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According to the World Health Organization (WHO),  
malaria remains a major health problem and affects 
more than 225 million individuals, causing approxi-
mately 700 thousand deaths each year. Plasmodium 
falciparum is the most common causative agent (WHO 
2011). However, Plasmodium vivax malaria, which was 
previously considered benign, also causes life-threaten-
ing symptoms. P. vivax is the most prevalent species in 
Latin America, South-East Asia, the Eastern Mediterra-
nean and the Western Pacific (WHO 2011). Plasmodium 
malariae and Plasmodium ovale are less prevalent and 
cause less severe disease in humans, whereas Plasmo-
dium knowlesi, a parasite of Old World monkeys, causes 
human disease in Southeast Asia (Cox-Singh & Singh 
2008). In addition, drug resistance has been reported in 
P. vivax malaria (Price et al. 2009).

Sporozoites, injected by Anopheles mosquitoes as 
they bite into the skin of mammalian hosts, rapidly enter 
the blood circulation to reach liver hepatocytes, where 
they mature in an entirely asymptomatic phase that lasts 

for approximately two weeks. Sporozoites of P. vivax 
and P. ovale remain dormant (hypnozoites) in the hu-
man hepatocyte, where they mature months to years 
later. These forms cause late malaria relapses under 
conditions that are not well understood and are related 
to host stress and low primaquine (PQ) doses (Townell 
et al. 2012); such relapses require new drug treatment. 
The ideal antimalarial should destroy sporozoites soon 
after they are inoculated into the vertebrate host by the 
mosquitoes. However, no effective prophylactic anti-
sporozoite drug is currently in use. Medicinal plants that 
hamper sporozoite development in host cells have been 
reported and these plants appear to act as prophylactics, 
as further discussed below. 

Merozoites are liberated as merosomes from liver 
cells and then bud off from the hepatocytes to invade 
and develop in red blood cells (RBCs) (Sturm et al. 
2006). In the RBCs, the parasites undergo asexual mul-
tiplication by schizogony and release merozoites, which 
invade other RBCs, thereby reinitiating the blood-stage 
cycle (Greenwood et al. 2008). The infected RBCs (iR-
BCs) are responsible for the disease symptoms, i.e., 
high and periodic fever (paroxysms), headaches (com-
mon to all human malaria species) and anaemia. The 
symptoms of P. falciparum include cerebral malaria 
and respiratory distress (life-threatening manifestations 
that are related to iRBC cytoadherence on microvascu-
lar endothelial cells), blockage of deep capillaries with 
neurological symptoms and death. The pathogenesis of 
severe malaria is not completely understood, although 
proinflammatory cytokines are known to be involved 
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Malaria remains a major world health problem following the emergence and spread of Plasmodium falciparum 
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improve antimalarial drug discovery. Clinical trials conducted with new funds from international agencies and the 
participation of several industries committed to the eradication of malaria should accelerate the discovery of drugs 
that are as effective as artemisinin derivatives, thus providing new hope for the control of malaria. 

Key words: human malaria - Plasmodium falciparum - antimalarials -  
drug screening - chloroquine - artemisinin - drug resistance



Review of antimalarial drug discovery • Anna Caroline C Aguiar et al.832

(Clark et al. 2006) and these cytokines contribute to the 
suppression of erythropoiesis, particularly in infected 
children (Perkins et al. 2011). Evidence supports the role 
of type 1 pro-inflammatory cytokines that increase the 
expression of adhesion molecules on vascular endothe-
lium and iRBC sequestration (Schofield & Grau 2005). 
Experimental data demonstrate that E6446, a synthetic 
antagonist of nucleic acid-sensing tool-like receptors 
(TLRs), diminishes the activation of TLR9 and prevents 
the increased production of cytokines in response to 
Plasmodium infections, consequently preventing severe 
malaria symptoms (Franklin et al. 2011). 

In previous reviews, the approaches used for antima-
larial drug discovery and development have been dis-
cussed (Krettli 2009, Mazier et al. 2009, Wells et al. 2010, 
Burrows et al. 2011a, b, Muregi et al. 2012) and these 
methods have since been updated. One of the promising 
approaches currently being used in the discovery of new 
antimalarials aimed at drug-resistant parasites and the 
interruption of the transmission of malaria is the testing 
of commercially available drugs that are currently pre-
scribed for other indications; if successful, this approach 
will rapidly accelerate the production of new antimalari-
als at a lower cost. High-throughput screening (HTS) 
and molecular modelling (MM) have been successfully 
used in collaborative projects to select three potential 
antimalarial candidates (Penna-Coutinho et al. 2011), as 
discussed below.

Malaria treatment and drug-resistant parasites - 
The discovery of the first antimalarial treatment almost 
400 years ago resulted from observations that acutely 
ill patients were cured of malaria after treatment with 
infusions of bark obtained from plants growing in the 
Peruvian Amazon (Graham 1966). Such activity in Cin-
chona calisaya and Cinchona succirubra plants was 
later attributed to the alkaloid quinine (QN), which was 
characterized by French chemists in 1820. QN remains 
important for treating complicated P. falciparum ma-
laria despite its toxicity when used for extended periods 
of time (WHO 2010a, b). 

Several 4-aminoquinolines were later synthesised 
based on the QN ring (Table I). Among them, chloro-
quine (CQ) is the safest and least expensive drug and 
most frequently was used to treat malaria worldwide as 
an essential component of the Global Malaria Eradica-
tion Campaign. This campaign, launched in 1955, was 
based on the treatment of malaria patients using CQ in 
association with mosquito control measures. In the late 
1960s, P. falciparum CQ-resistant strains appeared in 
Latin America and South East Asia and gradually spread 
to most endemic regions. This campaign was interrupted 
in the 1970s. Malaria had been eradicated in a few coun-
tries (Karunamoorthi 2011). Most importantly, multi-
drug and cross-drug resistance among existing antima-
larials, mainly the aminoquinolines, were reported. CQ 
is now used only in drug combinations against P. falci-
parum or as the schizonticide of choice to treat P. vivax 
and other human plasmodia species. 

Artemisinin (ART), a sesquiterpene endoperoxide, 
is a natural product that is isolated from Artemisia an-

nua (Asteraceae), a medicinal plant that has been used 
for over a thousand years in China. ART derivatives 
are used as antimalarials and have been recommended 
by the WHO for use in drug combinations [ART-based 
combination therapies (ACTs)] to treat uncomplicated P. 
falciparum malaria and P. vivax in areas of CQ resistance 
(WHO 2010a, b). Drugs that complement the use of ACT 
include lumefantrine, amodiaquine, mefloquine (MQ), 
sulfadoxine-pyrimethamine and antibiotics (Table II). 
However, reduced susceptibility to ART derivatives has 
been described in P. falciparum (Dondorp et al. 2009).

