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Abstract
Effort has been made to identify protective antigens in order to develop a recombinant vaccine against
leptospirosis. Several attempts failed to conclusively demonstrate efficacy of vaccine candidates due
to the lack of an appropriate model of lethal leptospirosis. The purposes of our study were: (i) to test
the virulence of leptospiral isolates from Brazil, which are representative of important serogroups
that cause disease in humans and animals; and (ii) to standardize the lethal dose 50% (LD50) for each
of the virulent strains using a hamster (Mesocricetus auratus) model. Five of seven Brazilian isolates
induced lethality in a hamster model, with inocula lower than 200 leptospires. Histopathological
examination of infected animals showed typical lesions found in both natural and experimental
leptospirosis. Results described here demonstrated the potential use of Brazilian isolates as highly
virulent strains in challenge experiments using hamster as an appropriate animal model for
leptospirosis. Furthermore these strains may be useful in heterologous challenge studies which aim
to evaluate cross-protective responses induced by subunit vaccine candidates.
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1. INTRODUCTION
Leptospirosis is an infectious disease caused by pathogenic leptospires that are transmitted
directly or indirectly to humans and animals. Leptospirosis occurs worldwide but it is more
commonly associated with tropical and subtropical areas [1]. The disease is found mainly
wherever humans come into contact with the urine of infected animals or an urine-contaminated
environment [2]. Exposure to leptospires may be associated to water sports, sporadic exposure
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in urban areas of developed countries, outbreaks associated with rain season and floods in urban
areas with poor sanitary conditions, and it also occours as an endemic disease in rural areas in
Latin America and Southeast Asia [2-4]. The clinical presentation of human infection ranges
from olygosymptomatic or undifferentiated febrile illness to severe forms of Weil’s syndrome,
with an overall 10-15% case fatality, and severe pulmonary hemorrhagic syndrome (SPHS),
with ≥50% case fatality [5,6].

Whole genome sequences are now available for Leptospira interrogans serovars Lai and
Copenhageni and L. borgpetersenii serovar Hardjo [7-9]. Both China [9] and Brazil [8] have
made research in leptospirosis a priority in order to address this emerging public health
problem. In the case of Brazil, a national multiinstitutional initiative led to the whole genome
sequencing of L. interrogans serovar Copenhageni, the agent for epidemics of severe
leptospirosis in Brazilian urban centers [10,11]. A major goal has been the use of genome
information to identify targets for a subunit based vaccine [12]. Ideally an effective vaccine
would induce induce cross-protection against the range of serovars of public health importance.
Encorauging data using recombinant proteins and DNA vaccines in different animal models
has already been published [13-19].

Brazilian strains of serovar Copenhageni isolated from humans have been used in recent studies
on pathogenesis and proteomics [20-27]. However, there is a wide diversity of Leptospira
serovars that constitute etiological agents of leptospirosis, specialy in rural settings. To date,
there is little information on virulence of pathogenic isolates using a standard animal model.
This is a critical issue for the evaluation of vaccine candidates that elicit potential cross
immunoprotection response.

In this context, we tested the virulence of Leptospira isolates obtained from humans, dogs and
from a mouse, representative of serogroups important for public health and veterinary areas.
In addition, we performed LD50 experiments to demonstrate the suitability of these virulent
strains for challenge assays using low inocula in the hamster (Mesocricetus auratus) model.
This strategy aimed to develop a standard method for comparison of virulence that would make
it easier to design and interpret immunoprotection experiments.

2. MATERIALS AND METHODS
2.1. Bacteria

All leptospires were cultivated in liquid Ellinghausen-McCullough-Johnson-Harris (EMJH)
medium (Difco Labratories) at 29 °C, and leptospires were counted in a Petroff-Hauser
counting chamber (Fisher Scientific) as previously described [28]. L. interrogans serovar
Copenhageni strain Fiocruz L1-130 [11] and six isolates from Pelotas city, South of Brazil,
previously serogrouped (Table 1), were passaged in hamster, and stored at -70 °C until use. In
order to minimize variability on virulence due to re-adaption to culture medium, each isolate
received a specific notation as function of the number of in vivo and in vitro passages. Thus,
for standardization and reproducibility of future experiments, Fiocruz L1-130 was passaged in
hamsters four times and then three times in EMJH medium. Aliquots were passaged four times
in liquid medium prior to their use as a low-passage-number isolate for the infection
experiments. Other strains had a distinct number of passages in hamsters and in vitro (Table
1).

