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The development of a vaccine against schistosomiasis and also the availability of a more sensitive diagnosis test are important
tools to help chemotherapy in controlling disease transmission. Bioinformatics tools, together with the access to parasite genome,
published recently, should help generate new knowledge on parasite biology and search for new vaccines or therapeutic targets
and antigens to be used in the disease diagnosis. Parasite surface proteins, especially those expressed in schistosomula tegument,
represent interesting targets to be used in vaccine formulations and in the diagnosis of early infections, since the tegument
represents the interface between host and parasite and its molecules are responsible for essential functions to parasite survival. In
this paper we will present the advances in the development of vaccines and diagnosis tests achieved with the use of the information

from schistosome genome focused on parasite tegument as a source for antigens.

1. Introduction

Schistosomiasis is still a significant public health problem
in tropical countries despite the existence of effective drugs
against the parasite [1]. Chemotherapy as a strategy for dis-
ease control has proved ineffective in controlling transmis-
sion [1] therefore, the development of a vaccine against the
disease and also a more sensitive diagnosis test is necessary to
assist chemotherapy in control programs [1, 2].

In this context, the recent availability of schistosome
genomes information represents an important toll to be
used in the discovery of new targets for vaccine and diag-
nosis. Schistosoma mansoni genome, published in 2009 [3]
described 11.809 genes while Schistosoma japonicum genome
[4] has been described to be composed of 13.469 genes.
Their assemblies were generated by conventional capillary
sequencing resulting in 19.022 scaffolds (S. mansoni) and
25.048 scaffolds (S. japonicum). More recently an improved
version of the S. mansoni genome was published [5], utilizing

a combination of traditional Sanger capillary sequencing and
deep-coverage Illumina sequencing that refined gene pre-
diction resulting in a reduction in the number of predicted
genes from 11.809 to 10.852. Illumina-based technology was
also used in Schistosoma haematobium genome sequencing,
which described 13.073 genes [6].

Simultaneously to genome publication, an important
tool to access and analyze parasite genome has been devel-
oped, the SchistoDB (http://www.schistodb.net/) database
[7]. The SchistoDB enables access to information on the
parasite genome even to those researchers not specialized in
computer language. The current 3.0 database version pro-
vides access to the latest draft of S. mansoni genome sequence
and annotation and also to S. japonicum and S. haematobium
genome annotation.

The bioinformatics tools, together with the availability to
access parasite genome, should have helped the knowledge of
parasite biology and the search for new vaccines, therapeutic
targets, and antigens to be used in the disease diagnosis. In



this paper we will present the advances in the development
of vaccines and diagnostics tests achieved with the use of the
information from schistosome genome, focus will be given
to the parasite tegument as a source for antigens.

2. Host-Parasite Relationship: Role for
the Parasite Tegument

Highly adapted to parasitic life, schistosomes can live for
years or decades even in a hostile environment as the circu-
latory system from vertebrate host where the parasite has an
intimate contact with circulating elements of the immune
system [8].

In this successful host-parasite relationship, the host
immune system plays an important role in both parasite
development and elimination. CD4+ cells, hormones, and
cytokines as TNF-a, TGF-f3, and IL-7 produced by the host,
seem to assist the parasite development [9-15]. While CD4+
cells, B cells, IFN-y, and TNF-a has been described to be
involved in parasite elimination in the irradiated cercariae
vaccine model [16-18].

Moreover, the highly adapted relationship between schis-
tosomes and the mammalian definitive host also involves
the effective mechanisms for evading the immune response
that they provoke. In this context, the parasite tegument
plays an important role [19, 20]. After penetration, the para-
site surface undergoes a profound change that allows parasite
adaptation into the host internal microenvironment where
the parasite switches from its immune-sensitive to an
immune-refractory state [21]. In cercariae, the surface is
characterized by a single bilayer membrane covered by a
dense glicocalyx. During penetration, the glicocalyx is lost
and the membrane transforms into a double bilayer mem-
brane [22]. Evading mechanisms as antigenic mimicry,
membrane turnover, production of immunomodulatory
molecules and modulation of surface antigens expression
also takes place in the parasite surface and contributes to
schistosome survival [23, 24].

Trying to eliminate the parasite, host immune system
targets the antigens in parasite surface. Studies in mice have
shown that the developmental stage most susceptible to the
host immune system attack is the schistosomula stage. Very
early after infection, schistosomula are susceptible to cellular
and humoral immunity, however, in the course of parasite
development the susceptibility is rapidly lost [25, 26]. The
resistance to host immune response acquired by parasites
can be in part explained by surface changes independently
of host antigens adsorption [27-29]. In addition, El Ridi
and colleagues [30], demonstrated that lung-stage schisto-
somulum protect themselves from the host immune system
by confining antigenic molecules in lipid-rich sites of surface
membrane. In contrast, McLaren, in 1989 [31], demon-
strated that both skin and lung schistosomula phases are tar-
gets of the immune system in the radiation-attenuated vac-
cine model which trigger an inflammatory reaction around
the larvae inhibiting their migration.

