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Sickle cell anemia (SCA) is a disorder characterized by a heterogeneous clinical outcome. In the present
study, we investigated the associations between Tumor Necrosis Factor-alpha (TNF-alpha) —308G>A and
Interleukin 8 (IL-8) —251A>T gene polymorphisms, medical history and classical biomarkers in children
with steady-state SCA. In total, 210 SCA patients aged 2-21 years and 200 healthy controls were studied.
Gene polymorphisms, beta’-globin haplotypes and a 3.7-kb deletion in alpha2-thalassemia (a,-thal®>7 )
were investigated by PCR/RFLP analysis, and cytokine levels were determined by ELISA. Splenomegaly

;g:l';o?isli' anemia (p =.032) was more prevalent among children younger than 5 years of age. The A allele of the TNF-alpha
TNF-alpha —308G>A gene polymorphism and the presence of a,-thal®>” ** were associated with an increase risk of

IL-8 splenic sequestration events (p =.001; p =.046), while the T allele of the IL-8 —251A>T gene polymor-
phism was considered to be a protective factor for splenomegaly events (p =.032). Moreover, the A allele
of the TNF-alpha —308G>A gene polymorphism was associated with high TNF-alpha levels (p =.021), and
the hemoglobin F and hemoglobin S haplotypes were correlated with serum levels of IL-8. The logistic
regression analysis showed significant effects of the TNF-alpha and IL-8 gene polymorphisms, beta®-globin
gene haplotypes and o,-thal®>” ¥ on the occurrence of splenic sequestration events. Our study empha-
sizes that the identification of new genetic and immunological biomarkers and their associations with
classical markers is an important strategy to elucidate the underlying causes of different SCA phenotypes

beta®-globin Gene haplotypes
alpha2-Thalassemia

and their effects on patient outcome.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Sickle cell anemia (SCA) is an inherited recessive autosomal
disorder characterized by clinical heterogeneity that may be influ-
enced by environmental factors, ethnicity, social and economic
factors and genetic markers secondary to epigenetic phenomena.
These genetic factors include associations between SCA and
beta’-globin haplotypes, the presence of a 3.7-kb deletion in
alpha2-thalassemia (oo-thal®” ¥*) and fetal hemoglobin concentra-
tion, which is a well-known prognostic marker [1].

Clinical manifestations of SCA are based on vaso-occlusive epi-
sodes that impair blood flow as a consequence of intravascular
sickling in capillaries, hemolysis, cellular activation, leukocytosis
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and the breakdown of homeostasis [2-4]. The major clinical fea-
tures include pain, stroke, priapism, acute chest syndrome, osteo-
necrosis and renal failure [5].

The beta’®-globin gene haplotypes have been shown to correlate
with the clinical features of SCA patients; the CAR haplotype may
be associated with more severe symptoms, while the SEN haplo-
type correlates with a better prognosis [6-8]. The concurrent
op-thal>” ¥ is correlated with protection against the hemolysis-
associated phenotypes of leg ulcers and priapism [9] and is
associated with increased risk for the viscosity-vaso-occlusive phe-
notypes of acute pain and osteonecrosis [10,11]. Despite a common
genetic background, the phenotypic expression in SCA patients
varies widely, from mild clinical symptoms with survival into
60-70 years of age to very severe clinical symptoms with multi-or-
gan damage and early mortality [6,12].

TNF-alpha and IL-8 are pro-inflammatory molecules involved in
endothelial cell and leukocyte activation, macrophage stimulation,
affinity of leukocyte surface molecules and endothelial receptors
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and leukocyte chemotaxis and recruitment [13-16]. Sickle cell
anemia patients have increased serum levels of circulating TNF-al-
pha and IL-8 at steady state and during crisis events [17,18]; these
inflammatory molecules also possibly contribute to the complex
mechanisms involved in vascular occlusion events. Thus, aberra-
tions in cell activation and interaction, the pro-inflammatory and
oxidant profiles, genetic background and environmental factors
possibly result in recurrent vascular events [19,20].

