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Abstract: (1) Background: Nonalcoholic fatty liver disease (NAFLD) is one of the most common
chronic liver diseases worldwide. Although cardiovascular and NAFLD risk factors overlap, an inde-
pendent association between these conditions may exist. Hepatic and cardiac fibrosis are important
markers of mortality, but the correlation between these markers in patients with NAFLD has not been
well studied. Our main objective was to determine the degree of myocardial fibrosis in patients with
NAFLD and its correlation with the severity of liver fibrosis. (2) Methods: In this cross-sectional study,
patients with NAFLD were allocated to two groups according to the stage of liver fibrosis assessed
using MRI: no or mild fibrosis (F0–F1) and significant fibrosis (F2–F4). Framingham risk scores
were calculated to evaluate cardiovascular risk factors, and patients underwent multiparametric
cardiac and abdominal MRIs. (3) Results: The sample comprised 44 patients (28 with no or mild
liver fibrosis and 16 with significant liver fibrosis). The mean age was 57.9 ± 12 years, and 41% were
men. Most patients had high cardiac risk factors and carotid disease. Relative to patients with no or
mild liver fibrosis, those with significant fibrosis had a higher median calcium score (p = 0.05) and
increased myocardial extracellular volume (ECV; p = 0.02). Liver fibrosis correlated with cardiac
fibrosis, represented by the ECV (r = 0.49, p < 0.001). The myocardial ECV differentiated patients with
and without significant liver fibrosis (AUC = 0.78). (4) Conclusion: This study showed that diffuse
myocardial fibrosis is associated with liver fibrosis in patients with NAFLD.

Keywords: nonalcoholic fatty liver disease; cardiovascular disease; fibrosis; myocardial extracellular
volume; magnetic resonance

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the world’s leading cause of chronic
liver disease, affecting up to 30% of the adult population and having a broad histological
spectrum that ranges from steatosis to steatohepatitis and liver fibrosis [1]. NAFLD is
frequently associated with visceral obesity, dyslipidemia, insulin resistance, and diabetes,
which are components of Metabolic Syndrome [2,3], but current evidence suggests that
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NAFLD is an independent risk factor for CVD, even after adjustment for other classical
comorbidities. Advanced NAFLD may involve the release of pro-inflammatory, vasoactive,
and thrombogenic molecules that play important roles in the development and progression
of cardiovascular disease (CVD) [2], and researchers have hypothesized that NAFLD is not
merely a marker of CVD but is also involved in its pathogenesis [3]. NAFLD is associated
with markers of subclinical atherosclerotic disease, such as carotid intimal thickness and
coronary calcification [4].

The spectrum of NAFLD involves isolated steatosis and non-alcoholic steatohepatitis
(NASH), which has an increased risk of progression to cirrhosis. Liver biopsy is still
considered the gold standard to diagnose and grade the severity of steatosis and fibrosis;
however, it is invasive and expensive, may require hospitalization, and is not always
effective due to sampling variability. The high prevalence and burden of chronic liver
disease led to the development of different methods to diagnose and monitor disease
progression, including magnetic resonance imaging (MRI) [5]. Advanced MRI techniques,
such as magnetic resonance elastography (MRE), can detect increased liver stiffness caused
by an increased collagen deposition and extracellular matrix, allowing for an accurate
assessment of fibrosis [6].

Similarly, cardiac disease may result in myocardial fibrosis, which is associated with
worse prognosis in different cardiac disease [7–9]. Diffuse fibrosis in the heart distorts
myocardial architecture, culminating in mechanical, coronary vasomotor, and electrical
dysfunction. This represents a phenotype of cardiac vulnerability and occurs in a wide
variety of conditions—including diabetic and hypertensive heart disease, as well as is-
chemic and nonischemic cardiomyopathy—as an early marker and important etiological
factor for diastolic dysfunction, heart failure with reduced or preserved EF, and sudden
death [10]. Cardiovascular MRI, using parametric mapping techniques, is a non-invasive
tool for quantifying tissue alterations in a variety of myocardial diseases. MRI with late
gadolinium enhancement (LGE) is a widely utilized non-invasive imaging protocol for
myocardial tissue characterization and the identification of replacement fibrosis, but it
lacks sensitivity to detect the accumulation of collagen within the extracellular myocardial
space. For the evaluation of the reversible, early stage of the diffuse myocardial interstitial
fibrosis, MRI uses T1 mapping and extracellular volume (ECV) measurements [11–13].
Extracellular volume fraction quantification is associated with prognosis in various cardiac
diseases, such as several causes of cardiomyopathies (ischemic, inflammatory, hypertensive,
and infiltrative).

