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Insects are infected by a diverse set of RNA viruses that are

more broadly distinguished by their ability to infect single or

multiple host species. During replication into the host cell,

partial or complete double strand DNA derived from the viral

genome may be integrated into their host genomes giving origin

to endogenous viral elements (EVEs). EVEs from RNA viruses

have been identified in a variety of insect genomes showing

different evolutionary trajectories: from highly degraded viral

genomic remains to partial and complete viral coding regions.

Limited functional knowledge exists about RNA EVEs impact

on hosts and circulating viruses, but exciting results are

emerging showing a complex arms race interplay that

influences the evolutionary trajectory of these interacting

entities.
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Genomes in flux – exchange of genetic
material between host and viral genomes
Viruses emerged independently multiple times during

the history of life, they are likely descendants of one the

first nucleic acid replicators and abundant evidence also

shows that many lineages emerged as defective or hybrid

versions of prokaryotic and eukaryotic cells [1,2]. These

host-dependent replicating entities show several charac-

teristics of rapid adaptation due to features such as high

mutation rate and a particular ability to exchange pieces

of its genome with other viruses and their host cell

genomes [3–5]. A continuum arms race between viruses

and hosts have unleashed a number of biological innova-

tions such as the emergence of CRISPR-Cas molecular

defense system in prokaryotes, small regulatory RNA in
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eukaryotes and several co-option events of viral genes

that were repurposed and currently perform critical func-

tion in the host biology such as the formation and function

of mammals placenta [6–9]. But only recently, with the

availability of many prokaryotic and eukaryotic genomes,

researchers truly realized the contribution and impact of

viral-derived sequences integrated into the host genome

on the arms race dynamics and host biology [3].

How EVEs emerge from viruses lacking key molecules

for dsDNA production and integration?

Except for certain viruses, such as retroviruses and bac-

teriophages that code for reverse transcriptases (RT) and

integrases (INT), most viruses are not expected to be

integrated in the genome of their hosts since they lack

those enzymes [10]. Yet, several examples of RNA viruses

EVEs, covering all known genome structure and replica-

tion strategies, can be found in eukaryotic genomes

including insect genomes [3,11]. These elements are

commonly known as non-retroviral integrated RNA virus

sequences (NIRVS) or simply endogenous viral elements

(EVEs).

There are a couple of evidences suggesting that trans-

posable elements (TEs), and more specifically retrotran-

sposons, are involved into reverse transcription and inte-

gration of viral genomic fragments: (I) – viral RNA

genomes are known to be reverse transcribed to viral

double strand DNA (vDNA) by reverse transcriptases

(RT) molecules in insects and the sole major source of

these molecules are those coding by the abundant retro-

transposons which inhabit insect genomes [12–14] – an

important remark is that non integrated vDNA generated

during reverse transcription are known to produce antivi-

ral sRNA which has a critical role in viral tolerance of

mosquitoes [12]; (II) – Both retrotransposons and non-

retroviral RNA viruses replication cycle occurs in the

cytoplasm, that is, time and subcellular localization

opportunity exists for reverse transcription of RNA gen-

omes into vDNA by retrotransposons RTs; (III) – circular

DNA molecules (also known as episomes) containing

adjacent retrotransposons and vDNA fragments have

been found in mosquitoes cells [15��]; and (IV) – EVEs

are majoritarily found integrated into TE and particularly

retrotransposon rich regions of the host genome usually

flanked by retrotransposons LTRs [15��,16�,17�]. There-

fore, the most likely hypothesis to explain the mechanism

of viral integration of RNA viruses genomes is that RNA

genomic sequences are loaded into replication complexes

of retrotransposons, are reverse transcribed to viral dou-

ble-strand DNA (vDNA) giving origin to retrotransposon/

virus episomal recombinants that are then integrated into
www.sciencedirect.com
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the host genomes by retrotransposons integrases or non-

homologous recombination [15��,18�].