The radical cure of P. vivax and P. ovale requires 
PQ, an 8-aminoquinoline that prevents late relapses 
(Wells et al. 2010). PQ also targets the primary liver 
exo-erythrocytic forms (EEFs), iRBCs and gameto-
cytes; for example, PQ is used to block malarial trans-
mission in Brazil (WHO 2010b) (Table III). However, 
PQ metabolites cause severe haemolytic anaemia 
and methemoglobinaemia in patients who are geneti-
cally deficient in glucose-6-phosphate dehydrogenase 
(G6PD) (Carmona-Fonseca et al. 2009). This side effect 
imposes a pre-screening requirement for G6PD defi-
ciency in P. vivax malaria patients and limits PQ use. 
Tafenoquine, a new drug that targets the liver forms 
(EEFs and hypnozoites) is currently in clinical trials 
(Wells et al. 2010) (Table IV).

The control of malaria has become gradually more 
complex due to the spread of drug-resistant P. falci-
parum strains and drugs that block the transmission of 
malaria are recommended by the WHO, especially in 
areas of high P. falciparum transmission. The use of PQ 
to control the transmission of malaria in endemic areas 
requires medical supervision due to the haemolytic tox-
icity of the drug (WHO 2010a). Interventions to reduce 
mosquito density, human-vector contact and the vecto-
rial capacity of Anopheles species are not simple (Kar-
unamoorthi 2011). Some methods that are available to 
reduce the transmission of malaria include indoor spray-
ing with insecticides, ultra-low volume space spraying, 
the chemical or biological control of larvae and personal 
protection using repellents or insecticide-treated nets. 
These methods are hampered by insecticide resistance 
and the high maintenance costs required to sustain the 
measures. The development of genetically modified 
mosquitoes (GMMs) that are resistant to parasite infec-
tion (which aims to reduce and/or block Plasmodium 
transmission) is being undertaken (James et al. 1999, 
Rodrigues et al. 2008, Isaacs et al. 2011), although the 
impact of GMMs in the field must be carefully evaluated 
prior to widespread use. 

Currently, no effective vaccine is available to fight 
human malaria; however, various antigen formulations 
are undergoing field trials. In particular, RTS,S/AS01E, 
a vaccine based on the P. falciparum circumsporozoite 
protein and blood stage parasite proteins, has demon-
strated promising results (Cohen et al. 2010, Agnandji 
et al. 2011, Schwartz et al. 2012). Vaccines based on the 
anti-merozoite surface protein of blood stages (McCa-
rthy et al. 2011) and a transmission-blocking vaccine 
(Herrera et al. 2007, Arevalo-Herrera 2010, Gregory et 
al. 2012) are being tested.
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TABLE I
Chemical structure and classification of drugs used for human malaria treatment,  

mostly combined with artemisine derivatives, monotherapy is no longer recommended

Antimalarial Structure Classification

Amodiaquine 4-aminoquinoline

Artemether Semi-synthetic endoperoxide

Artesunate Semi-synthetic endoperoxide

Bulaquinea 8-aminoquinoline

Dihydroartemisinin Semi-synthetic endoperoxide

Lumefantrine Amino alcohol

Mefloquine Amino alcohol

Piperaquine Bisquinoline

Pyrimethamine Diaminopyrimidine

Primaquine 8-aminoquinoline

Quinine Amino alcohol

Sulfadoxine Antibiotic

Tafenoquinea 8-aminoquinoline

a: bulaquine and tafenoquine are undergoing clinical screening and target the hepatic forms.
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In vitro assays of new antimalarials - Most programs 
aiming to discover new antimalarials are based on mi-
crotests against P. falciparum in blood cultures and ani-
mal models (Krettli 2009). New methods have replaced 
traditional assays and various stages of the malaria para-
sites are currently used. Large-scale drug screening and 
techniques based on the computer analysis of drug banks 
are available and being used, as discussed below.

Tests of blood schizonticides - The evaluation of P. 
falciparum drug susceptibility in vitro, formerly based 
on microscopy, has been replaced by the incorporation 
of radioactive [3H] hypoxanthine into live parasite DNA 
(Desjardins et al. 1979); however, the need to store ra-
dioactive solid wastes for decades, expensive equipment 
requirements and the need for well-trained technicians 
restrict the use of this method. 

Two enzyme-linked immunosorbent assays are avail-
able for drug testing; these assays use monoclonal anti-
bodies that are specific for the parasite enzyme lactate 
dehydrogenase (Pf LDH) (Druilhe et al. 2001) or a para-
site histidine-rich protein (HRP)II (Noedl et al. 2002). 
The assessment of parasite growth is effective in both of 
these tests. However, the existence of genetic diversity 
amongst Plasmodium strains interferes with the perfor-
mance of PfHRP2 tests (Baker et al. 2005). 

Methods based on DNA dyes are useful for drug 
screening and take advantage of the lack of DNA and 
RNA in erythrocytes. The following nucleic acid dyes are 
used in P. falciparum tests: (i) SYBR Green I is the most 
widely used in vitro (Izumiyama et al. 2009) and in vivo 
(Somsak et al. 2012) and costs less than other dyes, (ii) 
YOYO-1 is the most sensitive dye and has the advantage 
of being able to detect low levels of parasitaemia, (iii) the 

SYTO series of dyes has increased applicability due to 
its binding affinities (Jiménez-Díaz et al. 2009), (iv) pro-
pidium iodide, which is used with other stains, has a broad 
emission spectra that limits the range of dye combinations 
that can be used, (v) acridine orange, a relatively toxic mol-
ecule previously used for the diagnosis of human malaria, 
is laborious to use and has low reproducibility (Grimberg 
et al. 2008), (vi) the Hoechst dye series, although selec-
tive, is of limited use particularly because of its high cost 
(Grimberg et al. 2008) and (vii) PicoGreen provides reli-
able results, but is limited by the quenching of its fluores-
cence by haemoglobin, which confounds the detection of 
low levels of parasitaemia (Quashie et al. 2006).

Transfected parasites expressing nucleic acid dyes are 
detected by flow cytometry or fluorescence microscopy 
and appear to be useful models for drug screening; green 
fluorescent protein (GFP)-recombinant Plasmodium ber-
ghei and P. falciparum parasites have been successfully 
used (Sanchez et al. 2004, 2007, Wilson et al. 2010).