Liver fibrosis was associated with heart disease in an arm of the Multi-Ethnic Study of
Atherosclerosis (MESA) [14], a populational trial including more than 2000 patients without
CVD on admission. Patients who developed CVD, heart failure, and atrial fibrillation
within 10 years had more liver fibrosis, as was measured via MRI.

Briefly, interstitial fibrosis in the heart and liver worsens prognoses, and CVD is
the principal cause of death in patients with NAFLD; however, to our knowledge, the
correlation between liver and cardiac fibrosis has not yet been studied. Our purpose in
this study was to assess the presence of interstitial myocardial fibrosis in patients with
NAFLD using ECV measurement by MRI with T1 mapping, correlate it with the presence
of liver fibrosis, and define its association with the presence of cardiovascular risks, cavitary
remodeling, diastolic dysfunction, and coronary calcification.

2. Materials and Methods
2.1. Patients

Adult (age ≥ 18 years) patients with a clinical diagnosis of steatosis or cirrhosis
caused by NAFLD, corroborated by ultrasounds, were prospectively included in this
cross-sectional study from June 2019 to August 2021. All of the patients were monitored
at the hepatology outpatient clinic of Quinta D’Or Hospital, Rio de Janeiro, Brazil. The
inclusion criteria were as follows: the presence of steatosis in spectroscopy defined as
liver fat fraction > 5.56% or increased liver stiffness via MRE in patients with a previous
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diagnosis of NAFLD. Patients were excluded if they had neither criterion for steatosis
nor increased liver stiffness. Patients were divided into two groups: those with MRE
stiffness < 3.5 kPa were classified as having no or mild fibrosis (F0–F1), and those with
≥3.5 kPa were considered to have significant fibrosis (F2–F4). Framingham risk scores [15]
were calculated, and all patients underwent liver and cardiac magnetic resonance studies,
tomography for coronary calcium score calculation, color Doppler echocardiography, and
carotid Doppler studies.

2.2. Study Protocol

Framingham risk scores [15] were calculated to estimate the risk of coronary artery
disease development within 10 years. This score adequately identifies individuals at high
and low risks of myocardial infarction and death from coronary disease. The data needed
to calculate it were collected using a clinical–epidemiological form.

A transthoracic two-dimensional echocardiography with color Doppler (Vivid E95,
2.5-Hz probe; GE Med Ultrasound AS, Horten, Norway) was performed according to
the recommendations of the American Society of Echocardiography and the European
Association of Cardiovascular Imaging [16]. Measurements of diameters and cavitary
volumes, ejection fractions (EFs) using the Simpson method [17], and global and segmental
contractility of the left ventricle (LV); analysis of mitral flow; and tissue Doppler imaging
of the mitral ring were performed. The right ventricle was qualitatively analyzed through
tricuspid annular plane systolic excursion and S’ wave measurements of the tricuspid
ring. To obtain the global longitudinal strain (GLS) and standard deviation of the time to
longitudinal peak strain of 17 cardiac segments, multiple consecutive cardiac cycles of the
three standard apical views were acquired and stored digitally, based on guidelines [18–21].
The best cardiac cycle with good quality and clear endocardial boundaries was chosen,
and the endocardial borders were automatically identified and tracked throughout the
cardiac cycle. When the images were not optimal, manual adjustments were made. LV GLS
measurement and analyses were performed using commercially available software (Image
Arena 4.6; Tomtec, Munich, Germany).

Carotid color Doppler imaging (Vivid E95, 4–10 MHz probe; GE Med Ultrasound)
was performed according to the recommendations of the American Society of Echocardio-
graphy [22]. The analysis included the evaluation of the carotid intima–media thickness
(CIMT) and the presence of plaques.

Calcium scores were obtained with a 256-detector row scanner (Revolution CT; GE
Healthcare, Milwaukee, WI, USA). Coronary calcium was quantified semi-automatically
to calculate the volume, mass, and calcium score using the Agatston method [23]. Values
of 0–10 were classified as minimal calcification, those of 11–100 were taken to reflect mild
calcification, those of 101–400 were classified as moderate calcification, and values > 400
were taken to indicate severe calcification. We defined cases of moderate and severe
calcification as altered.

Multiparametric resonance studies were performed on a 3.0 T MRI system (Magnetom
Prisma; Siemens Healthcare, Erlangen, Germany) using a combined eighteen-element
phased-array abdominal coil and a thirty-two-element fixed spine coil.

