sequence database. DiagnoMass interfaced 
with PatternLab for Proteomics V (PLV) for peptide spectrum matching 
[19] and FragPipe for open search [20], shortlisting spectral clusters 
unique to a biological condition. Notably, we aim to discover and 
highlight those unique mass spectral clusters that remain unidentified 
by both search engines, offering an unbiased perspective for comparing 
biological conditions and shedding light on potential biomarkers for 
understanding and combating drug resistance in A. baumannii. This 
methodology offers an unbiased perspective for comparing biological 
conditions and promises to shed light on potential biomarkers key in 
understanding and combating drug resistance in A. baumannii. As such, 
we argue that this is pivotal for surveillance purposes and can serve as a 
resource for the development and refinement of diagnostic tools. Such 
data can form the foundational blocks for integration with machine 
learning algorithms, predicting antibiotic resistance based on compre-
hensive proteomic profiles. 

2. Methodology 

2.1. Sample acquisition and preparation 

We were granted permit A64AE41 from the Brazilian National Sys-
tem of Management of Genetic Heritage and Traditional Knowledge 
(SisGen), which authorized us to assess samples of A. baumanni. The 
bacterial strains (14 resistant and 14 non-resistant to polymyxin B) were 
obtained from the “Laboratório Central do Estado do Paraná”. Stored at 
− 80 ◦C in Brain Heart Infusion (BHI) medium, the strains were thawed 
and streaked onto MacConkey agar medium using a 10 μL bacteriolog-
ical loop. Following incubation for 24 h at 36 ◦C, growth and isolate 
purity were assessed. Bacterial lysis was carried out following the SPEED 
protocol [21]. Subsequently, sample quantification was performed using 
the fluorometric Qubit assay, as per the manufacturer’s instructions. 
One hundred micrograms of each sample were reduced with dithio-
threitol (final concentration 10 mM) for 30 min at 60 ◦C, cooled to room 
temperature (20 ◦C) followed by alkylation with iodoacetamide (final 
concentration 30 mM) for 25 min. Finally, the samples were digested 
overnight with trypsin in a 1/50 (E/S) ratio at 37 ◦C. The reaction was 
interrupted with trifluoroacetic acid (TFA) 10% (final concentration of 
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1%), followed by centrifugation for 15 min at 18,000 x g and again 
quantified by the fluorometric Qubit assay. Ten micrograms of each 
sample were desalted with Stop and Go Extraction Tips (Stage Tips) as 
described by Rappislber and collaborators [22]. 

2.2. Mass spectrometry acquisition 

The peptides were subjected to LC-MS/MS (Liquid chromatography 
with tandem mass spectrometry) analysis with an UltiMate 3000 
(Thermo Fisher®)) ultra-high-performance liquid chromatography 
(UHPLC) system coupled with an Orbitrap Fusion™ Lumos™ mass 
spectrometer (Thermo, San José), as follows. The peptide mixtures were 
loaded into a column (75 mm i.d., 30 cm long) packed in-house with a 3 
μm ReproSil-Pur C18-AQ resin (Dr. Maisch) with a flow of 250 nL/min 
and subsequently eluted with a flow of 250 nL/min from 5% to 40% ACN 
in 0.1% formic acid in a 140 min gradient [23]. The mass spectrometer 
was set in data-dependent acquisition (DDA) mode to automatically 
switch between full-scan (MS) and MS/MS (MS2) acquisition. Survey MS 
spectra (from m/z 300–1500) were acquired in the Orbitrap analyzer 
with a resolution of 120,000 at m/z 200. The most intense ions captured 
in 2 s cycle time were chosen, excluding unassigned ones that had a 1+
charge state. The ions were sequentially isolated and fragmented using 
higher-energy collisional dissociation (HCD) with normalized energy of 
30. The fragment ions were analyzed with a resolution of 15,000 at 200 
m/z. The general mass spectrometric conditions were spray voltage, 2.5 
kV; no sheath and auxiliary gas flow; ion transfer tube temperature of 
250 ◦C; predictive automatic gain control (AGC) enable, and S-lens RF 
level of 40% Mass spectrometer scan functions and nLC solvent gradi-
ents were regulated using the XCalibur 4.1 data system (Thermo, San 
José). Two technical replicates were acquired for each biological 
replicate. 