The inhibition of haemozoin (Hz) (β-haematin) for-
mation in vitro is an indirect test that does not require 
P. falciparum blood cultures and has been reported to 
be useful for antimalarial screening because the major-
ity of 4-aminoquinoline antimalarials test positive, i.e., 
they inhibit the formation of Hz crystals. The results, 
which are measured using enzyme-independent reac-
tions (Dorn et al. 1995, Parapini et al. 2000, Ncokazi & 
Egan 2005), are rapidly obtained (a 60-min incubation 
is used) and were shown to agree across four different 
laboratories (Ncokazi & Egan 2005). We have success-
fully used this test after many attempts to establish a 
protocol to evaluate the activity of two CQ analogues 
[monoquinoline (MAQ) and bisquinoline (BAQ)]; both 
analogues inhibited Hz formation in vitro, a result that 

TABLE II
Treatment recommended for malaria caused by Plasmodium falciparum drug-resistant parasites  

with artemisinin-based combination therapies (ACT) for the malaria severe cases and for  
Plasmodium vivax in regions where a chloroquine lower susceptibility is demonstrated

Treatment/route Malaria type
Resistance
reported Countries where treatment is adopteda

AL/oral Uncomplicated falciparum Yes South America, Africa, Asia (56 countries)
AS + AQ/oral Uncomplicated falciparum Yes 27 countries, 25 in Africa
AS + MQ/oral Uncomplicated falciparum Yes South America, Asia, in eight different countries
AS + SP/oral Uncomplicated falciparum Yes 11 countries, mainly Asia
DHA + PPQ/oral Uncomplicated falciparum Yes China and South East Asia
AS/i.v. or i.m. + ACTb ∕oral Severe falciparum No Worldwide
QN/i.v. + ACTb ∕oral Severe falciparum No Worldwide
ACTb ∕oral + PQc∕oral CQ resistant P. vivax No Where ACTa has been adopted  

for falciparum malaria treatmentd

Artemisinin derivatives + PQ∕oral Severe vivax No Worldwide

a: schedule used as first or second-line treatment; b: artemether + lumefantrine (AL), artesunate (AS) + amodiaquine (AQ), AS + 
mefloquine (MQ), AS + sulfadoxine/pyrimethamine (SP), dihydroartemisinin (DHA) + piperaquine (PPQ); c: in P. vivax, the use 
of primaquine (PQ) aims radical cure of the late relapses; d: Solomon Islands, Vanuatu, Papua New Guinea, Brazil and Indonesia 
(Bassat et al. 2011); i.m.: intramuscular injection; i.v.: intravenous injection; QN: quinine. Adapted from WHO (2010a, b, 2011).
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was further supported by docking tests; the interactions 
with dimeric haematin and the inhibition of haeme po-
lymerisation were dose-dependent (Aguiar et al. 2012).

Several in vivo tests that use animal models are 
available; all require the approval of protocols regard-
ing the ethical issues for animal use (Krettli et al. 2009). 
In the 4-day suppressive test, drug activity is measured 
based on the inhibition of P. berghei parasitaemia in 
comparison with untreated control mice, as described 
by Peters (1965).

Drugs that act on liver stages and block the transmis-
sion of malaria - The primary asexual development of 
Plasmodium yoelii or P. berghei sporozoites in mice or P. 
falciparum in monkeys has also been reproduced in cul-
tured hepatoma cells; however, few laboratories produce 
these sporozoite stages in Anopheles mosquitoes. When 
available, the tests are useful tools to investigate drug 
activity against pre-erythrocytic stages of the parasites 
(Krettli et al. 2009, Mazier et al. 2009). The use of GFP 
sporozoites would be useful in protocols because this ap-
proach would allow the parasite route to be followed from 
the site of inoculation to the liver cells (Gueirard et al. 
2010), thus elucidating where the parasite is targeted by 
the antimalarials. The anti-sporozoite activity of two me-
dicinal plants, Ampelozyziphus amazonicus and Strych- 
nopsis thouarsii, has been demonstrated; these drugs 
were used in malaria-endemic areas of Brazil (Andrade-
Neto et al. 2008, Krettli et al. 2001) and Madagascar 
(Carraz et al. 2006), as discussed below. 

An indirect assay that measures the activity of new 
compounds that target hypnozoites was described many 

years ago based on the rationale that gametocytes and 
hypnozoites share certain characteristics. Both have a 
long period of latency, do not proliferate or differenti-
ate and are killed by PQ and other 8-aminoquinolines 
(Gwadz et al. 1983). The result was further confirmed 
in our work using Plasmodium gallinaceum sporogony 
in mosquitoes that were blood-fed on chickens with 
low parasitaemia (Carvalho et al. 1992). Several new 
naphtoquinone analogues were tested in parallel with 
PQ and crude extracts of A. amazonicus (a plant often 
used against malaria in the Amazon); however, only 
PQ inhibited oocyst formation. Several new PQ deriva-
tives (Neuenfeldt et al. 2011) were tested using the same 
protocol. Three among 15 compounds tested inhibited 
sporogony in the mosquito vector and all 15 tested were 
active against P. falciparum-iRBCs (AU Krettli et al., 
unpublished observations). 

An assay that employs a GFP chimera of the early 
sexual P. falciparum blood stage protein (Pfs16), as a 
marker for commitment to gametocytogenesis, was 
used to assess the activity of various compounds against 
gametocytes. The use of a transgenic parasite (3D7G-
FP16B) in cultures allowed for the identification of 
asexual parasites that will differentiate into gametocytes 
(Dixon et al. 2009) in cultures containing conditioned 
media, i.e., those harvested from P. falciparum cultures 
(Williams 1999). The obtained gametocytes were sorted 
based on the expression of the GFP reporter gene and 
used for the assay; gametocytes were exposed to test or 
control drugs (24-48 h) and the results were measured 
using the ATP-based bioluminescent assay to detect and 
quantify the viable gametocytes (Peatey et al. 2012). 

TABLE III
Specificity of antimalarial drugs against the malaria parasite stages and drug resistance

Antimalarial

Parasite targeted stage
Drug resistance reported 

in Plasmodium falciparumEEF HP iRBC GM

Amodiaquine - Yes
Artemisinins - - No
Atovaquone - - - Yes
Chloroquine - Yes
Clindamycin - - No
Doxycycline - - No
Lumefantrine - No
Mefloquine - - Yes
Primaquine - - - - Yes
Proguanil - - - Yes
Pyrimethamine - - - Yes
Pyronaridine - - Yes
Quinine - No
Sulfadoxine - - Yes
Tetracycline - - No

EEF: exoerythrocytic forms from the primary sporozoite development hepatocytes; GM: sexual stages; HP: hypnozoites; iRBC: 
the erythrocytic forms responsible for the disease. Adapted from Mazier et al. (2009).
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MM in the discovery of antimalarials - MM tech-
niques, including virtual library screening (VLS) and 
docking studies, have been employed in theoretical me-
dicinal chemistry to discover antimalarials (Luzhkov et 
al. 2007, Mugnaini et al. 2007). VLS is used to identify 
chemical structures in the parasite that are likely to bind 
to the candidate drug, thereby significantly reducing the 
number of compounds for experimental validation us-
ing enzymatic and/or cell-based assays (Kortagere et 
al. 2010). The results of chemical database querying are 
refined using docking programs with ligand-receptor 
algorithms that are able to rapidly process a large num-
ber of compounds. The programs Gold® (Luzhkov et al. 
2007), FlexX (DeLisle et al. 2001) and Molegro Virtual 
Docker® (MVD) (Morris et al. 1998) assess the best 
conformations of each candidate in terms of the energy 
and positioning. These programs optimise interactions 
in the active site and allow for the discovery of novel 
pharmacophoric groups. New drugs are designed based 
on previous leads and the stabilities of the ligands in-
side the binding pockets are further verified using mo-
lecular dynamics simulations. A large variety of new 
antimalarial candidates has been identified using MM 
among new and well-established drug targets, such as 
enzymes involved in the folate cycle (SHMT and DHFR-
TS) (França et al. 2004, 2005, 2006, da Silva et al. 2010), 
LDH (Penna-Coutinho et al. 2011), enoyl-acyl carrier 
protein reductase (ENR) (Nicola et al. 2007), protein ki-
nases (Keenan et al. 2005), cysteine proteases (Shah et 
al. 2011), topoisomerases (Roy et al. 2011) and spermi-
dine synthase (SpdSyn) (Jacobsson et al. 2008). 