Liver MRI—2D-gradient echo magnetic resonance elastography (MRE)—was per-
formed to assess liver stiffness and magnetic resonance spectroscopy (MRS) for the detec-
tion and quantification of liver fat fraction.

MR spectroscopy (HISTO) with stimulated echo acquisition mode (STEAM) provided
proton density fat fraction corrected for T2 and fat and water transverse relaxation. Five
STEAM spectra were generated at TE 12, 24, 36, 48, and 72 ms; TR, 3000; flip angle 90◦;
voxel size 30 mm × 30 mm × 30 mm, placed on liver Couinaud segment V, avoiding liver
borders, and large vessels and bile ducts. MRS was performed for the evaluation of liver
steatosis, defined as liver fat fraction > 5.56%.

MR elastography: a 2D gradient-recalled echo MRE was used to acquire liver elasticity
maps. Sequence parameters were as follows: TR, 25 ms; TE, 15.19 ms; flip angle, 12◦;
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FOV, 380 mm; active driver frequency, 60 Hz; voxel size, 1.5 × 1.5 × 6 mm; number of
slices, 4 slices; acceleration factor, generalized auto calibrating partially parallel acquisition
(GRAPPA) 2. A pneumatic active wave driver and a tube-connected and strap-secured
passive driver were placed on the right side of the anterior chest wall at the level of the
xiphoid to measure liver stiffness. Generated shear waves at a fixed vibration frequency
coursed through the liver and created tissue displacements to generate magnitude and
phase images. Slices were centered over the portal vein. The 4 slices were acquired in
4 consecutive breath holds at end expiration.

MRE was performed for the evaluation of steatohepatitis and fibrosis based on liver
stiffness [24,25]. Patients were classified into those with no or mild fibrosis (F0–F1) if
liver stiffness values were <3.5 kPa, and those with significant fibrosis (F2–F4) if stiffness
values ≥ 3.5 kPa [25].

Cardiac MRI images were acquired before and after the intravenous injection of
gadolinium-DOTA contrast (Dotarem; Guerbet, Aulnay-sous-Bois, France) according to
the following protocol [26]: the acquisition of cine MR images using a steady-state free
precession sequence with retrospective gating, the acquisition of delayed enhancement im-
ages with an inversion recovery gradient echo sequence [27], and the acquisition of images
using the Modified Look-Locker inversion recovery (MOLLI) sequence for myocardial and
liver T1 mapping [10,28,29]. A blood sample was collected, and the ECV was calculated
using the hematocrit value to adjust for contrast volume distribution.

Cine images were evaluated to determine LV morphological and functional parame-
ters [30]. Qualitative and quantitative characteristics of myocardial replacement fibrosis
were visually determined using delayed enhancement images. Diffuse interstitial myocar-
dial fibrosis were inferred from myocardial ECV, which were calculated using the mean
left ventricular myocardial T1 value that was measured in pre- and post-contrast T1 maps
obtained at a single short-axis plane at the mid-ventricular level [31].

2.3. Statistical Analysis

Means with standard deviations or medians with interquartile intervals were calcu-
lated for continuous variables. Categorical variables were described as percentages. The
kurtosis test was used to examine variable distributions. The Mann–Whitney, chi-squared
and Fisher exact tests were used for between-group comparisons as appropriate. Spearman
test correlation analysis between cardiac ECVs and liver fibrosis measured by stiffness on
the MRE was performed. A receiver operating characteristic (ROC) curve was used to
evaluate the ability of ECV to discriminate between patients with and without significant
liver fibrosis. For all of the tests, the level of significance was set to p < 0.05. The data were
analyzed using SPSS (version 21; IBM Corporation, Armonk, NY, USA).

3. Results

Of the 54 patients enrolled in the study, 10 were excluded because they did not fulfill
the MRI criteria for NAFLD. Thus, data from 44 patients with NAFLD were included in the
analysis. The mean age of the patients was 57.9 ± 12.0 years, and 41% were men. A total
of 28 (64%) patients had no or mild fibrosis, and 16 (36%) patients had significant fibrosis
(Figure 1).