2.3. Data analysis 

2.3.1. Dataset quality control with rawvegetable 2.0 
To ensure the quality control of our mass spectrometry data, espe-

cially between the technical replicates of the experiments, we utilized 
RawVegetable, a specialized software tool tailored for mass spectrom-
etry data assessment [24]. This tool provided us with several key 
modules. The charge state chromatogram module, as well as the TopN 
density estimation module, enabled us to optimize chromatography. The 
TopN is particularly interesting, as it enables the control of how many 
MS/MS scans are being generated by cycle, which in turn helped us 
identify retention time intervals of under or over-sampling, facilitating 
necessary gradient adjustments. The chromatography reproducibility 
module allowed for pairwise comparisons between multiple experi-
ments, ensuring the consistency and reliability of our data. And lastly, 
we were able to assess the quality of MS/MS spectra by looking at their 
Xrea scores [25] throughout the run and the precursor signal ratio dis-
tribution to analyze the fragmentation efficiency. 

2.3.2. Protein and peptide identification with PatternLab for Proteomics V 
We utilized PatternLab for Proteomics V (version 5.0.0.152) for 

peptide spectrum matching due to its proven reliability and accessibility 
[26]; the software is freely available at http://patternlabforproteomics. 
org. Data analysis followed the software’s protocol [19], with the 
exception of the new search feature that enables multiplexed spectra 
identification through the Y.A.D.A. 3.0 deconvolution algorithm 
[26,27]. 

A. baumannii sequence (TG28175–5909 in total) were sourced from 
UniProt in March 2023, supplemented with 127 common mass spec-
trometry contaminants and searched using PLV’s embedded Comet [28]. 
The search included semi-tryptic and fully-tryptic peptide candidates, 
allowing up to 2 missed cleavage sites. Variable modifications included 
oxidation of methionine and deamidation of asparagine and glutamine, 
while carbamidomethylation of cysteine was considered a fixed 

modification. 
Validation of peptide-spectrum matches (PSMs) was conducted using 

the Search Engine Processor (SEPro) integrated into PLV [29]. This 
aimed to generate a list of identifications with <1% false discovery rate 
(FDR) at the protein level. Identifications were grouped by charge state 
(2+ and ≥ 3+) and tryptic status, forming four distinct subgroups. Each 
group was sorted based on a Bayesian discriminator generated from 
XCorr, DeltaCN, DeltaPPM, and Peaks Matched values. A cutoff score 
was set to accept a 2% FDR at the peptide level, based on the number of 
labeled decoys. This process was independently performed on each data 
subset, resulting in an FDR independent of charge state or tryptic status. 
Additional requirements included a minimum sequence length of six 
amino-acid residues and PSMs with <10 ppm from the global identifi-
cation average. One-peptide identifications (proteins identified with 
only one mass spectrum) with an XCorr of <2 were discarded, leading to 
FDRs at the protein level of <1% for all search results. 

2.3.3. Differential proteomics 
We utilized the “Peptide-Centric Differential Proteomic Analyzer” 

module, integrated within the XIC Explorer from PLV, to identify 
differentially abundant proteins. This module initiates the process by 
normalizing peptide quantification values according to the respective 
Total XIC for each run. For our analysis, we only considered peptides 
that were found in at least eight biological replicates (more than half) of 
both condition and exhibited a minimum absolute 2.3-fold change 
(Log2(1.2)). Subsequently, a single-sample t-test was applied to the fold 
changes of peptides within each protein. By treating each peptide as an 
independent observation, we minimized error propagation, thereby 
enhancing the reliability of our analysis. Proteins with <3 peptides were 
not considered. The method also incorporates the principle of maximum 
parsimony for protein inference. To control the false discovery rate at 
the protein level, we employed the Benjamini-Hochberg procedure with 
a q-value threshold of 0.05. This rigorous approach ensures the reliable 
identification of differentially abundant proteins. 

