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Syphilis is a sexually transmitted infection (STI) caused by the spiral bacterium 
Treponema pallidum. Diagnosis is based on epidemiology, clinical and 
serology, but serodiagnosis is challenging because distinct clinical forms of 
the infection may influence serological performance. Several recombinant 
Treponema pallidum-proteins have already been tested for syphilis diagnosis 
and they are critical to achieve high accuracy in serological testing. A total of 
647 samples were included in the study: 180 T. pallidum-positive samples, 
191 T. pallidum-negative samples and 276 sera from individuals infected 
with unrelated diseases. The diagnostic potential was validated by analysis of 
ROC curves. For the indirect ELISA, TpN17 (100%) and TmpA (99%) showed 
excellent AUC values. Sensitivity values were 97.2% for TpN17 and 90.6% for 
TmpA, while specificity was 100% for both molecules. According to the clinical 
phase, TmpA ranged from 84% to 97%, with the highest value for secondary 
syphilis. TpN17 was 100% sensitive for the primary and secondary stages and 
93.2% for recent latent syphilis. All clinical phases achieved 100% specificity. 
Accuracy values showed that TmpA (> 95%) and TpN17 (> 98%) presented 
high diagnostic accuracy for all clinical stages of syphilis. Cross-reactivity was 
only observed in one sample positive for Chagas disease (1.5%), when TpN17 
was evaluated. On the other hand, TmpA showed reactivity for two samples 
positive for Chagas disease (3.1%), one sample positive for HBV (1.25%), two 
samples positive for HIV (9.5%) and one sample positive for HTLV (1.6%). The 
TmpA antigen’s performance was evaluated in multiple studies for syphilis 
diagnosis, corroborating our findings. However, TpN17 sensitivity values have 
ranged in other studies. According to clinical stages of the infection, our 
findings obtained close performance values.
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1 Introduction

Syphilis, a sexually transmitted infection (STI), is caused by the 
spirochete bacterium Treponema pallidum, subspecies pallidum 
(order Spirochaetales). It manifests in multiple clinical stages with 
distinct characteristics (Larsen et al., 1995). Primary syphilis presents 
as a painless, typically solitary, clean-based, indurated ulcer (chancre) 
at the site of bacterial replication (LaFond and Lukehart, 2006; Hook, 
2017; Peeling et al., 2017; O’Byrne and Macpherson, 2019). About two 
to 12 weeks after sexual contact, it progresses to secondary syphilis, 
characterized by diffuse skin rashes and mucosal lesions (Hook, 2017; 
Peeling et al., 2017; O’Byrne and Macpherson, 2019). If left untreated, 
syphilis may advance through asymptomatic stages (recent and late 
latent) and lead to symptomatic forms such as tertiary syphilis, which 
is characterized by slowly progressive systemic symptoms, including 
necrotic granulomatous lesions, neurosyphilis, and cardiovascular 
syphilis (Hook, 2017; Arando Lasagabaster and Otero Guerra, 2019). 
Congenital syphilis occurs when infected pregnant women transmit 
the infection during childbirth or breastfeeding (Singh and 
Romanowski, 1999; Giacani and Lukehart, 2014).

In recent decades, there has been an alarming increase in reported 
syphilis cases. Approximately 6.3 million cases are reported annually 
among individuals aged 15 and 49 years worldwide. The global 
incidence rate was 1.7 cases per 1,000 women and 1.6 per 1,000 men 
in 2016 and prevalence ranges from 0.1 to 1.6% across different 
regions from 2012 to 2016 (Rowley et al., 2019). Only Brazil, there 
were 167,523 cases of acquired syphilis and 74,095 cases of syphilis in 
pregnant women reported in 2021. Additionally, 27.1 cases per 1,000 
live births were detected, along with 27,019 cases of congenital 
syphilis, yielding an incidence rate of 9.9 cases per 1,000 live births 
(Ministério da Saúde, 2022).

Laboratory diagnosis of syphilis involves serological tests, 
including treponemal (TTs) and non-treponemal (NTTs). These tests 
are employed in either a traditional approach (NTTs for screening and 
TTs for confirmation) or a reverse algorithm (TTs for screening, NTTs 
for confirmation of positive samples, and secondary TT testing in case 
of discordant results) (Clyne and Jerrard, 2000). NTTs such as VDRL 
(venereal disease research laboratory) and RPR (rapid plasma reagin) 
are used to qualitatively and quantitatively detect anticardiolipin 
antibodies produced between the 1st and 2nd weeks after the 
appearance of the indurated ulcer (chancre), for both screening and 
monitoring therapeutic progress (Larsen et al., 1995; LaFond and 
Lukehart, 2006). TTs are necessary for the qualitative detection of IgG 
or IgM anti-T. pallidum antibodies, offering automated methodologies, 
rapid screening, and high-precision quantification for multiple 
samples with high precision (Clyne and Jerrard, 2000; Forrestel et al., 
2020), with superior diagnostic performance compared to NTTs (Park 
et al., 2019).