Changes in the cytokine balance in SCA patients are an impor-
tant risk factor for the occurrence of clinical events [21]. Moreover,
inter-patient variations in cytokine levels could be attributed to
gene polymorphisms, notably the A alleles of -308 G>A and —251
A>T, which are positioned in the promoter regions of the TNF and
IL-8 genes, respectively, and have been associated with higher
TNF-alpha and IL-8 transcript levels [22,23].

Based on these observations, the present study investigated
polymorphisms in the TNF-alpha and IL-8 genes and their associa-
tion with the respective cytokine serum levels, medical history and
classical biomarkers presented by SCA patients.

2. Materials and methods
2.1. Subjects

A cross-sectional study comprising 210 SCA children (123 male
and 87 female; 9.3 + 4.5 years) selected from the hematology outpa-
tient clinic of the Hematology and Hemotherapy Foundation of Bahi-
a State (HEMOBA) was performed. The samples were collected
during the period from 2003 to 2007. Clinical data were collected
from the patients’ medical records, and demographic data were ob-
tained by interviews with patients and their parents or guardians.
Only pediatric SCA patients were eligible. All patients were at the
steady state of the disease, which was characterized as a period of
three months without any acute events and no blood transfusions
for 120 days prior to blood sampling. Exclusion criteria included
the presence of infectious diseases, hemoglobin profiles not compat-
ible with SCA, previous blood transfusions (less than four months
before the study) and inflammatory episodes during the study.

The study was approved by the Gongalo Moniz Research Center
of the Oswaldo Cruz Foundation (FIOCRUZ) Ethics Committee, and
all parents or guardians provided written informed consent fol-
lowed by the children’s agreement, in accordance with the Decla-
ration of Helsinki of 1975, as revised in 2000. Clinical
information was collected from the patients’ charts and their
physicians.

The control group consisted of 200 individuals who attended
the clinical laboratory of the Pharmacy College of the Federal Uni-
versity of Bahia (UFBA), and these individuals were age- and sex-
matched with the SCA patients group. The control individuals
had normal hemoglobin profiles and lacked a history of anemia,
inflammatory conditions and hematological diseases.

2.2. Hematological and hemoglobin analyses

Hematological analyses were performed using an electronic cell
counter (Coulter Counter T890, Brea, CA, USA). The hemoglobin
profile was analyzed by high-performance liquid chromatography
(HPLC) (Bio-Rad Variant, CA, USA).

2.3. Beta®-globin gene haplotypes and a 3.7-kb deletion in alpha-2-
thalassemia

DNA was isolated from blood leukocytes using the GFX™ Geno-
mic Blood DNA Purification Kit (Amersham Pharmacia Biotech, N]J,
USA). The betaS-globin gene haplotypes and a»-thal>” ¥ were

investigated with PCR and restriction fragment length polymor-
phism (RFLP) techniques as previously described [24,25].

2.4. Typing of single nucleotide polymorphisms (SNPs) and
measurement of serum cytokine levels

The TNF-alpha —-308G>A and IL-8 —251A>T gene polymor-
phisms were investigated with PCR and RFLP techniques as previ-
ously described [26,27].

Serum TNF-alpha and IL-8 levels were measured with an en-
zyme-linked immunosorbent assay (ELISA) (BD Biosciences Pharm-
ingen, USA), according to the manufacturer’s instructions, with
cut-off levels of <7.8 pg/mL and <15.0 pg/mL for TNF-alpha and
IL-8, respectively.

2.5. Statistical analysis

The baseline characteristics are presented as the means and
proportions of the selected variables. The distributions of quantita-
tive variables were determined using the Kolmogorov-Smirnov
test. Bivariate correlation analysis was performed to determine
correlations between pairs of variables using Spearman’s rho cor-
relation. Parametric ANOVA analyses confirmed by Bonferroni post
hoc tests and the nonparametric Kruskal-Wallis tests were used to
compare the means among two or more groups of interval vari-
ables that were normally distributed and not normally distributed,
respectively. Interactions between specific categories of clinical
variables were tested for significance using a y? test corrected by
Yates or Fisher’s exact test, and the expected frequency in the cell
tables was taken into account.