For proteins uniquely identified to a single condition, we only 
considered those present in at least five biological replicates. 

2.3.4. Leveraging DiagnoMass for exploratory and condition-specific 
spectral clustering 

Shotgun proteomic data was processed using DiagnoMass, a tool for 
spectral clustering. Parameters were set to optimize results: BinOffset at 
112.456, BinSize at 1.0005, and BinMaxMZ at 1612.2055 defined the 
binning strategy. A SimilarityThreshold of 0.75 ensured high similarity 
within clusters. Only tandem mass spectra derived from precursors with 
charge states from 2+ to 5+ and having 10 and more peaks above 500 
m/z were considered. PrecursorTolerance was set at 0.002 m/z to 
accommodate minor variations in precursor m/z values. RetentionTi-
meTolerance was set at 10 min, accounting for variability in liquid 
chromatography separation times. These parameters culminated in 
spectral clusters, which were then annotated using PatternLab V. Only 
spectral clusters belonging to five or more biological replicates of a given 
biological condition and not identified in any other biological replicate 
from the other condition were shortlisted for further evaluation using 
open-search. This threshold (5 out of 14) is justifiable based on a chi- 
squared statistical test, resulting in a p-value of 0.0135. 

2.3.5. Annotating discriminative and unidentified spectral clusters through 
open-search 

Open-search is a versatile method that allows for the identification of 
unexpected post-translational modifications and sequence variants. For 
this purpose, we employed FragPipe, a comprehensive tool for large- 
scale proteomic data analysis [20]. We adhered to its default parame-
ters for open-search, using the same FASTA sequence database as pre-
viously mentioned. This approach aimed to maximize the identification 
and annotation of unidentified spectral clusters, thereby enhancing our 
understanding of the proteomic landscape under investigation. 

A.D. Lin et al.                                                                                                                                                                                                                                   

http://patternlabforproteomics.org
http://patternlabforproteomics.org


Journal of Proteomics 289 (2023) 105012

4

3. Results 

3.1. Mass spectral quality control 

Initial comparisons of the full chromatograms between the technical 
replicates, as exemplified by Fig. 1, show not only the great similarity 
between the runs, but also very well-defined peaks, which indicates 
good reproducibility between the samples and great separation of the 
molecules. A full quality control analysis done in RawVegetable [24] 
also presents charged chromatograms, which indicate when most of the 
species of each individual charge eluted. In these samples, the charged 
chromatograms showed an abundance of 2+ and 3+ species throughout 
the whole chromatography, as expected of linear peptides, which also 
indicates a successful digestion of the samples. 

The TopN density estimation of this data presented a satisfactory 
spectra acquisition throughout the experiment, with an average of 30 to 
35 MS/MS scans per MS spectrum for most of the chromatography run, 
which translates in a great amount of spectra generated for the peptide 
identification step. 

In terms of the quality of the MS/MS spectra generated, the distri-
bution of Xrea scores showed that most MS/MS spectra had a good 
overall quality and indicated that the higher quality of spectrum was 
generated by the first 70 min of the run. The distribution of precursor 
signal ratio in the MS/MS scans shows that, in all samples, most of the 
scans had <2.5% of precursor signal left, which indicates a satisfactory 
fragmentation of the peptides, thus possibly generating better signal for 
the fragments and a better spectrum for the identification step. 

All of these analyses demonstrate that the samples had very efficient 
LC-MS runs and no major issues were detected, which makes the data 
ready for further steps in the study. 

A full summary of the quality control analysis, complete with images 
for each pair of replicates can be found in the supplementary material. 