The performance of ELISA in syphilis diagnosis varies depending 
on the antigens used for detecting anti-T. pallidum antibodies (Liu 
et al., 2019). Antigenic matrices can incorporate lysates of T. pallidum 

or recombinant antigens, either isolated or in combination (Larsen 
et al., 1995). In a phase I study, TpN15, TpN17, TpN47, and TmpA 
recombinant proteins exhibited superior diagnostic performance 
(Silva et al., 2020). TpN17 and TmpA showed the most promising 
results and advanced to a phase II study. Several other studies have 
explored these proteins in the development of serological tests, seeking 
precision, rapidity, and cost-effectiveness (Young et al., 1998; Sato 
et al., 1999; Xu et al., 2016). However, limited research involving these 
proteins has been conducted in Brazil, despite the high incidence of 
syphilis. Therefore, our study aims to optimize indirect ELISA for 
assessing the diagnostic potential of TpN17 and TmpA proteins using 
samples from serologically positive individuals in Brazil.

2 Materials and methods

2.1 Recombinant proteins synthesis

We followed the method previously described (Silva et al., 2020) 
for recombinant protein synthesis. In brief, we acquired synthetic 
genes of the bacterium T. pallidum subspecies pallidum Nichols strain 
from a commercial supplier (GenScript, Piscataway-NJ, United States). 
These synthetic genes, purchased in pUC57, were subcloned in-house 
into the pET28a expression vector, and expression was carried out in 
Escherichia coli strain BL21-Star (DE3). Bacterial cells were initially 
incubated for 16 h at 37°C in Luria-Bertani broth containing 
kanamycin (50 μg/mL). The culture was then diluted at 1:20 in fresh 
medium and incubated at 37°C until an optical density ranging from 
0.6 to 0.8 was reached, measured at 600 nm (OD600). Expression was 
induced by adding IPTG (isopropyl β-D-1-thiogalactopyranoside) to 
a final concentration of 500 μM and incubating for 4 h at 
37°C. Bacterial cell disruption was achieved using either a 
microfluidizer processor (Microfluidics Model M-110 L, Hyland 
Scientific, Stanwood-WA, United States) or chemical methods. The 
resulting recombinant proteins were purified through affinity and ion 
exchange chromatography. Proteins were quantified using a 
fluorometric assay (Qubit12.0, Invitrogen Technologies, Carlsbad-CA, 
United States), and purity was confirmed through SDS-PAGE stained 
with CBB-G250 (Laemmli, 1970).

2.2 Sampling

The sample size calculation, conducted with a 95% confidence 
interval, expected sensitivity and specificity of 99%, and an absolute 
error of 1.5%, using the OpenEpi program1 (Dean et  al., 2013), 
determined that we needed 169 T. pallidum-positive samples (TpP) 

1 https://www.openepi.com
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and 169 T. pallidum-negative samples (TpN) to conduct this study. 
Seven hundred two samples were deemed eligible. Following sera 
characterization, we  excluded 65 samples, leaving 647 samples 
for analysis.

Panel 1: consisted of 180 T. pallidum-positive samples obtained 
from CEDAP, Bahia State Health Department, between April 26, 
2021, and November 12, 2021. These samples were obtained 
through serological tests (rapid immunochromatographic test and 
VDRL) and clinical examinations for syphilis conducted by 
healthcare professionals at the reference center. Of these, 30 were 
from primary syphilis, 77 from secondary syphilis, and 73 from 
early latent syphilis. We obtained 191 T. pallidum-negative samples 
from the Foundation of Hematology and Hemotherapy of the State 
of Bahia (HEMOBA) from December 2017 to April 2019, stored in 
our biorepository.

Panel 2: contained 276 samples from individuals with unrelated 
diseases, previously diagnosed using parasitological or serological 
methods. These samples were obtained from HEMOBA and the 
Foundation of Hematology and Hemotherapy of the State of 
Pernambuco (HEMOPE) and included chronic Chagas disease 
(n = 65), hepatitis B virus (n = 80), hepatitis C virus (n = 49), 
HIV-1/2 (n = 21), and HTLV-1/2 (n = 61). Sample selection for 
cross-reactivity assessment was based on confirmed disease 
positivity and concurrent negativity for syphilis in the 
chemiluminescence assay conducted at the blood bank.