Since schistosomula is the major target of the host
immune system attack and its tegument represents the
interface between parasite and host, also performing vital
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functions that ensure parasite survival [32], the study of its
structure and how it interacts with the host immune system
can provide important information about disease control,
especially to those related to the search for new drugs and
vaccine development. We have recently demonstrated that
the schistosomula tegument from S. mansoni (Smteg) is rec-
ognized by TLR4 in dendritic cells (DC) leading to DC acti-
vation and production of proinflammatory cytokines as IL-
12 and TNF-« [33]. In contrast to this inflammatory profile,
Smteg also induce IL-10 production by DC in a TLR (Toll like
receptors) 2, 3, 4, and 9 independent manner (unpublished
data) once again demonstrating that schistosomula tegument
can both activate or modulate host immune system.

3. The Tegument as Antigen Source for
Vaccine Development

Most of the studies that aimed to identify membrane proteins
in parasite tegument were performed in adult worms [34—
36]. Although schistosomula is the major target for host
immunity, its tegument proteins have still not been charac-
terized, mainly due to the difficulty in obtaining sufficient
quantities of material for such protein studies [37]. Indeed
protective antigens are found in S. mansoni schistosomula
tegument (Smteg) since mice immunization with Smteg
formulated with Freunds’ adjuvant [38] or Alum + CPG-
ODN (unpublished data) is able to reduce significantly worm
burden and egg elimination with the feces. The characteri-
zation of these protective antigens is being performed using
immune-proteomics analysis and genome databases to iden-
tify candidates to be used in a vaccine formulation against
schistosomiasis. Other “omics” technologies are also being
used to identify schistosoma proteins, mainly those expressed
in schistosomula. In this context, two studies, using cDNA
microarrays technologies assessed the most relevant tran-
scriptional changes in the schistosomula development phase.
These studies demonstrated that tetraspanin, Sm22.6, Sm29,
Sm200 and phosphadiesterase are membrane proteins are
highly expressed during schistosomula phase [39, 40]. Fur-
thermore, the studies that used gene silencing through RNAi
technique could clarify the importance of some proteins,
such as cathepsins [41, 42] and tetraspanins [43] for parasite
development and survival. The same membrane protein was
identified in adult worm tegument preparations using Mass
spectrometry (MS-)-based proteomics [33, 34] together with
genome, transcriptome and genetic maps information (3,
44-46]. Recently a proteomic analysis demonstrated that
Sm29 and Sm200 are linked to parasite surface membrane
through a GPI-anchor [47] while the most abundant protein
in adult worm tegument, among the investigated molecules,
are aquaporin, dysferlin, TSP-2, and ATP diphosphohy-
drolase [48]. Among this expressive catalogue of protein
expressed in the schistosome tegument, some of them have
been evaluated as vaccine antigen in immunization protocols
in mice. The Table 1 summarizes the results observed in these
preclinical trials using tegument proteins.

Sm29 was identified by Cardoso and coworkers using in
silico analysis to identify in S. mansoni transcriptome putative
expressed proteins localized in the parasite tegument [49].
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TABLE 1: Schistosome tegument protein evaluated as vaccine candidates in preclinical studies.
Protein Vaccine type Protection level Egg reduction B101nfor.mat1c tOOl. used in References
antigen selection
Sm 21.7 Recombinant protein 41%-70% ND ND (63]
. 62% (liver)
0,

Sm 21.7 DNA vaccine 41.5% 67% (intestine) ND [64]
Cu/Zn superoxide .

. DNA vaccine 44%-60% ND ND [65]
dismutase

. . 64% (liver)
0,
Sm TSP2 Recombinant protein 57% 65% (feces) BLAST [57, 83]
InterProScan, SignalIP 3.0,
. . . . Signal IP Neural, NetNGlyc
0, 0,
Sm29 Recombinant protein 51% 60% (intestine) 1.0, BLAST, WolfpSORT, [49, 50]
SOSUI, Compute pI/Mw tool,
ECL (200 kDa protein) DNA vaccine 38.1% ND ND [61]
Sm 22.6 Recombinant protein 34.5% ND BLAST [53]
o (1

Sm TSP 1 Recombinant protein 34% 52% (liver) BLAST [57, 83]

69% (intestine)

ND: not determined.