Hundreds of new potential inhibitors of Pf LDH were 
selected using VLS and 15 were submitted to docking 
studies using MVD®. Those compounds showing the 
lowest binding energies, as well as the commercially 
available compounds itraconazole, atorvastatin and 
posaconazole, were tested in vitro against P. falciparum 
and found to be active in CQ-resistant parasites (Penna-
Coutinho et al. 2011).

Abagyan et al. (1994) used the Internal Coordinate 
Mechanics program to screen the ChemBridge Express 
database (chembridge.com/screening_libraries/) for 
chemical compounds that fit into the binding pocket of 
Pf ENR. This search yielded 750 compounds with scores 
better than -50. A further theoretical absorption, distri-
bution, metabolism and excretion (ADME) prediction 
yielded 169 compounds, which were experimentally 
tested using a Pf ENR enzyme inhibition assay; 16 com-
pounds showed greater than 45% inhibition of P. falci-
parum growth at 500 μM (Nicola et al. 2007).

Novel binders to the active site of P. falciparum SpdSyn 
(PfSpdSyn), an enzyme involved in the polyamine path-
way, were selected using VLS and experimentally tested for 
parasite binding. Among 2.8 million structures that were 
tested, representing approximately three million commer-
cially available compounds, 28 were selected for nuclear 
magnetic resonance testing for binding to PfSpdSyn. The 
compounds were predicted to target the amino substrate 
binding pocket and thus exhibited stronger binding upon 
the addition of methylthioadenosine (Wiesner et al. 2002). 

Strategies used to discover new antimalarial drugs 
- A search based on medicinal plants and biodiversity 

TABLE IV
Antimalarials under clinical trials and their parasite stage targets

Parasite stage target Antimalarial Phase of clinical trial Reference

iRBC Azythromycin + chloroquine III MMV
Ferroquine + artesunate (methalocenic) II Clinicaltrials.gova

Fosmidomycin + clindamycin (antibiotics) II Clinicaltrials.govb

Ozonide-OZ439 (synthetic peroxide) II Charman et al. (2011)
Piperaquine IV Warhurst et al. (2007)

Spiroindolone-NITD609 (natural product) I Rottmann et al. (2010)
iRBC + GM Artesunate-amodiaquine IV MMV

Artesunate (i.v.) IV MMV
Coartem® (artemether + lumefantrine) IV MMV

Eurartesim® (dihydroartemisinin + piperaquine) IV MMV
Pyramax pediatric® (pyronaridine + artesunate) III MMV

Pyramax® (pyronaridine + artesunate) III MMV
iRBC + LS + GM Imidazolopiperazine (antifungal + anti-helminthic) I Wu et al. (2011)

Timidazole (anti-helminthic) II Clinicaltrials.govc

LS Tafenoquine (8-aminoquinoline) III MMV
Bulaquine (8-aminoquinoline) III Valecha et al. (2001)

Krudsood et al. (2006)

a: clinicaltrials.gov/ct2/show/NCT00988507; b: clinicaltrials.gov/ct2/show/NCT01361269 and clinicaltrials.gov/ct2/show/
NCT00214643; c: clinicaltrials.gov/ct2/show/NCT00811096; GM: gametocytes; i.v.: intravenous injection; iRBC: infected red 
blood cells; LS: liver stages; MMV: Medicines for Malaria Venture (mmv.org/research-development/science-portifolio).
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- In Africa, herbal products are widely used to treat ma-
laria (Adebayo & Krettli 2011), although they are not 
used as extensively in Latin America and other parts of 
the world. Our group has participated in the search for 
the active anti-malarial principles in medicinal plants 
of Brazil, mainly inspired by the success of two long-
established drugs: (i) QN obtained from plants of Latin 
American origin (Cinchona sp. from the Peruvian Ama-
zon) and (ii) ART derivatives isolated from A. annua,  
a medicinal plant that has been used for millennia in 
China for the treatment of malaria and fever (Carvalho 
& Krettli 1991, Krettli 2009, Krettli et al. 2009). 

We have confirmed the antimalarial activity of ex-
tracts and fractions from Cecropia pachystachya (Ce-
cropiaceae) (Supplementary data), a plant species largely 
used to treat fever (including that caused by malaria para-
sites) and as food by native indigenous populations in the 
Amazon Region of Latin America (Uchoa et al. 2010). 
Crude extracts of the plant roots were found to be ac-
tive against P. falciparum in vitro and against P. berghei 
blood-induced infections in mice. Beta-sitosterol and tor-
mentic acid have been purified from the active fractions 
and both compounds showed intense in vitro activity. All 
Cecropia plant extracts and fractions had low, if any, tox-
icity; thus, a high therapeutic index was observed with 
some fractions. Therefore, this species may be useful as a 
phytotherapic compound against human malaria. 

Extracts of Bidens pilosa, another medicinal plant that 
has been used against fevers in general, are active against 
malaria parasites in vivo and in vitro; flavonoids and poly-
acetylenes present in this and several other Bidens spp 
have proven to be active (Brandão et al. 1997, Andrade-
Neto et al. 2004). Interestingly, B. pilosa was validated 
for human use by the Ministry of Health in Brazil (portal.
saude.gov.br/portal/arquivos/pdf/RENISUS_2010.pdf). 
Physalis angulata extracts were shown to exhibit intense 
antimalarial activity and potent immunomodulatory and 
anti-inflammatory activities (McKerrow et al. 1993, Rid-
ley 2002, Murata & Goldberg 2003, Newman & Cragg 
2007, Sá et al. 2011, Willcox 2011).

Approximately 50% of other species of medicinal 
plants that are commonly used in Brazil have a demon-
strated activity against malaria parasites (Carvalho et al. 
1991, Brandão et al. 1997, Andrade-Neto et al. 2007). 
These results affected our research on plants. Recently, 
species that have been used elsewhere against malaria, 
such as in Nigeria and other African countries, have 
been reviewed (Adebayo & Krettli 2011); however, the 
only species that we tested, Coccus nucirefa, had little, 
if any, activity (Adebayo et al. 2012). 