The clinical characteristics of the patients are presented in Table 1. Metabolic abnor-
malities, including obesity, diabetes, hypertension, and dyslipidemia, and family histories
of heart disease, were prevalent in both groups. Most (77.3%) of the patients had high
Framingham risk scores, with no significant difference between the groups. The patients
had no myocardial, congenital, or valvular heart diseases. Only one patient had coronary
disease. The patients had no history of atrial fibrillation, and all of them were in sinus
rhythm during echocardiography and MRI evaluations. A total of 11 patients had clinical
signs of liver cirrhosis, and all of these were from the group with significant fibrosis.
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Figure 1. Diagram of study flow. CIMT, carotid intima–media thickness; MRI, magnetic resonance
imaging.

Table 1. Clinical characteristics of the patients (n = 44).

Absent or Mild Liver
Fibrosis (n = 28)

Significant Liver
Fibrosis (n = 16) p Value *

Age, mean (±SD), years 55.6 60.1 0.256
Male, n (%) 13 (46.4) 5 (31.3) 0.361

Hypertension, n (%) 21 (75) 12 (75) 1.000
Diabetes, n (%) 16 (57.1) 12 (75) 0.333

Dyslipidemia, n (%) 24 (85.7) 10 (62.5) 0.133
CAD, n (%) 0 1 (6) 0.364

Stroke, n (%) 0 2 (12.5) 0.127
PVD, n (%) 1 (3.6) 2 (12.5) 0.543

Smoking, n (%) 3 (10.7) 2 (12.5) 1.000
Obesity 1, n (%) 18 (64) 9 (56) 0.749

Family history of CAD, n (%) 12 (43) 8 (50) 0.757
High Framingham Risk Score 2, n (%) 19 (68) 15 (94) 0.067

Clinical signs of cirrhosis, n (%) 0 11 (68.7) 1.000
ALT, mean (±SD), U/L 36.9 46.5 0.280
AST, mean (±SD), U/L 26.8 50.5 0.001
GGT, mean (±SD), U/L 48.3 129.8 0.007

SD, standard deviation; CAD, coronary artery disease; PVD, peripheral vascular disease; ALT, alanine amino-
transferase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transferase. 1 Body mass index > 30 kg/m2.
2 >10% for women and >20% for men. * Mann–Whitney test for continuous and Fisher test for
categorical variables.

Regarding previous medications, 21 patients were taking angiotensin II receptor block-
ers, 3 had angiotensin I-converting enzyme inhibitor, 11 were using β-blockers, 10 patients
were taking diuretics, 2 patients were receiving insulin, 32 used oral hypoglycemic drugs,
and 21 were taking statins.

The imaging study results are shown in Table 2. The patients had no left or right
ventricular global or segmental systolic dysfunction, no significant LV hypertrophy, and
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no evidence of cardiomyopathy, as assessed using echocardiography and MRI. LV GLS
assessed via echocardiography was normal in all patients. Regarding diastolic function,
the two groups had similar indexed left atrial volumes, but patients with advanced liver
fibrosis had increased mean E/e’ values (10.0 vs. 8.7 for patients without significant
fibrosis, p = 0.04). Patients had no signs of elevated LV filling pressures or inferior vena
cava dilatation. Carotid Doppler evaluation revealed plaques or increased CIMT in most
patients, with no significant difference between groups with and without significant fibrosis
(81% and 60.7%, respectively, p = 0.20). Plaques causing >50% diameter stenosis were
identified in only one patient with significant fibrosis. Calcium scores varied widely within
and between groups. Patients with significant liver fibrosis had a higher median calcium
score (124.5 vs. 11.0 for patients without significant fibrosis, p = 0.05). Calcium scores
showed a positive correlation with liver stiffness (r = 0.352; p = 0.019) but no correlation
with steatosis (r = −0.236; p = 0.124). There was no association between Framingham risk
scores and steatosis (p = 0.484).

Table 2. Cardiac and liver imaging parameters.

Absent or Mild Liver
Fibrosis (n = 28)

Significant Liver
Fibrosis (n = 16) p Value *

Echocardiogram
LV EF (Simpson) %, mean (SD) 59.2 (4.5) 60.5 (4.7) 0.28
E/e’ medium, mean (SD) 8.7 (1.95) 10.0 (2.1) 0.04
LA indexed volume, mL/m2, mean (SD) 29 (6.7) 33 (7.9) 0.15
GLS, %, mean (SD) −18.2 (1.7) −19.9 (3.1) 0.02