Sm29 recombinant form induces a Th1 profile in mice asso-
ciated with a reduction of 51% in worm burden when used
in vaccine formulation [50]. The tegumental protein, Sm22.6
and its homologue in S. japonicum (Sj22.6), are involved in
resistance to reinfection in endemic areas [51, 52]. Immu-
nization of mice with recombinant 22.6 formulated with Fre-
und adjuvant resulted in 34.5% reduction on worm burden
[53] while Sm22.6 formulated with alum failed to induce
protection against schistosomiasis but induced a regulatory
response able to modulate allergic asthma in mice [54, 55].

Tetraspanins (TSP) 1 and 2 were identified in a cDNA
library from S. mansoni based on their membrane-targeting
signal [56]. Immunization of mice with TSP1 recombinant
protein resulted in a reduction of 57% in worm burden
and reduction in the number of eggs in liver (64%) and
intestine (65%), TSP2 recombinant protein was less effective
in reducing worm burden (34%) but had similar effects in
reducing the number of eggs trapped in the liver (52%) and
intestine (69%) [57]. The TSP-2 homologue in S. japonicum
has also been evaluated in murine immunization however no
protection was observed [58].

ECL or Sm200 is a GPI-anchored protein in the S. man-
soni tegument that has also been associated with praziquantel
efficacy, since antibodies against this protein can restore
drug efficacy in B cells depleted mice [59, 60]. Murine DNA
vaccination with the gene encoding Sm200 elicited 38.1%
protection while immunization of mice with enzymatically
cleaved GPI-anchored proteins from the S. mansoni tegu-
ment, in which Sm200 represent the most abundant protein
result in 43% reduction in adult worm burden [61, 62].
Sm21.7 was tested as antigen in a recombinant vaccine [63]
and DNA vaccine [64]. Immunization of mice with recom-
binant Sm21.7 resulted in a decrease of 41%—-70% in worm
burden while DNA vaccination resulted in of 41.5% worm
burden reduction [63, 64].

The schistosome antioxidant enzymes (Cu/Zn super-
oxide dismutase-SOD, glutathione-S-peroxidase-GPX) are

developmentally regulated. The lowest level of gene expres-
sion and enzyme-specific activity was found in the larval
stages while the highest level of gene expression was observed
in adult worms [65-68]. This suggests that antioxidant
enzymes are important in immune evasion by adult schis-
tosome parasites [67]. Also RNAi assays demonstrated that
knocking down the antioxidants enzymes GPX and GST
result in dramatic decreases in sporocysts survival indicating
that these enzymes are capable of enhancing parasite survival
in an oxidative environment [69]. Mice immunized with
the antioxidant enzyme Cu-Zn superoxide dismutase in a
DNA vaccine strategy resulted in 44—-60% reduction in worm
burden [65].

4. Antigens to Be Used in Schistosomiasis
Diagnostic Test

Currently, all available techniques for the diagnosis of schist-
osomiasis are characterized by having some limitations,
especially when it becomes necessary to detect infection in
a large number of patients with low parasite load [70]. One
of the initial difficulties in the development of a test for the
diagnosis of schistosomiasis is the choice of an appropriate
antigen. There are several factors that influence this choice:
easily of production, high stability in sample storage, immu-
nogenicity, specificity, and ability to be incorporated to low
costs test platforms [71].

In this context, the availability of the complete genome
sequences in combination with other technologies such as
bioinformatics and proteomics, provides important tolls to
seek for an ideal candidate to compose an efficient immun-
odiagnostic test. With this in mind, our group have recently
designed an in silico strategy based in the principles of reverse
vaccinology, and using a rational criteria to mine candidates
in parasite genome to be used in the immunodiagnosis of
schistosomiasis [72]. Six antigens were selected based on the
evidence of gene expression at different phases of the parasite
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TABLE 2: Schistosoma mansoni protein selected by genome mining to be used in serological diagnosis for schistosomiasis.
Protein SchistoDB Annotation Nu@ber 9f Base pairs Predlcted. . Predl.c ted . Predicted location
number amino acid molecular weight isoelectric point

Sm200  Smp.017730 200-kDa GPl-anchored 1656 4971 186,5kDa 497 Tegument surface
surface glycoprotein membranes

Sm12.8  Smp_034420.1 Expressed protein 117 354 12,8kDa 6.88 Extracellular

Sm43.5 Smp_042910 Expressed protein 382 1149 43,5kDa 8.43 Extracellular

Sm127.9  Smp-171300 Hypothetical protein 1143 3432 127,9kDa 6.63 Extracellular

Sm18.9  Smp 1saasp ~ CYtochrome oxidase 171 516 18,9kDa 9.30 Extracellular

subunit, putative
Smi16.5  Smp.184sso  Cytochrome oxidase 146 441 16,5kDa 9.14 Extracellular

subunit, putative

Adapted of Carvalho et al., 2011 [72].

life cycle in the definitive host, accessibility to host immune
system (exposed proteins), low similarity with human and
other helminthic proteins, and presence of predicted B cells
epitopes (Table 2) [72]. Although our in silico analysis led to
identification of six candidates, this strategy has not been yet
experimentally validated.