The logistic regression was applied to test several models com-
pounded by variables associated with splenic sequestration epi-
sodes. The independent variables were TNF-alpha —308G>A, IL-8 —
251A>T, Gender, a,-thal>” X* and the beta®-globin haplotypes.

The data analysis was performed using EPI Info 6.04 (CDC,
Atlanta, Georgia), Statistical Data Analysis (STATA) SE 10 (Stata-
Corp, Texas, USA) and GraphPad Prism 5.0. A p-value of less than
.05 was considered statistically significant.

3. Results

Our study included a total of 210 SCA patients aged 2-21 years,
36.6% of which were female. Clinical features are described in Ta-
ble 1. Vaso-occlusive pain episodes occurred in patients of all ages,
and splenomegaly was more prevalent among children younger
than 5 years of age (Fig. 1).

3.1. Alpha2-thalassemia 3.7-kb deletion and beta’-globin gene
haplotypes

Frequencies of o,-thal®”** and the beta®-globin gene haplotypes
in the SCA group are described in Table 2.

Table 1

Clinical features of the sickle cell anemia patients.
Clinical profile Frequency Percent
Vaso-occlusive events 180/210 85.7
Pneumonia 75/210 35.7
URTI 40/210 19.0
Splenic sequestration 23/210 10.9
Splenomegaly 19/210 9.0
Stroke 11/210 52
Urinary infection 8/210 3.8
Osteonecrosis 3/210 14
Leg ulcer 1/210 0.5

URTI: upper respiratory tract infection.
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Fig. 1. Splenomegaly incidence among SCA patient of different ages. P* ANOVA.

3.2. Analysis of the IL-8 —251A>T and TNF-alpha —308G>A gene
polymorphisms

The IL-8 —251A>T and TNF-alpha —308G>A gene polymorphism
frequencies of the 210 patients and the 200 individuals in the ref-
erence group were analyzed. The genotype frequencies were in
Hardy-Weinberg equilibrium (Table 3).

3.3. Associations between the TNF-alpha —308G>A and IL-8 —251A>T
gene polymorphisms, beta>-globin gene haplotypes and alpha,-thalas-
semia 3.7-kb deletion and clinical events in children with sickle cell
anemia

The A allele of the TNF-alpha gene polymorphism and the pres-
ence of a,-thal>” ** were associated with splenic sequestration epi-
sodes (Table 4). The T allele of the IL-8 gene polymorphism was
characterized as a protection factor for splenomegaly (OD: 0.326;
95% CI: 0.114-0.937; P=0.032).

3.4. Serum levels of IL-8 and TNF-alpha

The mean serum IL-8 level was 10.90 + 13.13 pg/mL with a min-
imum of 1.67 and a maximum of 109.05 pg/mL. The mean serum
TNF-alpha level was 29.71 £ 19.49 pg/mL with a minimum of
1.30 and a maximum of 128.41 pg/mL. The presence of the AG
and AA genotypes of the —308G>A TNF-alpha gene polymorphism
was associated with the highest serum levels of TNF (p =.021)
(Fig. 2). The presence of the AT and TT genotypes of the —251A>T
IL-8 gene polymorphism was not associated with serum levels of
IL-8.

3.5. Hemoglobin profiles and IL-8 serum levels

Fig. 3 shows the positive correlation between IL-8 and HbS and
the negative correlation between this cytokine and HbF.

Table 2
Frequencies of classical genetic prognosis markers.
Frequency Percent

o-thal>” *»
Heterozygous 37/174 213
Homozygous 2/174 1.1
beta’®-globin haplotypes
CAR/CAR 41/210 19.5
CAR/BEN 98/210 46.7
CAR/atypical 5/210 24
CAR/CAM 2/210 0.9
BEN/BEN 52/210 248
BEN/atypical 7/210 33
BEN/CAM 5/210 24

3.6. Multivariate associations of independent markers, such as the
TNF-alpha —308G>A and IL-8 —251A>T gene polymorphisms, beta’-
globin gene haplotypes, and alpha-2 thalassemia 3.7-kb deletion, and
splenic sequestration in children with sickle cell anemia

Models show the possible interactions between independent
variables and their influences on dependent variables, such as sple-
nic sequestration, and were adjusted for age and gender.