In attempts to find an ideal alkaloid to replace QN, we 
have tested dozens of crude extracts from Cinchona-like 
medicinal plants ( falsas-quinas in Portuguese) for use 
against malaria and fever and as body stimulants; howev-
er, most were found to be inactive in experimental mod-
els (unpublished observations). The characteristic bitter 
taste is taken as an indication of the therapeutic activ-
ity of falsas-quinas and healers sell these plants as dried 
samples in open-air markets and natural products stores. 
In all cases, plant identification is difficult (Fig. 1A) and 
buyers must rely on the seller’s recommendations.

The ethanolic extract from Remijia ferruginea, a 
falsa-quina that is endemic in Brazil, was found to be 
active against malaria parasites, among three species of 
malaria parasites tested (Andrade-Neto et al. 2003). R. 
ferruginea bark infusions were widely used to treat hu-
man malaria in the Amazon before CQ was available as 
a surrogate for the Peruvian Cinchona species, which is 
not found in Brazil. Twenty-six dried plant samples were 
acquired in markets as falsas-quinas in Minas Gerais 
(MG) (Estrada Real) and ethanolic extracts were pre-
pared and tested in mice with P. berghei. Of these ex-
tracts, one reduced parasitaemia by > 40% and was also 
active against P. falciparum in vitro (IO Freitas & AU 
Krettli, unpublished observations).

Other natural products such as fungi are used as 
sources of new drugs, from which secondary metabo-
lites that have anti-malarial activity can be isolated. Pyc-
nidione, isolated from the marine fungus Phoma sp., has 
been shown to exhibit significant activity against P. falci-
parum. Pycnidione is structurally similar to atovaquone, 
an ingredient of the antimalarial medication Malarone®, 
which is comprised of atovaquone and proguanil hydro-
chloride (Wright & Lang-Unnasch 2005). Molecules iso-
lated from the marine sponge Plakortis simplex, such as 
polyketide cycloperoxides, and from the sponge Xesto-
spongia sp., such as xestoquinone, have antiplasmodial 
activity (Botté et al. 2012), as do compounds taken from 
fertile soils, which exhibit sesquiterpene-related antima-
larial activity (Koeni 2003). 

Compounds with anti-sporozoite and/or anti-prima-
ry liver stage activity have been found in extracts of the 
medicinal plant A. amazonicus (“Indian bear”), which 
is used in the Brazilian Amazon (Fig. 1B) (Krettli et al. 
2001). A. amazonicus was the most cited plant species 
in recent ethnobotanical surveys in the state of Amazo-
nas (AM) (de Oliveira et al. 2011). We found no activity 
in crude extracts of this plant and/or in their fractions 
against P. falciparum in cultures or against rodent ma-
laria caused by P. berghei infected erythrocytes in mice. 
However, ethanolic plant fractions were active against P. 
berghei sporozoite-induced infections in mice in a dose-
dependent manner (Fig. 2). The ethanolic plant extracts 
also inhibited the exo-erythrocytic development of P. 
berghei sporozoites in vitro (Andrade-Neto et al. 2008). 
The chemical compound responsible for the anti-sporo-
zoite activity remains to be identified to develop a new 
antimalarial that is useful for malaria prophylaxis. 

Another medicinal plant, Strychnopsis throuasi, 
which is used in malaria-endemic areas of Madagascar, 
has been studied and found to be highly efficient against 
sporozoite-induced malaria in mice, although this plant 
was inactive against plasmodia blood stages (Carraz et 
al. 2006). This plant species also appears to be ideal 
for malaria prophylaxis and a morphinan-like alkaloid, 
tazopsine, has been isolated and found to be responsible 
for the anti-sporozoite activity against P. falciparum in 
hepatoma cell cultures and against P. berghei sporozoite 
infections in mice. Thus, tazopsine may represent a good 
candidate for human malaria prophylaxis. 

Drug combinations and hybrids used in antimalarial 
chemotherapy - The use of combinations of existing an-
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timalarials with known pharmacokinetic and pharmaco-
dynamic profiles optimises the antimalarial therapeutic 
efficacy and decreases or delays the risk of selecting re-
sistant parasites. Drugs used in combination must have 
complementary mechanisms of action, synergistic activ-
ity and no cross-chemical interactions and must be free 
from side effects and affordable.

Atovaquone, a naphtoquinone that is highly active in 
vitro against blood forms of P. falciparum and in animal 
models, resulted in a low cure rate in human malaria trials 
and selected parasite mutants with reduced drug suscepti-
bility if used alone. However, when combined with progua-
nil hydrochloride (Malarone®), atovaquone is recommend-
ed by the WHO for uncomplicated malaria in travellers 
returning to non-endemic countries (WHO 2010b).

Combinations based on ART (WHO 2010b) are listed 
in Table II. Combinations of MQ and artesunic acid with 
ciprofloxacin, which are experimentally active in vitro 
against P. falciparum-iRBCs, appear promising (An-
drade et al. 2007). The derivatisation of the fluoroqui-
nolone ciprofloxacin enhanced the in vitro activity and 
yielded compounds that were 10-100-fold more active 
than ciprofloxacin (Dubar et al. 2009); chalcones com-
bined with ART (Bhattacharya et al. 2009) and pyronari-
dine combined with artesunate (AS) (Tshefu et al. 2010) 
and dihydroartemisinin-piperaquine (Menan et al. 2011) 
showed intense activity, with the latter exhibiting advan-
tages over artemether-lumefantrine in human malaria.

The design of antimalarials based on the covalent 
linking of drugs into a single hybrid molecule is a rela-
tively new approach and the resulting molecule tends to 
be more effective than the isolated components. A se-
ries of hybrids containing drugs with different biologi-
cal functions, distinct pharmacophores, reduced toxicity 
and improved activity (as compared to the isolated com-
pounds) are being developed. 

The ART hybrid, 1,2,4,5-tetraoxane (RKA 182), is 
considered to be an outstanding antimalarial candidate 
with the advantages of enhanced stability, lower toxic-
ity and improved biopharmaceutical properties (ADME) 

compared to the semisynthetic antimalarial ART 
(O’Neill et al. 2010). 

The hybrid molecule MEFAS, which is derived from 
MQ and AS, is more effective and less toxic than the 
combination of MQ and AS, as shown using an experi-
mental in vitro test with P. falciparum and in animal 
models (de Pilla Varotti et al. 2008). The hybrid com-
pound comprises dual functions and, as in acridone 
hybrid molecules, the drug is based on the aminoqui-
noline ring. The acridone T3.5 (3-chloro-6-(2-dieth-
ylamino-ethoxy)-10-(2-diethylamino-ethyl)-acridone) 
targets drug-resistant strains at nanomolar concentra-
tions and represents an innovative strategy for develop-
ing antimalarial drugs (Kelly et al. 2009).

Compounds that are chemically related to known an-
timalarials - An important strategy in drug design is the 
chemical modification of known antimalarials, such as 
4-aminoquinolines (Hocart et al. 2011). The alkylamine 
sidechains allow for structural modification of the 4-amin-
oquinolines, resulting in compounds that have different 
lipophilicity and drug-resistance profiles (Kouznetsov & 
Gómez-Barrio 2009). Substitutions on the distal amino 
sidechain of CQ derivatives increase the activity and de-
crease the cross-resistance to CQ (Stocks et al. 2002). 