All serum samples from panel 1 and 2 underwent serological 
retesting for T. pallidum antibodies using one non-treponemal 
(NTT): VDRL test kit (Wiener Lab, Rosario, Argentina), and two 
treponemal tests (TTs): anti-Treponema pallidum IIFT (IgG) test 
(Euroimmun Medizinische Labordiagnostika AG, Lübeck, 
Germany), and recombinant ELISA v.4.0 test (IgG) (Wiener lab., 
Rosario, Argentina). All testing was performed in accordance with 
the manufacturer’s instructions.

A sample was considered positive when it tested positively in 
two treponemal tests (ELISA and FTA-ABS) and one 
non-treponemal test (VDRL). Conversely, it was deemed negative 
if it did not show positivity in two treponemal tests (ELISA and 
FTA-ABS). In cases of equivocal or positive results, samples were 
subjected to a non-treponemal test (VDRL). Samples with volume 
less than 50 μL and those with uncertain or undefined serological 
evaluation for syphilis were not included in this study. Each sample 
was assigned a unique identifier code to ensure a blinded analysis.

2.3 Indirect ELISA

Standardization followed the checkerboard titration as previously 
described (Silva et al., 2020) and was optimized for this study. In 
summary, 100 ng/well of TpN17 and 200 ng/well of TmpA, in coating 
buffer (0.05 M carbonate–bicarbonate, pH 9.6), were added to 
transparent flat-bottom polystyrene microplates (Microtest Plate 96 
Well, F—Sarstedt, Germany). These were incubated at room 
temperature (RT) for 15 min. Subsequently, the microplates were 
blocked and stabilized with 100 μL/well of WellChampion™ 
(Ken-En-Tec Diagnostics A/S, Taastrup, Denmark) synthetic blocking 
buffer for 15 min, following the manufacturer’s instructions. 
Afterward, the microplates were emptied, inverted, and placed in an 
oven at 37°C for 90 min for drying (MARCONI® MA032, São 

Paulo-SP, Brazil). They were then washed once in 0.75% Tween-20 
plus PBS buffer (PBS-T). Serum samples were loaded at 1:25 in PBS-T, 
adding 100 μL/well. After incubation for 30 min at 37°C, the 
microplates were washed in PBS-T to remove any unbound antibodies. 
HRP-conjugated secondary antibody (SIGMA SAB3701283; Sigma-
Aldrich, San Luis, Missouri, EUA; lot RI39338), diluted at 1:10.000 
(TmpA and TpN17) in PBS-T, was added to each well, followed by 
incubation for 30 min at 37°C and subsequent washing with 
PBS-T. For the detection of the immunocomplexes, 100 μL of TMB 
Plus solution (tetramethyl-benzidine; Ken-En-Tec Diagnostics A/S, 
Taastrup, Denmark) was added to each well. After 15 min of 
incubation at RT in the dark, the reaction was halted with 50 μL of 
0.3 M H2SO4, and absorbance was measured at 450 nm in a microplate 
spectrophotometer (SPECTRAmax 340PC1, California, 
United States).

2.4 Statistical analysis

Statistical analysis was conducted using scatter computer graphic 
software (GraphPad Prism version 9, San Diego-CA, United States). 
The variables were analyzed using descriptive measures, including 
arithmetic and geometric means and standard deviation (SD). The 
geometric means were calculated with a 95% confidence interval 
(CI). Data normality was assessed using the Shapiro–Wilk test. The 
Wilcoxon–Mann–Whitney or Kruskal–Wallis test was employed 
when the null hypothesis was rejected. When the normality was 
confirmed, the Student’s t-test was used. All conclusions were drawn 
at a significance level of p < 0.05. The cut-off (CO) values for TpN17 
were determined based on the area under the ROC curve (AUC) 
(TpN17), while for TmpA, they were established using the mean of 
the negative values plus 2 standard deviations (X ̄ NEG + 2SD). 
Results were normalized by calculating the reactivity index (RI), 
denoting the ratio between the OD of the samples and the 
CO. Samples with RI ≥ 1.0 were considered positive, RI < 1.0 
negative, and RI = ±10% of 1.0 classified as inconclusive (gray zone). 
To assess global accuracy for each antigen, we calculated areas under 
the ROC curve (AUC), interpreted as outstanding (1.0), elevated 
(0.82–0.99), moderate (0.62–0.81), or low (0.51–0.61) (Swets, 1988). 
We  determined and compared ELISA performance parameters 
regarding sensitivity (Sen), specificity (Spe), accuracy (Acc), positive 
(LR+) and negative (LR-) likelihood ratio, and diagnostic odds ratio 
(DOR). We established the agreement strength between the standard 
tests and ELISA through Cohen’s Kappa (κ), interpreted as follows: 
1.0 ≤ κ ≥ 0.81 (almost perfect agreement), 0.80 ≤ κ ≥ 0.61 (substantial 
agreement), 0.60 ≤ κ ≥ 0.41 (moderate agreement), 0.40 ≤ κ ≥ 0.21 
(fair agreement), 0.20 ≤ κ ≥ 0 (slight agreement), or k = 0 (poor 
agreement) (Landis and Koch, 1977). A checklist is provided 
according to the Standards for the Reporting of Diagnostic accuracy 
studies (STARD) guidelines.