3.2. Protein identification and differential abundance analysis using 
PatternLab for proteomics 

Our analysis with PatternLab for Proteomics V yielded 928,831 
identified tandem mass spectra, which corresponded to 44,553 peptides 

mapping to 3479 proteins across all analyses. The comprehensive list of 
proteins and peptides is available at ‘All Proteins’ and ‘All Peptides’ tabs 
of the Supplementary Spreadsheet, respectively. We identified 151 
proteins that were exclusively identified in the resistant strains, 
considering only those found in five or more biological replicates spe-
cific to that condition (see ‘Unique Resistant’ tab). Conversely, a single 
protein (A0A0D5YDM4, Signal peptide) was exclusively identified in the 
non-resistant condition. We shortlisted 241 proteins identified in both 
conditions but exhibiting increased abundance in the resistant strains 
(‘Up Resistant’ tab), and 3 with increased abundance in the non-resistant 
strains (‘Up Non-Resistant’ tab). 

3.3. Discriminant clusters via DiagnoMass 

DiagnoMass was employed to cluster spectra based on precursor’s 
charge state, m/z, and spectral angle. Not all spectra were assigned to 
clusters; for instance, only spectra with 10 or more m/z peaks above 500 
were considered, and clusters had to contain at least two mass spectra. 
Our full dataset comprised 3,884,700 tandem mass spectra generated 
from both resistant and non-resistant strains. Of these, DiagnoMass 
considered 1,535,653 for generating the clusters, resulting in a total of 
240,685 spectral clusters. Given that PatternLab identified a total of 
44,553 peptides across all experiments, which could theoretically 
translate to around 89,106 spectral clusters (assuming that typically the 
same peptide is observed with 2 charge states), it’s evident that the 
identified peptides explain only a little more than a third of the spectral 
clusters. This leaves a significant amount of information unexplored. 

We propose that the most relevant information, not only in our work 
but also in other proteomic studies addressing conditions like cancer, 
might not be present in public databases. Alternatively, it might be tied 
up in post-translational modifications (PTMs) that are often missed by 
search engines due to their complexity or a combination of PTMs. These 
overlooked PTMs could play crucial roles in biological phenomena, such 
as enhancing bacterial resistance mechanisms as very well depicted in 
the work from Abouelhadid et al. [30]. 

Our dataset supports this hypothesis. For instance, the PCAs gener-
ated by PatternLab and DiagnoMass show a clear difference (Fig. 2). 
While PatternLab only considers information from identified peptides, 

Fig. 1. Ion chromatogram comparison of technical replicates of Acinetocaber baumannii resistant to polymyxin B.  
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Fig. 2. DiagnoMass vs PatternLab PCA plots of Polymyxin B Resistant A. baumannii. - This figure presents a side-by-side comparison of A. baumannii strains that are 
resistant and non-resistant to polymyxin B, as visualized through screenshots of DiagnoMass (top) and PatternLab (bottom). The upper panel displays a DiagnoMass- 
generated PCA scatterplot, generated from spectral clusters from peptides (identified or not) depicted as red (resistant) and green (non-resistant) dots, indicating a 
clear proteomic distinction between the strains. Conversely, the lower panel shows a PatternLab-generated plot, based solely on identified peptides, where the 
resistant and non-resistant strains are represented by green and light-brown dots, respectively, with no evident separation. The numbers in the upper panel are 
associated with file names. The numbers associated with the dots in the lower panel are consecutive numbers, serving as a visual aid to indicate the grouping of 
technical replicates. Specifically, pairs of sequential numbers are expected to group closely together, representing technical replicates of the same sample. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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DiagnoMass bases its analysis on spectral clusters. This difference in 
approach allows DiagnoMass to reveal information that is typically 
missed by conventional proteomics workflows, thereby providing a 
more comprehensive understanding of the biology at hand. Importantly, 
both PatternLab and DiagnoMass were developed by our group, utilizing 
the same underlying libraries. This ensures consistency in the analytical 
approach and gives us confidence in the reliability and validity of the 
DiagnoMass approach. 