Retrotransposon/virus DNA hybrids are likely generated

by non-homologous recombination during reverse tran-

scription by a copy-choice mechanism [19��]. Evidence of

episomal retrotransposon/virus DNA hybrids and several

NIRVS integration sites associated with long-terminal

repeats (LTRs) of retrotransposons found in mosquitoes

and fruit fly genomes support that template switching

during retrotransposon/virus replication is the major

mechanism of episomal retrotransposon/vDNA hybrids

formation [15��,20]. However, only limited indirect evi-

dence (enrichment of NIRVS in TE rich loci) is available

for other insect species so far (Figure 1).

Which factors may impact viral genomic fragments

integration and long term persistence in insect

genomes?

Viral genomic integration into germline cells genomes is

key for NIRVS inheritance to the next host generation

and hence different virus features may influence the

integration likelihood at germline cells such as tissue

tropism and subcellular site of viral replication. Viruses

that are vertically transmitted are known to replicate and

infect host germinative cells at a higher rate than hori-

zontally transmitted viruses and hence have a higher

likelihood of integration into these cells [10]. Another

viral feature that may impact its integration likelihood in

the host genome is the establishment of persistent or

transient infection of the host: Viruses that persistently

infect host cells have a broader window of opportunity to

generate and integrate vDNA than viruses that undergo a

transient acute viral infection [10]. Moreover, transient

acute infections are generally more detrimental to the

host leading to decreased host fitness and lower chance of

integrated vDNAs to succeed in the next host generation

[11].

Reverse transcription and integration are two important

steps in the generation of vDNA and its endogenization

into the host genome. Therefore, it is reasonable to

speculate that host retrotransposon activity, the sole

RTs and INTs molecules source from the insect gen-

omes, will impact vDNA formation and integration rate,

although more detailed molecular mechanism of virus

genome and retrotransposons interaction will be needed

to tease apart the role of specific retrotransposon families/

superfamilies activity on general pattern of NIRVS

emergence.

At the moment that a new NIRV loci emerges into the

germline cell genome it becomes a host allele and is

subject to evolutionary forces acting upon the host level

as well. It means that its likelihood of fixation or loss in a

given population/species is dependent on their impact on

host fitness. First, the host individual should be fit to
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reproduce and hence generate descendants that will

successfully mate and spread the NIRV loci into the

population. That is, vDNA integrations with detrimental

effect to the host may be lost in a single host generation

and only slight deleterious, neutral or advantageous inser-

tions may spread to the host population. Species popula-

tion size and NIRV allele frequency may impact the short

term allele fluctuations. Small populations are subject to a

larger impact of genetic drift, and non fixed NIRVs loci

may be lost in a few generations or slightly deleterious

NIRV alleles may increase in frequency just by chance.

On the other hand, large populations are subject to strong

purifying selection eliminating deleterious insertion rap-

idly and/or increasing rapidly the frequency of beneficial

NIRV alleles. Therefore, the host evolutionary history at

short and long time scales should be also taken into

account to fully understand NIRVs loci evolutionary

trajectory and current evolutionary pressures acting upon

them.

What is known from insects genomes
The first NIRV found in insect genomes were Flavivi-

rus-related sequences identified in mosquito cell lines,

lab breed and natural populations of Aedes aegypti and

Aedes albopictus [21]. Since then, a wide breadth of viral

families have been found endogenized into insect gen-

omes including families of linear positive sense single

strand RNA genomes such as Flaviviridae and Virgavir-

idae; segmented linear single strand positive sense

RNA genome such as Benyvirus; linear negative sense

single strand RNA genomes such as: Rhabdoviridae,
Chuviridae, Xinmoviridae and Peribunyaviridae; seg-

mented negative sense single strand RNA genomes

as Orthomyxoviridae and Phenuiviridae; and seg-

mented double strand RNA genomes such as Reovir-

idae [11,18�,22–24].