Other groups have also used bioinformatics analysis to
select target sequence from S. japonicum genome to be used
for the detection of parasite DNA in blood samples. A 230-
bp sequence from the highly repetitive retrotransposon SjR2
was identified and it was demonstrated that PCR test to
detect SjR2 is highly sensitive and specific for detection
S. japonicum infection in the sera of infected rabbits and
patients [73]. More recently the same group performed a
comparative study to determine the best target to be used
in a molecular diagnosis test for schistosomiasis japonicum
in 29 retrotransposons identified by bioinformatics analysis.
A 303-bp sequence had the highest sensitivity and specificity
for the detection of S. japonicum DNA in serum samples [74].

Proteomics analysis has also been used in the identifica-
tion of candidates to the immunodiagnosis of schistosomia-
sis. Western Blot with sera from S. japonicum infected rabbit
in a two-dimensional gel loaded with adult worm prepara-
tion identified 10 spots that were demonstrated by LC/MS-
MS to correspond to four different proteins: SJLAP (Leucine
aminopeptidases), SFBPA (fructose-1,6-bisphosphate aldo-
lase), SjGST (Glutathione-S-transferase) and SJ22.6 [75].
Recombinant SjLAP and SjFBPA were tested in ELISA assay
and presented high efficacy for the diagnosis of S. japonicum
infection, with 96.7% specificity for both proteins and 98.1%
or 87.8% sensitivity to detect acute and chronically infected
individuals, respectively, when SjLAP was used as antigen or
a sensitivity of 100% (acute) and 84.7% (chronic infection)
when SjFBPA was used as antigen [75].

5. Other Membrane Proteins Candidates
to Be Used in Vaccine Formulation and
Diagnosis Tests

Aquaporins are small integral membrane proteins involved
in the selective transportation of water and other solutes
through plasma membranes of mammals, plants and lower

organisms [76]. This protein was described to be abundant in
schistosome tegument and due to its physiological function
and abundance represent an interesting target to vaccines
and diagnosis tests [48]. Characterization of the S. japonicum
aquaporin-3 using bioinformatics tools demonstrated that
this 32.9 kDa transmembrane protein has predicted B cells
epitopes with the most likely epitopes present in the N-
terminal portion of the protein, located outside the mem-
brane [77]. Other abundant protein in schistosoma tegument
is dysferlin, based on analogy with homologues from other
organisms, this protein seems to be involved in membrane
repair and/or vesicle fusion in tegument surface [34].

ATP-diphosphohydrolases are enzymes involved in ADP
and ATP hydrolysis that has been related to host immune sys-
tem evasion, since this enzyme could hydrolyze the ATP pro-
duced in response to parasite induced stress in the endothe-
lio thus modulating the DAMP (danger associated mole-
cular pattern)-mediated inflammatory signaling [78, 79].
In schistosomes two different proteins have been described
SmATPDase 1 and SmATPDase2 with approximately 63 and
55kDa [80, 81]. SmATPDase 1 is located in the border
of the tegument while SmATPDase2 is located in internal
structure of the tegument syncytium and can be secreted
[81]. The immunogenicity of the synthetic peptide (r175-
190) from SmATPDase2 has been demonstrated in Balb-c
mice, however the protection induced by this epitope has not
been evaluated [82].

Although most tegument protein listed in this paper has
been identified in adult worm tegument, an in silico anal-
ysis performed in SchistoDB (http://www.schistodb.net/)
demonstrates that some of them are also expressed in the
schistosomula stage as demonstrated in Figure 1 reinforcing
their potential to be used in a vaccine formulation or in the
early diagnosis of schistosome infection.

6. Conclusion

So far the genome, transcriptome, and proteome informa-
tion provided many targets to be tested in schistosomiasis
vaccine and diagnosis and also new knowledge about schisto-
some biology. However approximately 40% of the schisto-
some genome is composed of hypothetical proteins with
unknown function that represents interesting targets to be
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FIGURE 1: Predicted expression of schistosome tegument proteins
in the different parasite life stage in the definitive host. schistosome
tegument protein identified by proteomics analysis of the adult
worm tegument was analyzed in SchistoDB database (http://www
.schistodb.net/). Bars represent the numbers of EST in each parasite
life stage whose annotation correspond to Sm200, Sm29, TSP-2,
TSP-1, Dysferlin, Sm22.6, or Sm21.7.

tested and characterized. An increase in the knowledge about
parasite biology, pathogenesis, and host-parasite relationship
can be expected for the next years.
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