Utilizing DiagnoMass, we generated a heatmap and histogram, 
focusing on clusters derived from spectra found in at least five instances 
of the same biological condition (Fig. 3). This analysis suggests a cor-
relation within the proteomic profiles of the resistant and non-resistant 
strains. As indicated in Fig. 3, DiagnoMass shortlisted 3550 and 1408 
clusters exclusive to the resistant and non-resistant strains, respectively. 
Out of these, PatternLab could confidently identify spectra from only 
1281 and 193 clusters, respectively. A detailed manual review indicates 
the presence of numerous high-quality, yet unidentified, mass spectra. 
For instance, we present an example of a consensus mass spectrum from 
cluster 12,192, originating from 15 tandem mass spectra distributed 
among 10 biological replicates of the Resistant form and found in no 
non-resistant form. This consensus spectrum originates from parent ions 

with a 3+ charge and an m/z of 478.608; all of them remained un-
identified (Fig. 4). Motivated by these findings, we exported all un-
identified spectra from the unique clusters for further analysis using 
FragPipe, an open-search tool designed to search for variants not found 
in our sequence database. The exported mass spectra are provided in 
Supplementary2-UnidentifiedResistant.mgf and Supplementary3- 
UnidentifiedNonResistant.mgf. 

3.4. Unveiling hidden Proteomic profiles: the power of open-search 

Employing FragPipe’s open-search capabilities, we identified 1004 
peptides originating from the 3550 clusters exclusive to the resistant 
strains. These results underscore the value of integrating complemen-
tary search strategies alongside the prevalent peptide spectrum match-
ing approach in proteomic identification. However, they also highlight 
the potential for further refinement in current proteomic identification 
tools. We speculate that the unidentified mass spectra may predomi-
nantly stem from peptides bearing a combination of post-translational 
modifications (PTMs) and amino acid substitutions. The peptides iden-
tified by FragPipe are made available in the ‘Open-Search Resistant’ tab 
of the Supplementary Spreadsheet. 

Fig. 3. Heatmap and Histogram of Spectral Clusters - This figure presents a heatmap of all bacterial samples analyzed in the study, generated using DiagnoMass. The 
heatmap visualizes the similarity in proteomic profiles between each pair of samples, with colour intensity indicating the degree of similarity. On the right, two bars 
represent the number of spectral clusters unique to each condition, i.e., the resistant (blue) and non-resistant (red) bacteria. The figure illustrates the significant 
differences in the proteomic profiles, especially the greater abundancy in unique spectral clusters in the resistant condition, highlighting the presence of numerous 
discriminative and yet unidentified mass spectral clusters. The results underscore the potential of this overlooked data in understanding antibiotic resistance. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4. Discussion 

4.1. Importance of polymyxin-resistance in CRAB 

Carbapenem drugs have been broadly used to treat serious gram- 
negative infections in the 1990’s and 2000’s. Unfortunately, 
carbapenem-resistant strains have been increasingly isolated in Brazil 
and worldwide [31,32]. One of the last-resort treatments for CRABs is 
polymyxin and cefiderocol. However, the latter is not available in Brazil 
and many other low- and middle-income countries. So, polymyxin is of 
prominent importance to treat this multi-drug resistant organism. The 
empirical use and abuse of polymyxin during COVID-19 to treat CRABS, 
precluded outbreaks of polymyxin-resistant Acinetobacter baumannii. 
Since the laboratory test to evaluate polymyxin susceptibility needs a 
broth microdilution method, not easily available at microbiology labs in 
LMIC, alterantive methods are welcome. 

4.2. Proteins exclusively identified or more abundant in the resistant 
strains 

The intricate network of proteins in polymyxin B-resistant 
A. baumannii presents a multifaceted portrait of the mechanisms un-
derlying antibiotic resistance. Each protein, with its unique identifier, 
contributes to a narrative of adaptation and resilience in the face of 
antibiotic stress. 