Among the CQ analogues that have been synthesised 
by linking 4,7-dichloroquinoline with monoalkynes 

Fig. 1: medicinal plants sold by healers in opened markets: A: a dried 
sample of a cinchone-like plant (quina) acquired in city markets; 
B: Ampelozizyphus amazonicus (Rhamnaceae) in the form of dried 
roots (photo by MGL Brandão) sold in the Amazon markets under the 
names of “Indian beer” or Saracura-mirá and largely used against 
malaria as a cold infusion in some malaria regions; although the plant 
extract of this species was inactive against malaria blood stages, in 
several experimental models, including against Plasmodium falci-
parum in vitro, it blocks the sporozoites development in vivo and in 
vitro, as shown in Fig. 2.

Fig. 2: Plasmodium berghei sporozoite development in hepatoma 
cells (HepG2) in a drug-free culture medium (A, arrow). Ethanolic 
extract fractions of the medicinal plant Ampelozizyphus amazonicus 
inhibited P. berghei sporozoite development in vitro (B, arrows) in a 
dose-dependent fashion (C). It also protected mice against a P. ber-
ghei sporozoite challenge, as compared to control non-treated mice 
that developed high parasitaemia (D) after a short pre-patent period 
(PPP); among the pre-treated group receiving 400 mg/kg of the etha-
nolic extracts, two in four mice became infected. A significantly long 
malaria PPP and rather low parasitaemias (E) occurred at the second 
week of infection [adapted from Andrade-Neto et al. (2008)].
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and dialkynes, 12 compounds have demonstrated ac-
tivity against P. berghei in mice, especially those with 
methylene groups in the sidechain (de Souza et al. 2011). 
Two new CQ analogues, MAQ and BAQ, in which the 
4-aminoquinoline pharmacophore group and proton-
accepting sites are maintained to increase the bioavail-
ability of the compound in the digestive vacuole of the 
parasite, were active in vitro against P. falciparum at 
nanomolar concentrations and exhibited a therapeutic 
index similar to that of CQ (Aguiar et al. 2012). 

Ferroquine, a methalocenic CQ analogue, that is con-
sidered to be the most advanced organometallic antima-
larial (Delhaes et al. 2002), is in clinical trials for the 
treatment of uncomplicated malaria (clinicaltrials.gov/
ct2/show/NCT00811096) (Table IV). 

Drugs available to treat other human diseases - The 
testing drugs that are indicated against other diseases 
provides the opportunity to find new clinical uses for li-
censed drugs that are approved for human use and for 
which safety and pharmacokinetic information is previ-
ously available. The purposes of this approach are to lower 
the costs and shorten the timeframe of product develop-
ment. Good examples of this strategy include the exist-
ing anti-human immunodeficiency virus (HIV) protease 
inhibitor drugs, among which lopinavir has proven to be 
potent and promising against malaria parasites (Nsan-
zabana & Rosenthal 2011). The mechanism of action of 
HIV protease inhibitors against malaria is attributed to 
the inhibition of the food vacuole protease, plasmepsin 
II (Parikh et al. 2006). Tipranavir, although less active 
against malaria, demonstrates gametocytocidal activity 
and thus should have a significant effect on the transmis-
sion and control of malaria (Peatey et al. 2010). 

Agents such as posaconazole (an inhibitor of ergos-
terol biosynthesis), itraconazole (an antifungal agent) 
and atorvastatin (widely used to reduce cholesterol lev-
els) have proven to be active against P. falciparum blood 
stage parasites in vitro and against P. berghei-infected 
mice (Penna-Coutinho et al. 2011). These compounds 
are candidates for clinical trials in combination with 
other antimalarials. 

The antifungal and anti-helminthic compound imi-
dazolopiperazine, which is active against liver stages of 
Plasmodium, may prevent clinical disease by providing 
prophylactic protection. The drug has also presented sig-
nificant in vivo antimalarial activity against blood-stage 
parasites (Meister et al. 2011). 

Several drugs that were originally developed as anti-
biotics are useful for the treatment of human malaria in 
combination with antimalarials. Sulfadoxine (S), a syn-
thetic antimicrobial agent, interferes in the folate syn-
thesis pathway (which is essential for DNA and RNA 
synthesis) of malaria parasites when combined with py-
rimethamine (P). However, with the emergence of resis-
tant P. falciparum strains, SP is no longer recommended 
against malaria (WHO 2010b). Clindamycin, which is 
usually prescribed to treat anaerobic bacterial infec-
tions, is also active as an antimalarial and has been used 
in clinical studies either alone or in combination with 
QN and CQ (Lell & Kremsner 2002). As a monotherapy, 

however, the use of clindamycin is limited due to its slow 
onset of action; studies conducted to evaluate its effec-
tiveness in combination with QN were not conclusive 
(Obonyo & Juma 2012). Clindamycin is recommended in 
combination with AS as a second-line antimalarial treat-
ment and in combination with other antibiotics, such as 
tetracycline and doxycycline (WHO 2010a). 

Fosmidomycin, a natural antibacterial agent, has 
successfully been used in clinical studies against un-
complicated P. falciparum; however, recrudescent in-
fections were observed in treated subjects (Wiesner et 
al. 2003). Fosmidomycin inhibits 1-deoxy-D-xylulose 
5-phosphate reductoisomerase, an enzyme involved in 
the synthesis of isoprenoids, which is essential for para-
site survival but not for the human host (which synthe-
sise isoprenoids through the mevalonate pathway) (Wi-
esner et al. 2003). Azithromycin, a macrolide antibiotic, 
affects P. falciparum growth by targeting the apicoplast 
50S ribosomal subunit and inhibits protein synthesis in 
this organelle (Sidhu et al. 2007). Geldanamycin, a ben-
zoquinone ansamycin antibiotic, also shows antimalarial 
activity by inhibiting the heat shock protein, HSP90, a 
molecular chaperone that is important for the maturation 
of proteins that promote the survival and the growth of 
dividing cells (Mout et al. 2012).

In vitro HTS - Drug discovery by HTS allow the large-
scale testing of potentially active products (“hits”) by op-
timising and accelerating the identification of “lead” mol-
ecules for further development. Various automated HTS 
bioassay systems are used to screen synthetic and natural 
products to an extent not possible using conventional tech-
nologies. Further evaluation of drug activities selected us-
ing HTS can be assessed against Plasmodium parasites in 
culture or by biochemically screening targets. 

Several methods are available to screen for parasite 
viability and are suitable for HTS technology. The most 
often used methods are based on the measurement of 
DNA content in recombinant strains of malaria para-
sites using SYBR green (Smilkstein et al. 2004), GFP 
(Wilson et al. 2010) and 4′,6′-diamidino-2-phenylindole 
(Duffy & Avery 2012), or in a stably expressed cytoplas-
mic firefly luciferase parasite strain (3D7-luc) (Lucumi 
et al. 2010, Che et al. 2012). 