3 Results

3.1 Sera characterization

In this study, we employed a total of 712 serum samples (Figure 1). 
Initially, all samples underwent re-assessment using non-treponemal 
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(VDRL) or treponemal (ELISA and FTA-ABS) tests. Samples 
returning discordant results or having insufficient volume were 
excluded (n = 65; 9.1%). Following characterization, 180 positive 
samples were included, and seven were excluded due to discordant 
results (seven reagent samples for the ELISA, two non-reagent samples 
for the VDRL and seven reagent samples for the IIFT). Among 

negative samples, 191 were confirmed as negatives, with only one 
sample testing positive for IIFT. Regarding positive samples for 
unrelated diseases, 276 yielded negative result, while 31 showed 
discordant results (ELISA: eight reagent samples but non-reactive in 
IIFT; IIFT: 22 reagent samples but non-reactive in ELISA; VDR: one 
non-reactive sample but reagent in ELISA and IIFT).

FIGURE 1

Sera characterization from Treponema pallidum-positive and negative samples tested with VDRL, ELISA, and IIFT. NR, non-reagent; R, reagent; VDRL, 
Venereal Disease Research Laboratory; ELISA, enzyme-linked immunosorbent assay; IIFT, indirect immunofluorescence—IgG.
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3.2 ELISA performance

Both TmpA and TpN17 exhibited exceptional discrimination 
between positive and negative samples for syphilis, with AUC 
values of 99.2% for TmpA and 99.9% for TpN17. The TmpA and 
TpN17 T. pallidum-recombinant proteins achieved sensitivities of 
90.6 and 97.2%, respectively. TpN17 identified five (2.8%) false-
negative samples, while TmpA identified 17 (9.4%) false negatives, 
affecting the diagnostic sensitivity. The maximum specificity value 
was obtained for both proteins, with 100% for TmpA and TpN1. 
Accuracy values were 95.4% for TmpA and 98.7% for TpN17 
(Figure 2 and Supplementary Table S1).

According to the positive likelihood ratio (LR+), both TpN17 and 
TmpA exhibited a significant increase (LR > 10) in the probability of a 
positive result for a person with syphilis compared to a negative 
person, with values of 1,857.92 and 1,730.52, respectively. The negative 
likelihood ratio (LR-) showed a significant decrease (LR < 0.1), with 
values of 0.03 (TpN17) and 0.09 (TmpA), indicating low probability 
of a negative result for a person with syphilis compared to a negative 
person. DOR values demonstrated the high diagnostic performance 

of botht TpN17 and TmpA, with values of 66,850 and 18,313.53 times 
the chance the test being positive for a person with syphilis compared 
to a negative person. Kappa values indicated almost perfect agreement 
(TmpA and TpN17) with the reference tests (Table 1).

Regarding the inconclusive zone (RI = 1.0 ± 10%), few positive 
samples yielded inconclusive results: three (1.7%) inconclusive results 
for TpN17 testing and seven (3.9%) for TmpA (Figure 3). No negative 
sample fell within the inconclusive space when tested using 
TmpA. However, one negative and two positive samples presented 
inconclusive results when assayed with TpN17. Concerning the 
T. pallidum-positive samples, TmpA exhibited the highest RI value 
(2.1 ± 0.6), followed by TpN17 (3.2 ± 0.55). For T. pallidum-negative 
samples, the RI value was lower for TpN17 (0.07 ± 0.02), followed by 
TmpA (0.1 ± 0.04).

In addition to the individual performance of each molecule, 
we analyzed serial and parallel diagnostic performance using two 
indirect IBMP-ELISAs (Table 2).

In the serial analysis, sensitivity was of 91.1%, specificity was 99.5%, 
and accuracy was 95.4%. In parallel tests, sensitivity was 97.2%, higher 
than in serial analysis, with no false-positive results when negative 

FIGURE 2

The reactivity index and diagnostic performance parameters of the TmpA and TpN17 for Treponema pallidum-positive and negative serum samples. 
The cut-off is set at the reactivity index value  =  1.0 and the shaded area represents the gray zone (RI  =  1.0  ±  0.10). Horizontal lines and numbers 
represent the geometric means (±95% CI) for each result group. AUC, area under curve; Sen, sensitivity; Spe, specificity; Acc, accuracy; LR+, positive 
likelihood ratio; LR−, negative likelihood ratio; DOR, diagnostic odds ratio; Neg, negative; Pos, positive; ĸ index, Cohen’s Kappa index.
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TABLE 1 Kappa values for TpN17 and TmpA compared to the gold standard.