Carotid Doppler
Plaque and/or increased IMT, n (%) 17 (60.7) 13 (81) 0.20

CT scan
Calcium score, median [IQR] 11.0 [129.5] 124.5 [453.8] 0.05

Cardiac and liver MRI
LV EDVI, mL/m2, mean (SD) 66.5 (±13.9) 67.1 (±20.5) 0.634
LV indexed mass, g/m2, mean (SD) 53.2 (10.9) 50.0 (8.4) 0.311
LA indexed volume, mL/m2, mean (SD) 24.9 (5.9) 26.5 (11.0) 0.912
LV EF, %, mean (SD) 68.1 (5.8) 72 (5.6) 0.032
RV EDVI, mL/m2, mean (SD) 63.1 (15.2) 61.4 (16.6) 0.608
RV EF, %, mean (SD) 58.1 (6.1) 58.1 (6.1) 0.971
T1, ms, mean (SD) 1207.8 (32.7) 1264 (66.2) 0.086
Cardiac ECV, %, mean (SD) 22.9 (1.9) 25.5(3.0) 0.001
Myocardial LGE, n (%) 3 (10.7) 2 (12.5) 1.00
Liver stiffness MRE, mean (SD) 2.15 (0.41) 4.81 (1.08) < 0.001
Liver fat fraction 1, %, mean (SD) 16.0 (11.7) 7.3 (5.9) 0.002

LV, left ventricular; EF, ejection fraction; SD, standard deviation; LA, left atrial; GLS, global longitudinal strain;
IMT: intima–media thickness; IQR, interquartile range; CT, computed tomography; MRI, magnetic resonance
imaging; EDVI, indexed end diastolic volume; RV, right ventricular; ECV, extracellular volume; LGE, late gadolin-
ium enhancement; MRE, magnetic resonance elastography. 1 Obtained via magnetic resonance spectroscopy.
* Mann–Whitney test for continuous and chi-squared test for categorical variables.

There was no statistical difference between the LV volumes and mass evaluated via
MRI between the groups. Although left atrial volume was not different between the groups,
there was increased left atrial volume in 25.0% vs. 43.8% of the patients without and with
significant fibrosis (p = 0.313). Cardiac MRI with T1 mapping showed that the median
ECV was higher for the group with significant liver fibrosis than for the group without
such fibrosis (26.0% vs. 22.7%, p = 0.002; Figures 2 and 3; Scheme 1). Cardiac MRI revealed
late-enhancement fibrosis with a meso-epicardial non-ischemic aspect in five patients (three
in group without fibrosis and two in the group with significant liver fibrosis). The area
under the ROC curve for myocardial ECV differentiating the groups with and without
significant liver fibrosis was 0.78 (p = 0.002; Figure 4).
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Figure 3. Post-contrast T1 maps were generated to provide myocardial characterization and allow for
extracellular volume calculation in two patients: (A) a female, 53 years old with no liver fibrosis and
myocardial ECV = 21.5%, and (B) a female, 79 years old, with significant liver fibrosis and myocardial
ECV = 29.0%.
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The mean stiffness on MR elastography was 2.1 ± 0.4 kPa for patients with no or mild
fibrosis and 4.8 ± 1.1 kPa for those with significant fibrosis (Figure 5). The myocardial ECV
correlated with the liver fibrosis measured using MR elastography (r = 0.49, p = < 0.001).
Liver fibrosis was also negatively correlated with the GLS (r = –0.36, p = 0.02) and positively
correlated with the left atrial volume (r = 0.30, p = 0.04).
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liver disease (D). (B,E): Wave images from MRE acquisition depicting thin waves (B) in the patient
with no fibrosis and thicker waves (E) in the patient with significant liver fibrosis. (C,F): Correspond-
ing color elastograms with 95% of confidence interval in the map show normal liver stiffness values
in the patient with no significant fibrosis (C) and elevated liver stiffness values in the patient with
significant fibrosis (F).

4. Discussion

Most patients with NAFLD enrolled in this study had CVD risk factors and a high
risk of developing severe cardiovascular events within 10 years, regardless of the degree of
liver fibrosis. Patients with significant liver fibrosis had higher calcium scores and mean
E/e’ ratios. Those with significant liver fibrosis had larger myocardial ECVs than those
with no or mild liver fibrosis.

Epidemiological information correlates NAFLD with markers of subclinical atheroscle-
rosis, such as increased CIMT and coronary calcium scores, independent of classical risk
factors [32]. A cohort study validated the use of the Framingham score in this context,
as it can predict the risk of coronary heart disease development at the time of NAFLD
diagnosis [33,34]. In our population, patients in both groups had these two powerful
markers in addition to high-risk Framingham scores.