The biochemical approach based on structure-based 
drug design holds promise for the search for lead-like 
antimalarials. This approach is based on a defined target 
such as a protein and/or enzyme that is necessary for para-
site survival, as identified in binding assays that screen for 
inhibitors. The integration of HTS with a computational 
methodology (namely, virtual HTS) can be applied to in 
silico drug selection from compound libraries. This meth-
od is based on the binding affinity of the target receptor 
for the test compounds (i.e., molecular docking).

New antimalarial drugs undergoing clinical tri-
als - Several new chemical groups with promising an-
timalarial activity are now undergoing clinical trials. 
Certain imidazolopiperazines that are experimentally 
active against the blood, liver and gametocyte stages of 
P. falciparum are active in malaria models and have a 
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safe profile were selected for clinical trials (Wu et al. 
2011). The spiroindolone compound NITD609, a potent 
inhibitor of P. falciparum selected in a phenotypic HTS 
of natural products, is also undergoing Phase I trials 
(Rottmann et al. 2010). The ozonide OZ439, a synthetic 
peroxide antimalarial that is designed to provide a single 
oral dose to cure human malaria, is currently undergoing 
Phase II trials (Charman et al. 2011). 

New medicines in Phases III/IV clinical trials include 
the following: (i) a fixed-dose combination of azithromy-
cin and CQ for intermittent preventive treatment in preg-
nant women, (ii) tafenoquine, an 8-aminoquinoline with 
demonstrated activity against dormant liver forms of P. 
vivax (hypnozoites) in vitro and blood stages in the acute 
disease, (iii) Pyramax® paediatric, a child-friendly gran-
ule formulation of the ACT Pyramax®, is in Phase IV tri-
als, (iv) Coartem® dispersible (artemether-lumefantrine), 
ASAQ® (Artesunate-Amodiaquine, Winthrop), Artesu-
nate for injection and Eurartesim® (dihydroartemisinin-
piperaquine) (Medicines for Malaria Venture) and (iv) 
piperaquine, a 4-aminoquinoline that acts similar to CQ 
(Warhurst et al. 2007). Although bulaquine, an 8-amino-
quinoline, has been approved to treat P. vivax malaria in 
India, its safety has not been assured using large clinical 
trials (Valecha et al. 2001, Krudsood et al. 2006). Drugs 
derived from medications against other diseases are un-
dergoing clinical trials as antimalarials (Table IV).

Concluding remarks - Malaria remains a major 
health problem, especially now that P. falciparum and 
P. vivax have also become resistant to CQ and evidence 
of P. falciparum resistance to ART has been reported. 
Commitment to the eradication of malaria, together 
with substantial financial support from national and 
international agencies, has furthered the selection of 
various molecules, some of which will hopefully help 
to interrupt disease transmission. Among the new drugs 
undergoing clinical trials, ferroquine, tafenoquine and 
bulaquine have shown promising results.

The overall goal regarding the control of malaria is to 
expand the drug arsenal with a new generation of mol-
ecules that target the various life stages of the parasites, 
i.e., asexual drug-resistant parasites, gametocytes and 
liver forms, as well as hypnozoites, which cause late re-
lapses of P. vivax. Parallel projects intended to diminish 
poverty among less-privileged populations need to be 
concentrated in areas where the transmission of malaria 
is endemic. However, the global economic crisis, politi-
cal conflicts experienced by African countries where 
malaria is highly endemic and inadequate health care are 
likely to affect funding for the further support of drug 
discovery and poverty alleviation. 

Different methodologies are available to aid in the 
search for new antimalarials. The most frequently used 
technology is in vitro drug screening with blood-stage P. 
falciparum parasites maintained in continuous cultures. 
Large-scale drug testing uses [3H] hypoxanthine incor-
poration, which is a relatively simple assay; however, 
this assay requires radioactive reagents, thus imposing 
the need for surrogate methods. Two tests were devel-
oped that use specific monoclonal antibodies, either to 
parasite enzymes or a HRP, and both have proven useful 

and reproducible. Other tests use genetically modified 
parasites and parasite nucleic acid stains for DNA (e.g., 
SYBR Green I, the most cost-effective choice, YOYO-1, 
the most sensitive dye, and the SYTO series, with high 
binding affinities) have been developed. 

Hz formation is a critical step for the survival of the 
malaria parasite and the basis for in vitro Hz inhibition, 
which is a simple and inexpensive indirect assay used for 
drug screening. It is hoped that once this assay is well 
standardised, it could also provide clues regarding the 
mechanism of the action of drugs.

HTS are especially useful in drug discovery and 
allow for the rapid analysis of potentially biologically 
active compounds. Millions of new molecules target-
ing blood stages of P. falciparum have been selected in 
recent years and are available in drug banks; improved 
VSLs, which benefit from computer analysis using re-
fined docking programs, are also helpful. However, the 
confirmation of the usefulness of such molecules in the 
treatment of human malaria depends on their direct vali-
dation against malaria parasites. Commercially available 
drugs for human use, such as itraconazole, atorvastatin 
and posaconazole, which have already been proven to 
inhibit P. falciparum growth in cultures, represent an 
important source of new drug combinations that can 
be used to treat drug-resistant parasites. The chemical 
modification of available antimalarial drugs to enhance 
their pharmacodynamics and pharmacokinetic proper-
ties (e.g., absorption, metabolism, bioavailability, lipo-
philicity and drug distribution) is also a powerful tool, as 
is the hybridization of highly active antimalarial drugs. 
Imidazolopiperazine and timidazole, which have passed 
toxicological and pharmacological tests and have been 
found to be effective in humans against other patholo-
gies, are currently under clinical trials after their activ-
ity against the liver forms and blood stages of malaria 
parasites were demonstrated.

Tafenoquine and bulaquine are in initial clinical trials 
using P. vivax malaria; these drugs target the primary liv-
er stages of sporozoites and the late developing hypnozo-
ite forms. The large-scale screenings of other drugs that 
are less toxic than PQ are not trivial to accomplish; thus, 
this technique remains an ongoing challenge that is re-
stricted by the limited availability of in vivo models and/
or sporozoite cultures that reproduce hypnozoites. Sporo-
zoite production is difficult, expensive and complex, thus 
limiting their use to a few laboratories worldwide. 