Presence of the TNF-alpha gene polymorphism and o,-thal®’ *?
are independently related to the risk of splenic sequestration
events. In the first model, patients with these genetic modifications
have a decreased risk of this clinical phenotype. Moreover, we ob-
served in the third model that patients with TNF-alpha gene poly-
morphisms, o,-thaP”* and IL-8 gene polymorphisms had a
decreased risk of splenic sequestration. However, males with the
CAR haplotype in the second and fourth models had an increased
risk of splenic sequestration events (Table 5).

4. Discussion

The presentation and clinical course of sickle cell anemia show
substantial viability between patients, from sporadic pain crises to
organ damage, resulting in frequent hospitalization and early
death [28].

The data presented herein demonstrate that vaso-occlusive pain
episodes are found among patients of different ages, which con-
firms that these clinical events occur in all age groups. Moreover,
the occurrence of splenomegaly was more prevalent among chil-
dren younger than 5 years of age in the SCA patients studied. This
result agrees with previous reports that describe children from the
United States of America and emphasizes the finding that spleens
from children with SCA progress through several changes and that
dysfunction begins very early in infancy [2,6,29-31].

Several genetic association analyses have been performed to
link single nucleotide polymorphisms or deletions with particular
complications of sickle cell anemia [32-35]. a-thal>” ¥® is fre-
quently present in SCA patients and correlates with clinical profiles
because its occurrence is related to an increase in hemoglobin con-
centration, a decrease in hemoglobin S polymerization and a
reduction in hemolysis. The clinical effects of o,-thal®>” ** are var-
iable but are usually beneficial for patients, such as reductions in
the occurrence of stroke [36], gall stones [37], leg ulcers [38] and
priapism [39], which are based on the decrease in hemolysis; how-
ever, pain frequency is not reduced because there is an increase in
blood viscosity [30]. Our results show that splenic sequestration is
partly attributable to the presence of a,-thal>’ X*, The high hemat-
ocrit and increased blood viscosity generated by o-thal>” ¥* could
promote morphological sickling and lead to a lack of deformability,
both of which are important etiological factors for splenic seques-
tration [30,40].

The association between the A allele of the TNF-alpha gene and
splenic sequestration was observed; patients with the mutant
genotype have a 4.6-fold increased risk for the development of this
clinical manifestation. Other studies that correlated the A allele of
the TNF-alpha gene and clinical events are controversial. Hoppe
et al. [32] first identified a protective role of the A allele of the
TNF-alpha gene using a logistic regression model with many inde-
pendent variables related to large vessel stroke. Hoppe et al. [33]
confirmed the role of the A allele of the TNF-alpha gene as a protec-
tive factor for large vessel stroke. However, Vicari et al. [35] did not
find an association between the mutant allele of the TNF gene and
stroke.

TNF-alpha, which is mainly produced by macrophages and T
cells, is a potent cytokine with a wide range of pro-inflammatory
activities, including the activation of endothelial cells; stimulation
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Table 3

Frequencies of IL-8 —251A>T and TNF-alpha —308G>A gene polymorphisms in children with steady-state sickle cell anemia compared with the healthy control group.

Cytokine Genotype frequency N (%)
genotype
SCA Healthy control
IL-8 AA 31(14.8) 28 (14.0) P=0.68*
—251A>T 0D:0.89
95% CI: 0.49-1.61
AT 108 (51.4) 98 (49.0)
T 71 (33.8) 74 (37.0)
Total 210 200
TNF-alpha GG 162 (77.1) 146 (73.0) P=0.28"
—308G>A OD: 0.78
95% CI: 0.49-1.25
GA 46 (21.9) 50 (25)
AA 2(1.0) 4(2.0)
Total 210 200
The genotypic and allelic distributions of all polymorphisms were in Hardy-Weinberg equilibrium.
a X2~
Table 4

Associations of clinical variables with TNF-alpha —308G>A and IL8 —251A>T gene polymorphisms, CAR/CAR and CAR/BEN beta®-globin gene haplotypes and the 3.7-kb deletion of

alpha-2 thalassemia among children with steady-state sickle cell anemia.