Two families of — ssRNA viruses, Rhabdoviridae and

Chuviridae, appear to integrate more frequently in insect

genomes, which may reflect the high abundance and

diversity of these viruses as well as its diverse ecology

and insect host range [11]. However, we still have a

limited idea about the complete virome of insects hin-

dering more broad and unbiased analysis of virome diver-

sity/abundance and endogenization trends. Most unbi-

ased metatranscriptomic studies conducted so far are

focused on insects of medical importance and on few

individuals/populations of a given species [11,25–29]. In

fact, the few metatranscriptomic studies including a wide

range of Insect taxa were able to characterize hundreds of

new viral complete genomes and also provided the most

extensive characterization of NIRVS in diverse insect

taxa so far [30��,31��]. NIRVS have been found in at least

7 orders — Diptera, Hymenoptera, Hemiptera, Coleop-

tera, Lepidoptera, Blattodea (Dictyoptera) and Thysa-

noptera among the 28–30 insect orders currently recog-

nized (https://www.royensoc.co.uk/insect-classification),
Current Opinion in Insect Science 2022, 49:42–47
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Figure 1
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Main concepts covered in this review regarding NIRVS emergence mechanisms and impact on virus-host coevolution. Red rectangles are single

strand RNA derived from viral genomes and NIRVS, Yellow rectangles are single strand RNA from transposable elements, parallel rectangles and

circular molecules are double strand DNA derived from viral reverse transcription (red) and viral/retrotransposon non-homologous recombinants.

Linear yellow, blue and red rectangle is a long piRNA precursor produced from piRNA clusters bearing TEs (yellow) and NIRVS (red). Small yellow

and red rectangles are piRNAs derived from vDNA, virus/retrotransposon circular DNA hybrids and long piRNA precursors. NHEJ – Non-

Homologous End Joining. Black arrows denote mechanistic molecular steps of NIRVS emergence and functional impact with direct evidence

available while light grey arrows denote hypothesis with only indirect evidence available or steps that remains to be evaluated.
but large differences exists on the diversity of species

from each group studied [24,32��,33,34,35�]. The large

majority NIRVS found in insect genomes so far were

described in mosquitos from the Aedes genus which may

reflect the large diversity of RNA viruses that infect this

particular mosquito genus [17�]. Therefore, the true con-

tribution of RNA viruses to the emergence of NIRVS in

insect species remains to be assessed systematically in a

large diversity of insect genomes. Many more NIRVS are

expected to be found as we expand our knowledge of the

insect–virus genomic diversity.
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NIRVS impact on insect–virus coevolution
What evolutionary pressure NIRVS are subject to after

its emergence?

Exogenous circulating RNA viruses evolve at a high

substitution rate compared to their host genome, which

is mainly propelled by their error prone RNA polymerases

and several rounds of selection and counter selection

during virus–host arms race [22]. However, once a viral

genomic fragment is integrated into the host genome, it is

then subject to the host and virus selection pressure

leading to different evolutionary scenarios depending
www.sciencedirect.com
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of the host fitness impact: (I) – the integration event

occurred in a silent genomic loci then such NIRV is

expected to evolve neutrally and accumulate mutations

until it could no longer be recognized or lost; (II) – NIRVS

are integrated in transcriptionally active loci contributing

to the biogenesis of small RNAs (sRNA), which in turn

modulate the replication of the cognate viruses. Once the

cognate virus infection has a deleterious fitness impact on

the host then a sRNA producing NIRV loci will evolve

under intermittent purifying and diversifying selection at

the most critical sRNA sites for cognate viral recognition

as long as the exogenous RNA viruses continue to infect

the host; (III) – NIRVS are transcriptionally and transla-

tionally active generating protein sequences that can

interfere with the cognate viral replication/infection,

these would also evolve under intermittent purifying

and diversifying selection which will be more evident

at the amino acid level; and (IV) – NIRVS derived

proteins are repurposed to a new host function and the

selection pressure regime will be dictated by the impor-

tance of such protein to the host fitness. A detailed review

of evolutionary dynamics of EVEs can be found in Aswad

and Katzourakis et al. [36].