Previous studies reported an association of NAFLD severity with increased CIMT
and carotid atherosclerotic plaques [3,35]. We found a high prevalence of increased CIMT
and carotid plaques in both groups, regardless of the degree of the liver fibrosis. Large
population studies such as the MESA have revealed a positive association between liver
steatosis and the calcium score, independent of other cardiovascular risk factors [36,37];
however, to our knowledge, the association of calcium score and liver fibrosis has not been
studied before. We found a higher median calcium score in patients with advanced liver
fibrosis; however, there was no association between calcium score and liver fat content.
This finding may be explained by a process called ‘burnt-out nonalcoholic steatohepatitis’,
described in patients with advanced liver disease. In this process, fibrosis progression is as-
sociated with the loss of steatosis and histological inflammation [38,39]. This phenomenon
explains why patients in the group with advanced fibrosis demonstrated lower fat content
in spectroscopy analysis.

The mean E/e’ ratio was higher in the group with advanced fibrosis, although the atrial
volume did not differ between groups in this study; these findings suggest progression to
diastolic cardiac dysfunction. In a cross-sectional study involving more than 200 patients,
Mantovani et al. [40] reported that NAFLD was associated with an approximately threefold
increased risk of LV diastolic dysfunction, even after adjustment for traditional CVD risk
factors and echocardiographic parameters. Several diastolic function indexes are worse
in NAFLD; patients with the disease have lower E/A ratios and e’ velocities, higher E/e’
ratios, and larger left atrial volumes [41].

The patients in our study had neither LV nor right ventricular systolic dysfunction nor
GLS reduction. Participants in the multicenter longitudinal Coronary Artery Risk Devel-
opment in Young Adults study with NAFLD exhibited a subclinical alteration of systolic
function (i.e., strain) but normal EFs, independent of several metabolic variables [41]. In
another study, strain, assessed via MRI for the quantification of myocardial deformation
in patients undergoing heart transplantation, was not associated with histological find-
ings [42]. This lack of association between myocardial fibrosis and myocardial systolic
strain may be related to variation in clinical stages, medical treatments, and, in our case,
acquisition methods used for tissue tracking.

The relationship between NAFLD and incident CVD events has been observed in
several studies [37], but the question of whether the prognostic value of NAFLD for CVD
development is restricted to nonalcoholic steatohepatitis or is also associated with isolated
steatosis remains unresolved. Liver biopsy has been used to evaluate NAFLD in some small
studies, which have also revealed a significant, graded relationship between LV dysfunction
and the histological severity of NAFLD, suggesting that steatohepatitis and liver fibrosis
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are risk factors for the development and progression of cardiovascular damage [40]. In
this study, we conducted an in-depth evaluation of patients with NAFLD by examining
myocardial fibrosis and found that there is an association between liver and cardiac fibrosis
in these patients.

Our findings showed that myocardial ECV correlates positively with MRE liver stiff-
ness in patients with NAFLD, with more myocardial fibrosis observed in those with more
advanced liver disease. The fact that chronic inflammation is a common feature in both
cardiovascular and liver disease may explain this interesting association. The quantifica-
tion of the myocardial ECV is an important, consolidated, and early prognostic marker
for a wide range of inflammatory and infiltrative cardiac conditions and can be used to
identify heart failure with a reduced or preserved EF [43]. The presence of this marker
of cardiac vulnerability is associated with poor outcomes such as heart failure and death;
early identification is very important, because it can be reversible [10,44].

This study has some limitations. The sample was small, which limited the power of
some analyses; in addition, our cohort was from a single tertiary center specialized in liver
disease and this could limit the generalizability of our findings. Ideally, we could have
included healthy controls, even though our aim was to compare two groups of patients
with NAFLD with different grades of liver fibrosis. We lacked a histological validation of
the ECVs in our study, but the use of the ECV, as a metric of interstitial fibrosis, has been
repeatedly validated in other studies [10,45]. Future studies with larger populations are
necessary to confirm our findings.

These results suggest that ECV can be used to improve risk stratification, assess disease
activity, and evaluate prognosis in patients with NAFLD. Future studies are necessary to
further evaluate the role of this biomarker to monitor disease progress and even guide
treatment in these patients. In conclusion, patients with NAFLD may have a higher risk
of future cardiovascular events, as greater degrees of liver fibrosis correlate with greater
cardiac interstitial fibrosis and, hence, worse prognoses. Thus, the identification of high-risk
patients with NAFLD who lack cardiac symptoms is crucial for the definition of therapeutic
goals and early intervention for more effective prevention.
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