Vaso-occlusive events Pneumonia Splenic sequestration  Stroke URTI Urinary infection
IL-8 —251A>T
AA 26/31 11/31 4/31 1/31 7/31 1/31
AT+TT 154/179 64/173 19/179 10/179 33/179 7/179
OR=1.18° OR=1.06 OR=0.80,° OR=1.77," OR=0.77,° OR=1.22°
95% C1:0.41-3.37 95% C1:0.48-2.37  95%(Cl:0.25-2.53 95%Cl:0.21-14.38  95%(Cl:0.38-1.95  95%(Cl:0.14-10.28
P=.75 P=.87 P=.70 P=.59 P=0.58 P=0.85
TNF —308G>A
GG 141/162 60/156 11/162 10/162 30/162 7/162
GA+AA 40/48 15/48 12/48 1/48 10/48 1/48
OR=0.78,° OR=0.73, OR =4.60,° OR=0.34, OR=1.16, OR=047}
95% C1:0.32-1.88 95% C1:0.37-1.46 95% CI1:1.88-11.27 95% C1:0.04-2.60 95% C1:0.52-2.60 95% CI:0.05-4.00
P=.58 P=.38 P=.001 P=.29 P=70 P=.49
Haplotypes
CAR/CAR 38/41 14/39 4/41 5/41 5/41 1/41
CAR/BEN 80/97 34/95 12/97 3/93 16/97 3/97
OR=0.377 OR=0.99 OR=1.30> OR=0.23,? OR=1.42° OR=1.28°

Alpha-2-Thalassemia 3.7 kb
Wild type
Heterozygous/Homozygous

95% C1:0.10-1.34
P=.13

110/134

35/38
OR=2557

95% C1:0.72-8.96
P=14

95% C1:0.46-2.16
P=.099

49/129

18/37
OR=1.5572

95% C1:0.74-3.23
P=24

95% Cl1:0.39-4.31
P=.66

12/134

8/38

OR:2.71;

95% C1:1.02-7.22
P=.046

95% C1:0.52-1.01
P=.052

7/134

3/38

OR=1.55"

95% CI:0.38-6.32
P=53

95% Cl1:0.48-4.18
P=0.52

29/134

7/38

OR:0.82,

95% C1:0.33-2.05
P=.67

95% C1:0.13-12.65
p=083

5/134

1/38

OR=0.70,°

95% C1:0.08-6.15
P=0.75

OR: odds ratio; URTI: upper respiratory tract infection.
3 %2 Yates corrected.
b Fisher's exact test.

of inflammation; induction of the coagulation cascade, fevers and
the synthesis acute phase proteins; activation of neutrophils; and
stimulation of neutrophil adhesion [15]. These characteristics
make serum TNF levels an important risk factor in SCA. Lanaro
et al. [17] observed an increase in the circulating levels and an in-
crease in mRNA expression of TNF-alpha in SCA patients at steady
state, which is characteristic of a pro-inflammatory state. More-
over, Pathare et al. [21] observed an increase in the circulating con-
centration of TNF-alpha during crisis events. In our study, we
observed an association between the A allele of TNF-alpha
—308G>A and an increase in the serum levels of TNF-alpha in
SCA patients. Another study observed that an increase in the serum
levels of TNF-alpha was associated with the A allele of TNF-alpha
—308G>A [41]. Using a reporter gene assay, Wilson et al. [22] sug-
gested that the A allele of TNF-alpha —308G>A affects transcrip-

50 p=0.021*

TNF-alpha pg/mL

0 T
GG GA+AA

TNF-alpha -308G>A

Fig. 2. TNF-alpha —308G > A gene polymorphism and serum cytokine levels in
children with steady-state sickle cell anemia. *Spearman’s Correlation.
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Fig. 3. Hemoglobin profile and serum IL-8 levels in children with steady-state
sickle cell anemia.

tional activity and results in an increase in the expression of the
TNF gene.