Result Reverse algorithm κ (95% CI)

Positive Negative

TpN17

0.97 (0.97–1.00)
Positive 177 0

Negative 3 191

Total 180 191

TmpA

0.91 (0.88–0.96)
Positive 165 0

Negative 15 191

Total 180 191

κ, Cohen’s kappa; CI, confidence interval.

FIGURE 3

The reactivity index and diagnostic performance parameters of the TmpA and TpN17, stratified by clinical stage, for Treponema pallidum-positive and 
negative serum samples. The cut-off is set at the reactivity index value  =  1.0 and the shaded area represents the gray zone (RI  =  1.0  ±  0.10). Horizontal 
lines and numbers represent the geometric means (±95% CI) for each result group. AUC, area under curve; Sen, sensitivity; Spe, specificity; Acc, 
accuracy; RI, reactivity index.

TABLE 2 Analysis of the diagnostic performance of TpN17 and TmpA antigens in the phase II study, considering serial, and parallel analyses.

Performance parameters Serial Parallel

Values 95% CI Values 95% CI

Sensitivity (%) 91.1 86.0–94.5 97.2 93.7–98.8

Specificity (%) 99.5 97.1–99.9 100 98–100

Accuracy (%) 95.4 92.8–97.1 98.7 96.9–99.4

95% CI, confidence interval to 95%.
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samples were tested in parallel, resulting in 100% specificity. In parallel 
scheme, regardless of the set of antigens used, accuracy values exceeded 
the 95.4% obtained in serial analysis, reaching approximately 99%.

When evaluating the performance of the two proteins according 
to the clinical stage, TpN17 exhibited elevated AUC (> 98%) values for 
primary, secondary, and early latent syphilis. TmpA achieved an 
outstanding AUC of 100% for primary/secondary syphilis and 
elevated values (99.8%) for the early latent syphilis (Figure 3).

Despite variations in sensitivity, TmpA ranged from 83.6 to 97.4%, 
with the highest value observed for the secondary stage. TpN17 
demonstrated 100% sensitivity for primary and secondary stages and 
93.2% for early latent syphilis. All clinical stages achieved a specificity 
of 100%. Accuracy values revealed that TmpA was highly accurate in 
diagnosing all clinical stages of syphilis, ranging from 95.5 to 98.6%, 
while TpN17 exhibited elevated accuracy in diagnostics (>98.1%) for 
all clinical stages. Cohen’s Kappa (κ) analysis showed almost perfect 
agreement for both TmpA and TpN17. In T. pallidum-positive 
samples, TmpA exhibited the highest RI values: 2.86 ± 1.85 (primary 
syphilis), 3.18 ± 0.87 (secondary syphilis), and 2.01 ± 0.73 (early latent 
syphilis), followed by TpN17: 3.04 ± 1.26 (primary syphilis), 3.66 ± 0.68 
(secondary syphilis), and 2.84 ± 0.77 (early latent). Both proteins 
demonstrated a high diagnostic capacity across all clinical stages.

3.3 Assessment of cross-reactivity

We employed Panel 2, consisting of 314 serum positive samples 
for unrelated diseases (Figure 1), to assess the cross-reactivity of 

antibodies against various infectious parasitic and viral diseases. As 
shown in Figure  4 (Supplementary Table S2), only one cross-
reaction was observed (Chagas disease positive sample—1.54%) 
when serum samples were tested with TpN17. The incidence of 
cross-reactivity with TmpA antigen was also negligible, with two 
cases for Chagas disease (3.07%), one for HBV (1.25%), two for 
HIV (9.52%), and one for HTLV (1.64%) positive samples resulting 
in false-positive outcomes.

Considering the gray zone (RI values of 1.0 ± 0.10), no sample 
presented inconclusive results for TpN17, while relatively few samples 
were considered inconclusive for TmpA: two positive samples for HIV 
(9.52%), and two for the HTLV (3.3%). Regarding T. pallidum-positive 
samples with other infectious parasitic and viral diseases, TmpA 
exhibited the highest RI value for HIV (0.30 ± 0.28) and the lowest RI 
value for HBV (0.10 ± 0.05), followed by TpN17 with the highest and 
lowest RI values for HIV (0.10 ± 0.102) and HBV (0.03 ± 0.01), 
respectively.