Among the proteins exclusively identified in the resistant strain we 
spotlight the Aldehyde dehydrogenase family protein (A0A429MLH1). 
By enhancing the bacterium’s detoxification capabilities, it serves as a 
protective shield against the stress induced by polymyxin B. This shield 
is further fortified by the Glutamate-cysteine ligase (A0A3R9TSX1), 
which synthesizes glutathione, a molecule crucial for maintaining 
cellular redox balance and detoxifying reactive oxygen species. 
Together, these proteins form the bacterium’s first line of defense 
against the antibiotic. 

Simultaneously, the bacterium is also adjusting its protein synthesis, 

as suggested by the presence of the 16S rRNA (Cytosine(1402)-N (4))- 
methyltransferase (A0A3R9RYT7). This alteration in protein synthesis 
could be a response to the changes in the bacterium’s metabolic and 
transport processes, indicated by the presence of the D-lactate dehy-
drogenase (A0A429MKP4) and the ATP-binding cassette domain- 
containing protein (A0A3R9TP97). By adjusting these processes, the 
bacterium is likely optimizing its resources to withstand the effects of 
polymyxin B. 

Further supporting this optimization are the Bifunctional riboflavin 
kinase/FMN adenylyltransferase (A0A429MRU0) and the Malate de-
hydrogenase (quinone) (A0A429MNJ3). These enzymes could be 
indicative of metabolic adjustments in the resistant strain, fine-tuning its 
energy production to cope with the antibiotic stress. 

These mechanisms, notwithstanding, is further supported by several 
other proteins in our results that were shortlisted as having increased 
statistical abundance in the resistance strain and are also henceforth 
discussed. The ATP synthase gamma chain (V5VHZ7) and ATP synthase 
subunit b (V5VHG5) are integral components of the cell’s energy pro-
duction machinery. As part of the ATP synthase complex, these molec-
ular motors drive the synthesis of ATP, the primary energy currency of 
the cell. Their increased abundance in the resistant strain suggests an 
increased demand for energy, likely to fuel various resistance mecha-
nisms. This is not an isolated phenomenon, but rather a component of a 
broader response involving numerous other proteins. 

For instance, the long-chain fatty acid transporter (A0A3R9RY45) 
and the RND transporter (A0A3R9S1X2) exhibit increased abundance in 
the resistant strain. These proteins facilitate the transport of molecules 
across the cell membrane. Their increased abundance could be associ-
ated with the efflux of polymyxin B from the bacterial cell, suggesting a 
concerted effort by the bacterium to physically expel the antibiotic from 
its interior. This strategy likely requires a significant amount of energy, 
hence the increased abundance of ATP synthase proteins. 

In addition to these transporters, several proteins involved in protein 
synthesis and folding also exhibit increased abundance in the resistant 
strain. These include various ribosomal proteins such as 50S ribosomal 

Fig. 4. Consensus Spectrum Illustration - The figure above presents a consensus binned spectrum, as provided by DiagnoMass, generated through the averaging of 
intensity values for all mass spectral peaks within a specific spectral cluster. The y-axis denotes relative intensity, while the x-axis represents the corresponding mass 
spectral bin number. This consensus spectrum provides a comprehensive representation of the spectral cluster’s characteristic features. 
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protein L5 (A0A3R9U554), 50S ribosomal protein L4 (V5V9M5), and 
30S ribosomal protein S1 (V5VDL1). The ribosome, the cellular ma-
chinery responsible for protein synthesis, is likely operating at an 
increased rate in the resistant strain. This could be a response to the need 
for more resistance-related proteins, or a general increase in protein 
synthesis as part of the stress response. 

Molecular chaperones like DnaK (A0A3R9S7E3, A0A3R9S0W4) and 
chaperonin GroEL (V5VAH2) also exhibit increased abundance in the 
resistant strain. These proteins assist in the folding of newly synthesized 
proteins and help maintain protein homeostasis under stress conditions. 
Their up-regulation suggests an increased need for protein quality con-
trol mechanisms in the resistant strain, possibly due to the exacerbated 
rate of protein synthesis. 