However, this is the first study that assessed the impact of the
—251A>T IL-8 gene polymorphism on the clinical phenotypes of
SCA patients; the splenomegaly protection of the T allele of
—251A>T IL-8 gene could be related to its transcriptional activity
[23].These aspects indicate that the A allele of the TNF-alpha gene
and the T allele of the —251A>T IL-8 gene are important clinical
predictors of SCA.

The data presented in our study demonstrate a positive correla-
tion between IL-8 and S hemoglobin and an inverse correlation
with F hemoglobin. These results support a previous report in
which high IL-8 levels and other pro-inflammatory markers were
associated with SCA in patients during vascular occlusion episodes
(regardless of the crisis-inducing factor) and in steady-state

Table 5

patients [17]. High serum levels of IL-8 are a marker of poor prog-
nosis based on their association with an increase in S hemoglobin
and decrease in F hemoglobin in red blood cells due to an increase
in intravascular hemolysis and increases in oxidative damage, cel-
lular activation, vascular occlusion and consequently inflamma-
tion, which characterize hemolysis, vascular occlusion and
inflammation as cyclical events in SCA.

Logistic regression results were obtained by multivariate asso-
ciation of classical biomarkers, such as CAR beta®-globin haplo-
types, the presence of oy-thal®” ¥*, the A allele of the TNF-alpha
gene and the T allele of the IL-8 gene, with splenic sequestration
events. The models show that the risk of occurrence of spleen
sequestration varies and depends on genetic abnormalities present
in each patient and gender. The most interesting observation in the
second and fourth models was that the inclusion of the CAR haplo-
type, a classical factor of poor prognosis [8], consequently
increased the risk of spleen sequestration.

5. Conclusions

The results presented here indicate the importance of the A al-
lele of the TNF gene and the T allele of the —251A>T IL-8 in the clin-
ical events of SCA and further highlights the contribution of genetic
modifications to the risk of clinical phenotypes. Our study empha-
sizes that the identification of new genetic and immunological bio-
markers and their association with classical markers is an
important strategy for the elucidation of different SCA phenotypes
and their effects on patient outcome. Further studies should be
performed to investigate the mechanisms by which these gene
polymorphisms affect clinical manifestations and the contribution
of these associations to the expression of cytokines and adhesion
molecules.
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Coefficients, standard errors, P values, and confidence intervals for SCA patients with splenic sequestration.

Variable Coefficient Standard error P-value 0Odds ratio Lower 95% confidence interval Upper 95% confidence interval
Model 1

TNF 1.1425 0.5091 0.0248" 3.1347 1.1557 8.5028
TALA 0.9955 0.5192 0.0552 2.7061 0.9781 7.4870
Model 2

TNF 1.4075 0.6715 0.0361" 4.0859 1.0958 15.2356
TALA 1.6353 0.6976 0.0191° 5.1308 1.3072 20.1381
HAPLO 0.2365 0.7759 0.7575 1.2668 0.2823 5.6840
GENDER 0.8709 0.7611 0.2525 2.3890 0.5375 10.6186
Model 3

TNF 1.1440 0.5091 0.0246" 3.1393 1.1573 8.5156
TALA 1.0020 0.5198 0.0539 2.7237 0.9834 7.5436
IL-8 -0.2022 0.6922 0.7702 0.8169 0.2104 3.1724
Model 4

TNF 1.4072 0.6717 0.0362° 4.0844 1.0949 15.2367
TALA 1.6339 0.7015 0.0199° 5.1238 1.2955 20.2653
HAPLO 0.2380 0.7701 0.7573 1.2686 0.2804 5.7390
IL-8 0.0161 0.8679 0.9852 1.0162 0.1854 5.5690
GENDER 0.8765 0.7657 0.2545 2.3928 0.5335 10.7317

Models: TNF: TNF-alpha —308G>A; TALA: alpha-2-thalassemia with 3.7-kb deletion; HAPLO: CAR betaS-globin gene haplotype; IL-8: IL-8 —251A>T; GENDER: male.

" p values in bold show significant variables that are contributing to the dependent variable occurrences in the model.
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