2.2. Animals and experimental challenge infections
Male and female Golden Syrian hamsters (Fiocruz/BA) were used in all experiments. For
virulence evaluation of the clinical isolates, hamsters (n=2 in each group) weighing
approximately 55 g, were infected intraperitoneally with 108 leptospires. All animals were
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monitored daily for the presence of clinical signs, including evidence of external hemorrhage,
dehydration, ruffled hair coat, decreased activity and isolation. In these conditions, hamsters
were euthanized and kidney tissue was cultured at 29 °C in liquid EMJH media without
antibiotics. Leptospires were recovered from kidney tissue of moribund hamsters in order to
obtain a challenge strain which would have reproducible virulence characteristics. After two
or three sub-cultures in liquid media, each strain was distributed in aliquots of 1 ml and stored
at -70 °C for future use. Only strains that proved to be virulent causing lethal disease in these
screening experiments were further evaluated in LD50 experiments. Strains which failed to
cause lethal disease in three experiments were regarded as avirulent. This project and all animal
experiments were approved by the Committee for Animal Care and Use (CEUA/Fiocruz).

2.3. LD50 experimental design
For all experiments, nine-week old hamsters were infected intraperitoneally with 10 fold serial
dilutions. Inocula of 105 to 100 organisms were tested. The number of animals for each
inoculum was 4 or 8, depending on the availability of animal facilities (detailed information
provided in table 2). Animals were monitored daily for clinical outcome until 28 days post-
infection. After this, LD50 was calculated by the method of Reed and Muench [29]. Negative
control animals were injected with the same volume of sterile EMJH media. All strains were
evaluated in at least three independent experiments.

2.4. Histopatologic analyses
In order to investigate whether inoculation with the strains could reproduce histopathological
changes typical of experimental leptospirosis, we performed necropsies of the first two animals
appearing moribund after infection by each strain and compared their histopathology with
samples from two non infected hamsters of the same age euthanized nine days after inoculation
of 1 ml sterile EMJH media. Neutral-buffered formalin fixed paraffin-embedded samples were
sectioned and stained with Hematoxilin and Eosin (HE) and silver impregnation by Warthin-
Starry technique [2].

3. RESULTS
Strains Fiocruz L1-130, Kito, Cascata, Hook and Bonito (Table 1) produced lethal infection
with inocula of 108 in all hamsters tested. Strains Isoton and Skoll did not cause disease or
colonization in hamsters in three challenge experiments and therefore were regarded as
avirulent strains. Kito and Bonito strains had the lowest LD50 (<10 leptospires). However, all
virulent strains induced disease and led to death with an inoculum containing less than 200
leptospires. L. interrogans serovar Copenhageni strain Fiocruz L1-130 had a LD50 of 105
leptospires in females and 36.7 in males. L. interrogans serogroup Canicola strain Kito had a
LD50 of 2.8 in females and 2.5 in males. L. noguchii serogroup Bataviae strain Cascata had a
LD50 of 33.9 in females and 57.2 in males. L. noguchii serogroup Australis strain Hook had a
LD50 of 115.4 in females and 18.4 in males. L. noguchii serogroup Autumnalis strain Bonito
had a LD50 of 2.7 in females and 3.3 in males.

Clinical signs were observed from the 4th day post infection (d.p.i.) and the mean period of
death of hamsters was 11 d.p.i. However, animals experimentally infected with strains
belonging to L. interrogans died between 7 and 14 d.p.i. while strains belonging to L.
noguchii caused death in hamsters 7 to 22 d.p.i. A survival curve from representative
experiments is shown in figure 1.

Hamsters infected with virulent strains developed acute lethal infection characterized by
hepatic and renal complications. Acute damage of tubular epithelia with cell swelling in
proximal segments was observed as a common feature in moribund hamsters before 10 d.p.i
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(Fig. 2A). In contrast, hamsters which died after 10 d.p.i. exhibited multifocal regenerative
changes in tubular epithelia of renal cortex and moderate nephritis with infiltrates of leukocytes
and histiocytes most often distributed around small arteries. All moribund animals exhibited
marked dissociation of hepatic trabecula and had hepatocytes which undergone reactive
changes such as cytoplasmic size variation, prominent nucleoli and binucleation (Fig. 2B).
Macroscopic pulmonary and widespread bleeding was found in animals which received inocula
of 103 or higher. Although gross hemorrhages were not detected during necropsy procedure
of hamsters which received inocula of less than 103, microscopic foci of alveolar hemorrhage
were observed in all animals inoculated with virulent strains (table 2). None of these features
were seen in health control animals (Fig. 2C).