Mounting evidence in insects, but mostly on mosqui-

toes, shows that most NIRVS are transcriptionally

active [17�,37,38�] and produce small interfering RNAs

(sRNAs) [16�,17�,32��,34,39–41]. However, the large

majority of these NIRVS are substantially divergent

at the nucleotide level of any possible cognate exoge-

nous virus, casting doubts about the role of these ele-

ments in the regulation of cognate viruses replication

through sequence dependent sRNA pathways [32��].
The first ‘proof of concept’ study showing experimental

evidence of NIRVS regulatory role on exogenous virus

replication through piRNA (PIWI)-interacting RNAs

(piRNAs) was based on the engineering of a naturally

occurring RNA NIRV in a RNA virus genome. Tasseto

et al. showed that the expression of v-piRNA (viral

derived piRNA) from NIRV loci controls the infection

of the engineered virus [15��], but experimental evi-

dence in a natural insect–virus setting was still lacking.

Only two cases of NIRVS that share a high similarity to

cognate viruses are currently known. The sigma related

NIRVS found in Drosophila species, which are persis-

tently infected by the sigma virus [20,42,43], and the

Cell Fusion Agent Virus (CFAV) NIRV found inte-

grated into A. aegypti populations naturally infected

by this virus [18�,19��,44]. From the last example

emerged one of the most compelling evidences of

the antiviral role of NIRVS derived sRNAs in the

modulation of cognate virus replication. Suzuki et al.
were able to tease apart the contribution of v-piRNA

derived from episomal or NIRV and showed that when

generating an engineered A. aegypti NIRV-free, the bulk

v-piRNA production was substantially reduced and the

cognate virus replicated at higher levels [19��].
www.sciencedirect.com 
On the other hand, no study investigated the impact of

insect NIRVS at the protein functional level regarding

potential antiviral activity or repurpotioning to other

functions at the host level, although there is compelling

indirect evidence from genomic studies. Recent findings

have reported NIRVS open reading frames fused or not to

host genes that are actively sense transcribed

[22,35�,37,45]. Moreover, antiviral mechanisms of partial,

defective or ill folded viral proteins are also known for

vertebrates [36,46,47]. An interesting model to test some

of these hypotheses about the role of protein derived from

NIRVS come from mosquito genomic studies. Several

NIRVS from Chuviruses, segmented and non-segmented

single stranded negative sense viruses, have been found

in mosquitoes (mainly in A. aegypti and A. albopictus
species) with a higher abundance of potentially coding

loci for complete or partial glycoproteins [16�,48�]. Many

highly similar glycoproteins with coding capacity were

found into potentially functional BEL-Pao retrotranspo-

sons (parental BEL-Pao lineages previously lacking gly-

coproteins) suggesting that this glycoprotein is currently

functioning as an envelope gene of a new retrovirus called

‘Anakin’. Moreover, several solo complete or partial gly-

coprotein with high sequence similarity and similar pre-

dicted 3D structure to the glycoprotein found inside

BEL-Pao retroelements can also be found scattered in

the mosquito genome. Such potentially coding solo gly-

coproteins may be translated and act as an antiviral

mechanism against this new retrovirus and/or exogenous

Chuviruses by receptor competition [48�]. However,

experimental evidences of antiviral mechanisms or co-

option of NIRVS to new host functions at the proteome

level in insects are still not available and remains an

interesting field of research.

Conclusions
The complex interactions of RNA viruses and insects

leave heritable changes in the host genomes in the form of

partial or complete viral genomes that may substantially

impact the virus–insect coevolution arms race. NIRV-

derived regulatory piRNA modulates cognate virus repli-

cation having an impact on host tolerance to virus detri-

mental effect and likely on vectorial competence. None-

theless, NIRVS impact on host–virus biology remains to

be more extensively demonstrated in natural insect–virus

settings. NIRVS emergence is a dynamic and frequent

phenomenon and our current knowledge only sheds light

on the tip of the iceberg of NIRVS in insects.
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