Recently, important funds have become available 
through international and national agencies, as well as 
the pharmaceutical industry and communities com-
mitted to anti-malaria programs. Through projects 
supported by Brazilian agencies [The National Coun-
cil for Scientific and Technological Development, The 
Minas Gerais State Research Foundation and Oswaldo 
Cruz Institute (Fiocruz), in particular], we have recent-
ly worked in close collaboration with senior scientists 
(mainly chemists) and built a network within research 
institutions (Fig. 3). In the area in which malaria is en-
demic, two collaborating groups are participating in the 
search for new antimalarials; one group, led by Maria 
Meneses Pereira (Federal University of Amazonas), is 
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located in AM, and the other group, led by Cláudio Na-
hum Alves (Federal University of Pará), is in the state of 
Pará. In the Northeast Region, our network collabora-
tors include A Euzébio Santana, Marília FO Goulart and 
Mario Meneguetti (Federal University of Alagoas), as 
well as Valter Andrade-Neto (Federal University of Rio 
Grande do Norte) and Milena Soares (Fiocruz-Bahia). 
The groups in the Southeast include the following: Lú-
cia Maria X Lopes (São Paulo State University-state of 
São Paulo), Carlos Zani and Tânia Alves (Fiocruz-MG), 
Núbia Boechat and J Mendonça [Fiocruz-state of Rio de 
Janeiro (RJ)] and Tanos CC França (Military Institute 
of Engineering-RJ). The groups in the South include 
Arildo Bráz Oliveira (State University of Maringá-state 
of Paraná) and Wilson J Cunico (Federal University of 
Pelotas-state of Rio Grande do Sul). The latter group has 
synthesized new PQ analogues that are quite potent and 
we hope to find a new drug among these analogues that 
is active against the liver forms of malaria. 

The resilience and ingenuity of the malaria parasite 
in preserving itself, whatever the threat, requires the 
constant evaluation of control programs and searching 
for new antimalarials. An ideal antimalarial drug com-
bination to replace ACT and halt the spread of resis-
tant parasites is urgently needed. The ozonide OZ439, 
a synthetic peroxide, is considered promising because 
it is active in curing uncomplicated malaria in a single 

dose and is currently undergoing clinical trials. Whether 
OZ439 will control drug-resistant P. falciparum para-
sites in regions where ACT is less effective remains to 
be demonstrated. 

ACKNOWLEDGEMENTS

To Dr Wilson J Cunico (UFPEL), for critical reading the 
manuscript, to Dr Maria G Lins Brandão, for the photo (Fig. 
1B), and for the collaboration in the antimalarial search dur-
ing decades.

REFERENCES

Abagyan R, Totrov M, Kuznetsov DA 1994. ICM-a new method for 
protein modeling and design: applications to docking and struc-
ture prediction from the distorted native conformation. J Comp 
Chem 15: 488-506. 

Adebayo JO, Krettli AU 2011. Potential antimalarials from Nigerian 
plants: a review. J Ethnopharmacol 133: 289-302.

Adebayo JO, Santana AE, Krettli AU 2012. Evaluation of the anti-
plasmodial and cytotoxicity potentials of husk fiber extracts from 
Cocos nucifera, a medicinal plant used in Nigeria to treat human 
malaria. Hum Exp Toxicol 31: 244-249. 

Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo 
BP, Conzelmann C, Methogo BG, Doucka Y, Flamen A, Mord-
müller B, Issifou S, Kremsner PG, Sacarlal J, Aide P, Lanaspa 
M, Aponte JJ, Nhamuave A, Quelhas D, Bassat Q, Mandjate S, 
Macete E, Alonso P, Abdulla S, Salim N, Juma O, Shomari M, 
Shubis K, Machera F, Hamad AS, Minja R, Mtoro A, Sykes A, 
Ahmed S, Urassa AM, Ali AM, Mwangoka G, Tanner M, Tinto 
H, D’Alessandro U, Sorgho H, Valea I, Tahita MC, Kaboré W, 
Ouédraogo S, Sandrine Y, Guiguemdé RT, Ouédraogo JB, Hamel 
MJ, Kariuki S, Odero C, Oneko M, Otieno K, Awino N, Omoto 
J, Williamson J, Muturi-Kioi V, Laserson KF, Slutsker L, Otieno 
W, Otieno L, Nekoye O, Gondi S, Otieno A, Ogutu B, Wasuna R, 
Owira V, Jones D, Onyango AA, Njuguna P, Chilengi R, Akoo P, 
Kerubo C, Gitaka J, Maingi C, Lang T, Olotu A, Tsofa B, Bejon 
P, Peshu N, Marsh K, Owusu-Agyei S, Asante KP, Osei-Kwakye 
K, Boahen O, Ayamba S, Kayan K, Owusu-Ofori R, Dosoo D, 
Asante I, Adjei G, Adjei G, Chandramohan D, Greenwood B, 
Lusingu J, Gesase S, Malabeja A, Abdul O, Kilavo H, Mahende 
C, Liheluka E, Lemnge M, Theander T, Drakeley C, Ansong D, 
Agbenyega T, Adjei S, Boateng HO, Rettig T, Bawa J, Sylverken 
J, Sambian D, Agyekum A, Owusu L, Martinson F, Hoffman I, 
Mvalo T, Kamthunzi P, Nkomo R, Msika A, Jumbe A, Chome N, 
Nyakuipa D, Chintedza J, Ballou WR, Bruls M, Cohen J, Guerra 
Y, Jongert E, Lapierre D, Leach A, Lievens M, Ofori-Anyinam O, 
Vekemans J, Carter T, Leboulleux D, Loucq C, Radford A, Sava-
rese B, Schellenberg D, Sillman M, Vansadia P, RTS,S Clinical 
2011. First results of phase 3 trial of RTS,S/AS01 malaria vaccine 
in African children. N Engl J Med 365: 1863-1875. 

Aguiar AC, Santos R de M, Figueiredo FJ, Cortopassi WA, Pimen-
tel AS, França TC, Meneghetti MR, Krettli AU 2012. Antima-
larial activity and mechanisms of action of two novel 4-amin-
oquinolines against chloroquine-resistant parasites. PLoS ONE 
7: e37259.

Andrade AA, de Pilla Varotti F, de Freitas IO, de Souza MV, Vas-
concelos TR, Boechat N, Krettli AU 2007. Enhanced activity of 
mefloquine and artesunic acid against Plasmodium falciparum in 
vitro and P. berghei in mice by combination with ciprofloxacin. 
Eur J Pharmacol 558: 194-198. 

Andrade-Neto VF, Brandão MG, Nogueira F, Rosário VE, Krettli 
AU 2008. Ampelozyziphus amazonicus Ducke (Rhamnaceae), a 
medicinal plant used to prevent malaria in the Amazon Region, 
hampers the development of Plasmodium berghei sporozoites. Int 
J Parasitol 13: 1505-1511. 

Fig. 3A: a web of chemist collaborators in our multidisciplinary proj-
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ed in different intensities of green, according to the Ministry of Health. 
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areas with no malaria transmission (Source: portal.saude.gov.br). Bra-
zilian states: Acre (AC); Alagoas (AL); Amapá (AP); Amazonas (AM); 
Bahia (BA); Ceará (CE); Distrito Federal (DF); Espírito Santo (ES); 
Goiás (GO); Maranhão (MA); Mato Grosso (MT); Mato Grosso do Sul 
(MS); Minas Gerais (MG); Pará (PA); Paraíba (PB); Paraná (PR); Per-
nambuco (PE); Piauí (PI); Rio de Janeiro (RJ); Rio Grande do Norte 
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