4 Discussion

In this study, we evaluated the diagnostic performance of two 
recombinant proteins, TpN17 and TmpA, for the detection of specific 
anti-T. pallidum antibodies in the serum of syphilis-positive 
individuals using the ELISA diagnostic platform. Previous proteomic 
studies have identified several T. pallidum proteins with 
immunoreactivity and diagnostic biomarker potential (Brinkman 
et al., 2006; McGill et al., 2010; Kubanov et al., 2017). McGill et al. 

FIGURE 4

Analysis of the cross-reactivity of the Treponema pallidum-recombinant proteins with sera from various infectious parasitic and viral diseases. The 
cut-off value is reactivity index  =  1.0 and the shaded area represents the grey zone (RI  =  1.0  ±  0.10). CHA, chronic Chagas disease; HBV, hepatitis B; 
HCV, hepatitis C; HIV, human immunodeficiency virus; HTLV, human T cell lymphotropic virus; RI, reactivity index.
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(2010) investigated the immunological response of treponemal 
proteins in both rabbit sera and sera from T. pallidum-positive 
individuals, identifying 29 reactive proteins, including 42-kDa 
(TmpA), 47-kDa (TpN47), 17-kDa (TpN17), and 15-kDa (TpN15). 
These proteins are encoded by genes tp0171 (TpN15), tp0435 (TpN17), 
tp0574 (TpN47), and tp0768 (TmpA), and they are known for their 
immunogenic and diagnostic relevance (Kubanov et  al., 2017). 
Previous studies, conducted by our group, have also assessed the 
diagnostic performance of TpN17 and TmpA in phase I study (Silva 
et al., 2020).

Our results demonstrated that both TpN17 and TmpA achieved 
high diagnostic accuracy, with area under the curve (AUC) values 
exceeding 99% and accuracy values exceeding 95%. Additionally, the 
positive and negative likelihood ratios (LR+ and LR−) indicated 
significant results, further confirming the diagnostic potential of these 
proteins. These findings align with those from the phase I study, which 
reported AUC, specificity, and accuracy values above 91, 100, and 
90.3%, respectively, for both proteins. However, there was a notable 
difference in sensitivity between phase I and II studies. In the pilot 
study, the sensitivity for both proteins was 69.9% (Silva et al., 2020), 
whereas in the present study, the sensitivity was 90.6% for TpN17 and 
97.2% for TmpA. It is important to note that the phase I study had 
some limitations, including the use of non-treponemal tests as 
reference tests for sample recharacterization, which may not correlate 
well with treponemal tests, and the inability to use immunofluorescence 
across the entire serological panel. Thus, the diagnostic performance 
in the phase I study may have been compromised by the limitation of 
the reference tests. In contrast, this study applied one non-treponemal 
(VDRL) and two treponemal (ELISA and FTA-ABS) reference tests to 
multiple samples, which improved the accuracy of the results. 
Furthermore, the inclusion of clinically well-defined serological 
samples obtained from a specialized center in ISTs (CEDAP) helped 
address this limitation.

The antigen’s performance was evaluated in multiple studies for 
syphilis diagnosis, corroborating our findings. In a study by Rodríguez 
et  al. (2002), they assessed ELISA anti-TmpA and obtained high 
sensitivity (93.3%) and specificity (95.3%) values. Similarly, 
IJsselmuiden et al. (1989) found a high specificity of 99.6% in TmpA 
ELISA. Martin et al. (2008) evaluated an ELISA in-house (TpN47, 
TpN17, TpN15, and TmpA) and demonstrated 100% of sensitivity, 
specificity, and accuracy for all proteins. In contrast, an rTpN17-
ELISA had lower sensitivity (84.4%) but excellent specificity (100%) 
(Sun et al., 2009).

According to clinical stages of the infection, TmpA exhibited 
higher sensitivity for secondary syphilis (97.4%), following by primary 
syphilis (98.7%), and early latent syphilis (83.6%), while TpN17 
displayed 100% sensitivity for primary and secondary syphilis and 
93.2% for early latent syphilis. Both proteins showed 100% specificity 
across all stages. Rostopira et al. (2003) demonstrated a sensitivity of 
100% for both TmpA and TpN17 among primary seropositive 
individuals and secondary active syphilis. For latent syphilis, TmpA 
obtained 87%, and TpN17 95.7% sensitivity (Rostopira et al., 2003). 
Furthermore, TmpA ELISA exhibited diagnostic performance of 76, 
100, and 98% sensitivity for primary, secondary, and early latent 
syphilis, respectively (Ijsselmuiden et al., 1989).

