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Abstract: The introduction of rotavirus A (RVA) vaccines has considerably reduced the RVA-
associated mortality among children under 5 years of age worldwide. The ability of RVA to reassort
gives rise to different combinations of surface proteins G (glycoprotein, VP7) and P (protease sensitive,
VP4) RVA types infecting children. During the epidemiological surveillance of RVA in the Northwest
Amazon region, an unusual rotavirus genotype G6P[8] was detected in feces of a 2-year-old child
with acute gastroenteritis (AGE) that had been vaccinated with one dose of Rotarix® (RV1). The
G6P[8] sample had a DS-1-like constellation with a Wa-like VP3 gene mono-reassortment similar to
equine-like G3P[8] that has been frequently detected in Brazil previously. The results presented here
reinforce the evolutionary dynamics of RVA and the importance of constant molecular surveillance.

Keywords: rotavirus; acute gastroenteritis; Amazon region

1. Introduction

Rotaviruses (RVs) are among the most important gastrointestinal pathogens causing
acute gastroenteritis (AGE) in children, young mammals, and birds worldwide [1]. Among
children under five years of age, rotavirus group A (RVA) is one of the most common
causes of diarrheal deaths [2,3] and the most common cause of AGE, with a particularly
heavy burden in developing countries [4,5]. RVA genome [5] is enclosed in a triple-layered
capsid comprising 11 segments of double-stranded RNA (dsRNA) that encode six structural
proteins (VP1–VP4, VP6 and VP7) and six nonstructural proteins (NSP1–NSP5/6). RVA
are classified in a binary system based upon the main neutralization antigens, namely
the spike protein (VP4) and the major outer capsid glycoprotein (VP7) [6,7]. In addition,
whole genome classification is used to assign genotypes to each gene designated by letters
(Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx) for each of the 11 genes, VP7-VP4-VP6-VP1-VP2-
VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6, respectively [7]. The majority of RVA genomes are
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assigned to three genotype constellations: Wa-like or genogroup 1 (G/P-I1-R1-C1-M1-A1-
N1-T1-E1-H1), DS-1-like or genogroup 2 (G/P-I2-R2-C2-M2-A2-N2-T2-E2-H2) and the less
common AU-1-like or genogroup 3 (G/P-I3- R3-C3-M3-A3-N3-T3-E3-H3).

Each constellation is believed to have originated from distinct animal species [6,7], and
reassortment between RVA strains within the same genogroup may occur. Four rotavirus
vaccines are available on the market and preapproved by the World Health Organization
(WHO). In 2006, both monovalent (Rotarix® = RV1) and pentavalent (RotaTeq® = RV5)
vaccines were licensed and recommended by the WHO and Pan American Health Organi-
zation (PAHO). A total of 17 countries, including Brazil, and 1 territory (Cayman Islands) in
Latin America and the Caribbean have introduced one of these vaccines into their National
Immunization Program (NIP) [8,9].

The aim of this study was to characterize the DS-1-like constellation of an uncommon
G6P[8] genotype detected in a sample from a child with AGE living in the Northwest
Amazon region (NWAR). The G6P[8] had a DS-1 like backbone and presented a VP3 gene
mono-reassortment Wa-like similar to equine-like G3P[8] detected in Brazil [10,11]. G6 type
is the most prevalent genotype detected in cattle worldwide; however, it is rarely found in
humans, although a few studies from Africa have detected it in relatively high frequency
in certain years [7,12–14].

2. Results
2.1. A G6P[8] RV Was Detected in a Fecal Sample Obtained from a Child Living in the Northwest
Amazon Region

The sample was collected from a 2-year-old male child living in the extreme North
of Brazil’s limit border with Venezuela in the Amazon rainforest (demarcated indigenous
“Yekuana” area of Roraima [RR] state, Alto Alegre municipality). The child was attended
in the emergency care unit of “Hospital da Criança de Santo Antonio” (HCSA) in RR [15].
The child had one dose of RV1; feces and saliva collected in parallel were negative when
tested using molecular methods for norovirus, sapovirus (feces), human bocavirus and
adenovirus [15–17]. The RT-qPCR) cycle threshold (Ct) value was 24.82 and the symptoms
were abdominal pain, dehydration, fever > 38.5 ◦C, mucus, and vomit. Blood in the
feces was checked at the time of collection and the child was diagnosed with AGE and
malnutrition by the pediatrician who accompanied this study. According to phenotyping
of the histo blood group antigen (HBGA), the child was secretor and Lewis a-b+ [15].