The cell wall and membrane of the bacterium also play a pivotal role 
in resistance. Several proteins involved in cell wall/membrane biogen-
esis exhibit increased abundance in the resistant strain, including the 
cell division protein FtsZ (A0A429MC99) and the lytic transglycosylase 
(A0A3R9S3W6). Changes in the cell wall/membrane could affect the 
binding of polymyxin B, thus contributing to resistance. 

In addition to these, proteins involved in amino acid synthesis and 
metabolism, such as tryptophan-tRNA ligase (A0A3R9S100), cysteine 
synthase (A0A3R9TNT7), andthreonine synthase (A0A429MJ25), also 
exhibit increased abundance in the resistant strain. This could be due to 
an increased demand for amino acids for protein synthesis, or it could be 
part of a broader metabolic adjustment in response to antibiotic stress. 

The resistant strain also shows an increased abundance of proteins 
with yet uncharacterized functions, such as the DUF3108 domain- 
containing protein (A0A3R9UE05, A0A3R9TM67) and the DUF4198 
domain-containing protein (A0A0D5YHU6). The roles of these proteins 
in resistance are not yet clear, but their increased abundance suggests 
that they might be involved in some way. Further studies are needed to 
elucidate their functions. 

In conclusion, the increased abundance of these proteins in poly-
myxin B-resistant A. baumannii is a testament to the organism’s resil-
ience and adaptability. It underscores the intricate interplay of various 
cellular processes - from energy production and protein synthesis to 
transport mechanisms, stress response, cell wall/membrane biogenesis, 
and amino acid metabolism. Each protein, acting not in isolation but in 
concert with others, contributes to a finely tuned symphony of survival 
mechanisms. This complex and coordinated response highlights the 
bacterium’s strategic adaptation to antibiotic stress, reminding us of the 
multifaceted nature of antibiotic resistance. It underscores the need for a 
holistic approach in the study of antibiotic resistance, one that appre-
ciates the interconnectedness of various proteins and cellular processes. 
As we continue to unravel this complex web of interactions, we move 
closer to understanding the full breadth of strategies employed by bac-
teria in their fight for survival. 

4.3. Proteins more abundant or exclusively identified in the non-resistant 
strains 

In the non-resistant strain of A. baumannii, several proteins were 
exclusively identified, suggesting a different set of mechanisms at play 
compared to the resistant strain. The ExeM/NucH family extracellular 
endonuclease (A0A3R9S704) might be involved in DNA degradation or 
repair processes, potentially contributing to the bacterium’s ability to 
maintain genomic integrity under non-stressful conditions. 

The Lipoprotein-34 (NlpB) (A0A3R9SE74) and two proteins identi-
fied as signal peptides (A0A098SJD0 and A0A0D5YDM4) could be 
involved in protein localization and transport, ensuring that proteins are 
correctly delivered to their functional locations within the cell. 

Interestingly, several proteins in the non-resistant strain are yet to be 
characterized (A0A0D5YLE7, A0A429MLR8, and V5VCQ2). Their roles 
in the non-resistant strain are not yet clear, but their exclusive presence 
suggests that they might be involved in some way. Further studies are 
needed to elucidate their functions. 

4.4. Final remarks 

In conclusion, while Peptide Spectrum Matching (PSM) continues to 
be the most widely adopted method for proteomic data analysis, 
providing a robust foundation for the identification of proteins, it’s 
important to recognize the value of complementary approaches such as 
open-search methods and other search engine unbiased approaches for 
analyzing data such as DiagnoMass. The latter can help uncover addi-
tional identifications that might otherwise be overlooked, albeit can be 
more error-prone. Despite these advancements, a significant portion of 
mass spectra remains unidentified. These elusive spectra, potentially 
carrying a combination of post-translational modifications and amino 
acid substitutions, may hold the key to understanding specific biological 
states, including mechanisms of resistance. As we continue to refine and 
develop our analytical tools, our ability to decode these spectra will 
undoubtedly enhance our understanding of complex biological systems 
and their responses to environmental challenges. 
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