Brinkman et  al. (2006) identified variations in the humoral 
immune response to T. pallidum proteins across different clinical 
stages. Typically, TpN47 and flagellins (TpN37, TpN33, and TpN30) 

are produced in primary syphilis, while TpN47, TmpA, TpN37, 
TpN34.5, TpN33, TpN30, TpN17, and TpN15 are more immunogenic 
in secondary and early latent syphilis (Norris et al., 2001). However, 
ELISA’s diagnostic capacity was consistently higher in all stages, 
possibly due to bacterial spread (including the central nervous system) 
along with local replication and a robust inflammatory response 
(Norris et al., 2001; LaFond and Lukehart, 2006; Sandes et al., 2017). 
In individuals with late latent and tertiary syphilis, the humoral 
response is weaker, but some immunoglobulins (IgG) remain reactive 
to TTs compared to the NTTs (Norris et al., 2001).

Various recombinant proteins, including TpN17 and TmpA, have 
shown promise for syphilis serodiagnosis and are used in combination 
with commercial ELISA tests. Several tests have already been evaluated 
for their diagnostic performance: Trep-Sure (Sensitivity: 99.3–100%; 
Specificity: 82.6–100%) (Binnicker et al., 2011; Malm et al., 2015; 
Buono et al., 2017; Fakile et al., 2018; Park et al., 2019), ICE Syphilis 
Detection Pack (Sensibility: 100%; Specificity: 92–100%) (Aktas et al., 
2007), Trep-ID (Sensitivity: 100%; Specificity: 99%) (Binnicker et al., 
2011), TP-ELISA (Sensitivity: 100%; Specificity: 91.9%; Accuracy: 
95.4%; AUC: 99.9%) (Liu et al., 2014), Enzywell (Sensitivity: 96.3–
100%; Specificity: 92–99.7%) (Young et al., 2000; Aktas et al., 2007; 
Malm et al., 2015), DIALAB Syphilis (Sensitivity: 98.4%; Specificity: 
94.9%) (Negash et  al., 2018), RecomWell (Sensitivity: 98.9%; 
Specificity: 98.9%) (Sambri et al., 2001), Architect Syphilis Tp ELISA 
(Sensitivity: 100%; Specificity: 97.8%) (Sönmez et  al., 2018), 3nd 
ELISA kit Dia-Syph and 2nd EIA (Sensitivity: 96.4%; Specificity: 
99.7–98%) (Rostopira et  al., 2003), Syphilis Screening ELISA 
(Sensitivity: 98.3%; Specificity: 98.7%) (Sambri et  al., 2001), 
Eti-syphilis-G (Sensitivity: 100% for all clinical stages; Specificity: 
93%) (Castro et al., 2003), Captia Select Syph-G (Sensitivity: 99%; 
Specificity: 98%) (Woznicová and Vališová, 2007), and others with 
elevated sensitivity and specificity values higher than 90% (Cole 
et al., 2007).

Considering our results, these commercial ELISA tests provided 
concordant results. Other studies have evaluated the diagnostic 
performance of recombinant proteins for syphilis diagnosis with 
values below or equivalent to our findings: such as TS-EIA (Senitivity: 
52%) (Gratzer et  al., 2014), Trep Check (Sensitivity: 63.4–98.9%; 
Specificity: 95.6–98.6%) (Tsang et al., 2007; Binnicker et al., 2011), ICE 
Syphilis Murex (Sensitivity: 75–98.2%; Specificity: 99.2–99.5%) 
(Schmidt et al., 2000; Manavi et al., 2006; Cole et al., 2007), Vircell 
Syphilis ELISA (Sensitivity: 73.2%; Specificity: 62.6%) (Sonmez et al., 
2019), Enzygnost Syphilis (Sensitivity: 69.2–100%; Specificity: 98.5–
99.8%) (Gutiérrez et al., 2000; Schmidt et al., 2000; Marangoni et al., 
2009), Chorus Syphilis Screen Recombinant (Sensitivity: 87.9%; 
Specificity: 91.2%), Euroimmun Treponema pallidum screen ELISA 
(Sensitivity: 87.5%; Specificity: 85.7%) (Sonmez et  al., 2019). 
Differences in performance between ELISA tests may have been 
influenced by various factors, including standardization, antigenic 
matrix, the number of samples evaluated, the analytical sensitivity, and 
the staging of infection.

In contrast to our findings, commercial ELISA tests using Murex 
ICE EIA demonstrated varying positivity rates: 84% for primary 
syphilis, 100% for secondary syphilis, 75% for early latent syphilis, and 
100% for cases with an unknown duration (Manavi et  al., 2006). 
Meanwhile, Owusu-Edusei et al. (2011) reported comparable results 
with 80% sensitivity for primary syphilis and 100% sensitivity for 
secondary and early latent syphilis, indicating lower sensitivity for 
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early-stage infections. In the case of Trep-Sure, recomWell, Syphilis 
Screening ELISA, and Enzywell, their values consistently exceed 94% 
across all clinical stages, as previously documented (Young et al., 2000; 
Park et al., 2011, 2019, 2020).