2.2. Sample G6P[8] ID-LVCA: 28,398 Was Initially Genotyped as G9 with Multiplex PCR

G/P genotyping using the Centers for Disease Control and Prevention (CDC), USA,
multiplex protocol [10] was initially performed on the ID-LVCA: 28,398 sample. The
genotyping showed a band size to VP7 gene on the gel corresponding to the G9/VP7
genotype (data not to shown). Subsequent Sanger nucleotide sequencing and phylogenetic
analysis showed it to be a G6/VP7 genotype. To further confirm the G6 G-genotype, the
G6aF forward primer [18] and VP7R primer [10] were used, yielding a corresponding band
size (data not shown).

2.3. Phylogenetic Analysis of the G6P[8] Sample Shows a Constellation Possessing a Wa-like VP3

To conduct a phylogenetic analysis, we compared the detected G6P[8] (sample
ID-LVCA: 28,398) with G6 samples detected in humans and animals. Figure 1 shows the
phylogenetics trees generated, one for each of the 11 genes of RVA. The constellation of
the ID-LVCA: 28,398 sample was G6-P[8]-I2-R2-C2-M1-A2-N2-T2-E2-H2, similar to the
G6P[8] samples that have been detected in Brazil, with the exception of the VP3 gene
(Table S1, Supplementary Material). All genes, with the exception of the VP7 and
VP3 genes, were similar to the equine-like G3P[8]. The VP7 gene analyses grouped the
ID-LVCA: 28,398 sample with the G6.I group related to G6 human samples detected in
Brazil, Africa, and Germany. The VP3 gene belonged to genogroup 1/M1 group together
with human G12 P[8] and P[6] genotypes, where it exhibited 100% nucleotide identity
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with the G12 P[8] sample collected from a cow in South Africa [19]. The VP3 gene
was subsequently sequenced further (2595 bp), comprising the entire CDS, confirming
the 100% match with the sample from a cow in South Africa (GenBank access number
KX655530.1). Both partial and complete sequences were used for the construction
of the phylogenetic tree of the VP3 gene. The partial sequence was used for a more
comprehensive analysis that included more samples with partial nucleotide sequences
available in GenBank (Figure 1). The nucleotide sequences of the RV1 and RV5 vaccines
genes were from sublines distant from the ID-LVCA: 28,398 sample.
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Figure 1. Phylogenetic analyses of the nucleotide (nt) sequences of G6P[8] ID-LVCA: 28,398 sample: 
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nonstructural proteins (NSPs) NSP1–NSP5/6 with reference RVA strains from GenBank labeled as 
follows: number access, species of origin (human, animal or vaccine), RVA group, country, common 
name, year G and P genotype. Maximum-likelihood phylogenetic trees were constructed with 
MEGA X software and bootstrap tests (2000 replicates) based on the Tamura three-parameter 
models. Bootstrap values above 70% are given at branch nodes. Most sequences used for the 
construction of phylogenetic trees were partial: VP7 (951 nt), VP4 (754 nt), VP6 (1164 nt), VP1 (499 
nt), VP2 (555 nt), NSP1 (1194 nt), NSP2 (801 nt), NSP3 (933 nt), NSP4 (519 nt) and NSP5/6 (555 nt) 
the VP3 gene were analyzed both with partial (574 nt) and complete (2595 nt) sequences. For the 
analysis of the complete sequence of the VP3 gene, only samples from the RVA M1 group were used. 
The black dots represent the sample of this study; subgroups are represented by numbers for each 
letter representing a gene. 