Cross-reaction was evaluated against serological samples from 
individuals with unrelated diseases, including chronic Chagas disease, 
hepatitis B, hepatitis C, HIV-1/2, and HTLV-1/2. All samples were 
assessed by VDRL, ELISA, and FTA-ABS to rule out false positives 
due to IgG anti-T. pallidum. In the phase I study, cross-reactivity using 
TmpA was negligible, with only three positive samples (dengue, 
filariasis, and schistosomiasis) producing a false-positive result. No 
cross-reaction was observed for TpN17  in serum samples from 
non-bacterial infections. However, higher numbers of leptospirosis-
positive samples presented positive results using TmpA (32.1%) and 
TpN17 (8.6%) (Silva et al., 2020). TpN17 showed less cross-reaction 
compared to TmpA, as observed in the phase II study. Only one cross-
reaction was observed (1.49%) for the chronic Chagas disease with 
TpN17, while TmpA showed cross-reactions for chronic Chagas 
disease (2.98%), HBV (1.0%), HCV (1.4%), HIV-1/2 (1.8%), and 
HTLV-1/2 (1.0%) positive samples. However, non-specific reactions 
were observed in these and other studies but were considered 
diagnostically irrelevant due to the low number of false-
positive samples.

Rodríguez et al. (2002) observed cross-reaction for ELISA anti-
TmpA when serum samples were positive for mononucleosis, 
hepatitis, diabetes mellitus, HIV/AIDS, and old age. Antibodies anti-
TpN17 (IgG) were recorded in 3.7% of cases in patients with 
gonorrhea, and IgM antibodies were detected in 2.1% of cases in the 
group with hepatitis C. For the TmpA protein, one false-positive result 
(2.5%) was found in a hepatitis B virus-infected patient (Rostopira 
et al., 2003). Sambri et al. (2001) evaluated 60 samples from the cross-
reacting panel by recomWell Treponema IgG, and two samples were 
reactive: one from a Lyme disease patient and one from a patient with 
infectious mononucleosis. Other studies also observed cross-reaction 
for mononucleosis (10%) and Lyme borreliosis (13.3%) using 
Enzygnost Syphilis (combined proteins) (Gutiérrez et  al., 2000; 
Marangoni et al., 2009). rTpN17-ELISA and rTpN15-17-47-ELISA 
returned positive results for systemic lupus erythematosus and 
rheumatic arthritis samples (Sun et  al., 2009). Furthermore, 
Woznicová and Vališová (2007) used Captia Select Syph-G and 
obtained cross-reaction for Lyme borreliosis, chlamydial urethritis, 
psychosis, and allergic dermatitis.

5 Conclusion

In summary, both TmpA and TpN17 proteins demonstrated 
excellent diagnostic performance in distinguishing between positive 
and negative samples. Notably, the performance parameters in this 
assessment surpassed those observed in the phase I  study. The 
utilization of both treponemal (ELISA and FTA-ABS) and 
non-treponemal (VDRL) reference tests for sample recharacterization, 
along with well-defined serology and clinical data, significantly 
contributed to these improved results. Additionally, the new 
standardization of experimental conditions enhanced the tests and led 
to advancements in the phase II study. In conclusion, our findings 
indicate that these proteins exhibit high diagnostic capacity, as 
evidenced by their specificity, sensitivity, accuracy, LR (+/−), and 

DOR values in ELISA. Nonetheless, we recognize the potential for 
further enhancement in sensitivity through the utilization of antigenic 
mixtures, which will be the primary focus of our group’s upcoming 
research endeavors.

5.1 Limitations

The primary limitations of this study included the absence 
of syphilis samples from pregnant women and cases of congenital 
syphilis, as well as the lack of samples from individuals with tertiary 
syphilis, which limited the evaluation of the diagnostic performance 
of both recombinant proteins. Additionally, the stratification of 
samples by clinical stage influenced the analysis of our results. Due to 
this stratification, each clinical stage had fewer samples compared to 
the sample size predicted by OpenEpi. Therefore, a concentration of 
diagnosed patients predominantly in secondary and recent latent 
syphilis stages limited the diversity of our sample collection. Another 
constraint was the inability to secure well-defined serologic samples 
for assessing cross-reactivity, resulting in a small number of samples 
being analyzed in this study, with the exclusion of Leptospira-
positive samples.
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