Figure 1. Phylogenetic analyses of the nucleotide (nt) sequences of G6P[8] ID-LVCA: 28,398 sample:
(marked with a black-filled circle) structural protein (VPs) 1–3, VP8*, VP6, and VP7) and nonstructural
proteins (NSPs) NSP1–NSP5/6 with reference RVA strains from GenBank labeled as follows: number
access, species of origin (human, animal or vaccine), RVA group, country, common name, year G
and P genotype. Maximum-likelihood phylogenetic trees were constructed with MEGA X software
and bootstrap tests (2000 replicates) based on the Tamura three-parameter models. Bootstrap values
above 70% are given at branch nodes. Most sequences used for the construction of phylogenetic trees
were partial: VP7 (951 nt), VP4 (754 nt), VP6 (1164 nt), VP1 (499 nt), VP2 (555 nt), NSP1 (1194 nt),
NSP2 (801 nt), NSP3 (933 nt), NSP4 (519 nt) and NSP5/6 (555 nt) the VP3 gene were analyzed both
with partial (574 nt) and complete (2595 nt) sequences. For the analysis of the complete sequence of
the VP3 gene, only samples from the RVA M1 group were used. The black dots represent the sample
of this study; subgroups are represented by numbers for each letter representing a gene.
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3. Discussion

RVA exhibits a vast diversity, and a variety of human strains share genetic and anti-
genic features with animal origin RVA strains, suggesting that interspecies transmission
is an important mechanism of rotavirus evolution and contributes to the diversity of hu-
man RVA strains. The G6P[8] sample detected here from a child with AGE living in the
NWAR presented G3P[8] DS1-like backbone RVA. This is similar to the G6P[6] strains first
detected in a child from Mali and the later emergence with large prevalence detected in
west Africa [19]. Unusually, the sample presented a VP3 gene mono-reassortment with
some particular characteristics. The G6 (VP7) genotype is unusual in humans, though it
frequently occurs in its different P (VP4) combinations in animals including cattle and
pigs [20].

In 2013, the new equine-like species RVA G3P[8] DS-1 emerged worldwide [21]. In
Brazil, this species appeared in Paraná (South region) in March/2015 and in 2016 it was
identified in the North region (Amazon). The rapid dissemination exhibited marked
potential to replace circulating Wa-like G3P[8] strains [22]. The analysis of the G3P[8] DS-1
gene constellation identified in the Amazon presented an NSP2 (N1) different from the one
then circulating in other regions of Brazil (N2) [23].

The ID-LVCA: 28,398 sample was detected in a child living in the Amazon region and
the only RVA sample genotyped in this study was G6 (VP7); it is thus difficult to assess its
circulation in the region. G3P[8] and G12P[8] genotypes were the most detected (data not
shown), corroborating studies with samples collected during the same collection period
in the northern region of Brazil [23,24]. Rare rotavirus genotypes have been observed
relatively frequently in the northern region in Brazil [25,26]. Recently, G6P[8] genotypes
have been emerging in the Brazilian regions of epidemiological surveillance studies covered
by the Regional Rotavirus Reference Laboratory (Southern, Southeastern, and Northeastern)
Ministry of Health, Brazil and PAHO (RRRL) [10,11]. The RVA constellation of sample
ID-LVCA: 28,398 differs from that of the few that have been deposited in GenBank by
exhibiting a different VP3 genotype (M1) Wa-like. The VP3 gene has a 100% match of
nucleotide identity with the VP3 gene from a G12 P[8] sample collected from a cow in
Africa [18].

The results presented here highlight the continuous evolution of the G6 strains and
their potential for global emergence [18,27]. The initial wrong genotyping via the multiplex
of sample ID-LVCA: 28,398 may suggest the need for a G6-specific primer in multiplex PCR
protocols, the lack of which might lead to an underestimation of the true global frequency.

4. Materials and Methods
4.1. Sample of This Study and Rotavirus A Detection

The G6P[8] sample (ID-LVCA: 28,398) was collected in September 2017 during an
epidemiological investigation study to identify viral etiologic agents causing AGE and
virus–host susceptibility in children living in the Amazon rainforest ≤ 5 years old across
the span of 1 year (October 2016 to October 2017) [15]. Total viral nucleic acid was obtained
from 140 µL of each supernatant of a 10% fecal suspension sample that was subjected
to an automatic nucleic acid extraction procedure using a QIAamp® Viral RNA Mini kit
(QIAGEN, Redwood City, CA, USA) and a QIAcube® automated system (QIAGEN), ac-
cording to the manufacturer’s instructions, with a final elute sample volume of 60 µL. The
total viral nucleic acids isolated were immediately stored at −80 ◦C until molecular analysis.
Monoplex reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was
performed for the detection of RVA [15]. The near-complete nucleotide sequence of the
VP3 gene, containing the complete coding DNA sequence (CDS), of the G6P[8] sample was
obtained via Sanger sequencing (2595 bp), with primers as previously described [28–30].

4.2. G/P Rotavirus A Genotyping

The fecal sample was subjected to G and P genotyping in the RRRL using a one-step
multiplex RT-PCR as described [10]. Conserved forward primers VP7uF or VP4uF and
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reverse primers specific for G types G1, G2, G3, G4, G9 and G12, or P types P[4], P[6], P[8],
P[9] and P[10] were used as recommended by the CDC, Atlanda, GA, USA. The G and P
genotypes were assigned based on different amplicon sizes (base pairs (bp)) using agarose
gel analysis. Additionally, to confirm the G6/Vp7 genotype, a single G/RVA genotyping
was performed with a previously described specific G6aF (forward) [18] and VP7R [10]
primers using the same cycling conditions [10].

4.3. Full Genotyping of Rotavirus A ID-LVCA: 28,398 Sample

The processing of the fecal sample, RNA extraction and RVA detection via RT-qPCR
has been previously described [15]. cDNA synthesis was performed using random primer
and illustra™ Ready-to-go RT-PCR beads (GE HealthCare, Uppland, Uppsala, Sweden),
according to the manufacturer’s instructions, except for the VP3 gene, where a VP3 reverse
primer was used (Table S2, Supplementary Material). The cDNA was subsequently used
for single rounds PCR reactions in a final volume of 25 µL using iTaq (Bio Rad Laboratories,
Solna, Stockholm, Sweden) according to the manufacturer’s instructions. The cycling
programs were initial denaturation at 94 ◦C for 10 min, followed by 40 cycles of 94 ◦C for
30 s, 45 ◦C to 53 ◦C for 30 s, 72 ◦C for 1 to 2 min, and a final extension at 72 ◦C for 7 min.
For the Sanger sequencing, the amplicons were sent to Macrogen Europe B.V. Company
(North Holland, Amsterdam, The Netherlands) with the same PCR primers used for PCR
amplicons (Table S2, Supplementary Material).

4.4. Phylogenetic Trees and RVA Genome Designation

The chromatograms of the RVA gene constellation of sample ID-LVCA: 28,398 were
analyzed using the free tracer viewer Chromas 2.4 (Technelysium Pty Ltd., South Brisbane,
QL, Australia). RVA nucleotide alignment was carried out using the Mega Molecular Evo-
lutionary Genetic Analysis Version 11 software and compared with reference nucleotide
sequences of RVA available in the GenBank database of the National Center for Biotech-
nology Information (NCBI). Genome designation (Table S1, Supplementary Material) was
carried out using the Rotavirus A Genotyping Tool Version 0.1 (https://www.rivm.nl/
mpf/typingtool/rotavirusa/how-to-use, accessed on 14 July 2023).

5. Conclusions

In this study, we described an unusual constellation of a G6P[8] genotype, containing
DS-1like backbone with a Wa-like VP3 (M1) gene. The results are important in the con-
text of the genetic variability and evolution of RVA strains, which may be important for
vaccine efficacy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pathogens12070956/s1, Table S1: Genotype constellation of human
Brazilian rotavirus strains G6P[8] and G3P[8], G3P[8] (Spain and Japan) and bovine G12P[8]. The G6P[8]
strain detected in this study (sample ID-LVCA: 28,398) is shown in bold; Table S2: Primers used for PCR
amplification of the different genes of the G6P[8] strain detected in this.
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