4. DISCUSSION
Increasing interest in the development of a recombinant leptospirosis vaccine has emerged in
the past few years. The field was further stimulated by the whole genome sequencing of four
strains from two pathogenic Leptospira species. Promising results have been reported by the
use of recombinant proteins in hamster [13-15,19]. In addition, naked DNA and adenovirus
used as a vaccine vector for a leptospiral antigen have also been evaluated in a gerbil model
[18]. In these studies, the ability of sub-unit vaccine candidates to induce immunoprotection
against heterologous serovars was not evaluated. However, a recent study reported
heterologous protection in a gerbil model using plasmids encoding LipL32 (Hap1) from
serovars Autumnalis and Grippotyphosa. Immunization with this construct conferred
protection against L. interrogans serovar Canicola challenge [16]. A more complete evaluation
of the capacity of vaccine candidates to induce cross-protective response requires a well-
characterized panel of virulent strains representing serovars of public health and veterinary
importance. We report here a suitable model for evaluation of vaccine candidates against a
wider range of pathogenic serovars.

In our study, we performed challenge experiments in hamster model with five highly virulent
Leptospira strains. Mice and hamster models have often required inocula as high as 106-108

leptospires to induce death [15,17]. Despite high doses, some strains are unable to induce
mortality in all control animals. For example, challenge with a 108 inoculum of Pomona strain
induced death in 25-57% of unvaccinated hamsters [15,30,31], which in turn complicates the
conclusions on the effectivenes of a vaccine candidate. The need for high challenge doses of
up to 106 organisms to produce lethal infection may be due to the non-susceptibility of the
animal model (mouse) [17] or low virulence of the strains. Protective effects would be better
evaluated using strains with an LD50 of <103 in a susceptible host, such as the hamster. In a
previous evaluation of homologous protection using Fiocruz L1-130 strain, fragments of
leptospiral immunoglobulin-like proteins prevented lethal disease in hamsters while
unvaccinated controls showed a high rate of lethality (100% of 76 animals infected with 103

leptospiras) [14].

L. interrogans Copenhageni Fiocruz L1-130 strain was isolated from a patient identified during
the flood-associated outbreak of leptospirosis in Salvador, Brazil, in 1996 [11]. This isolate
was also the target of a multicenter initiative to sequence its genome [8]. Additionally, it has
been used for studies on pathogenesis and leptospiral proteomics [20-21,26-27,32-34]. Serovar
Copenhageni is the most common leptospiral isolate in Salvador and also in other urban areas
of Brazil [10-11,35-36] and its low LD50 demonstrates that it is a highly virulent pathogen for
hamsters, which has been used in previous immunoprotection experiments [14].

L. interrogans serovar Canicola is the second most important agent for urban leptospirosis in
Brazil [10]. In our study, we could demonstrate it as a highly virulent strain for hamsters with
a general LD50 of 2.57 leptospires. Serovar Canicola may cause severe disease in animals and
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has already been associated to a pulmonary hemorrhage human leptospirosis outbreak in rural
areas of Nicaragua [37].

L. noguchii is a pathogenic species present in the American continent and has been recently
reported in the South of Brazil [38]. It had been previously isolated from human, armadillo,
toad, spiny rat, opossum, nutria, Mustela nivalis, cattle and sheep, showing a wide variety of
domestic and wild hosts [2,38,39]. Strains Bonito and Cascata were isolated from human
patients with clinical leptospirosis, while Hook strain was isolated from a stray dog with lethal
leptospirosis. All strains were virulent for hamsters.

These human and animal virulent isolates were submitted to hamster passages before their use
in LD50 experiments. Only strains Isoton and Skoll, which did not cause lethal disease and
could not be recovered from hamster kidneys inoculated with 108 leptospiras, were not further
evaluated. It is conceivable that the observed high virulence in LD50 experiments reflects a
virulence artificially obtained by successive hamster passages (“hamster adaptation”), and not
the natural virulence of each isolate. However, our goal in this study was to select distinct
virulent strains to be used in hamster model regardless of the original virulence characteristics
of the isolates.

The lack of virulence of strain Isoton, an isolate from the blood culture of a patient with severe
leptospirosis might be explained by the successive in vitro propagation: 31 passages may have
allowed mutations to occur rendering the strain avirulent. It has already been reported that
high-passage strains can present impaired virulence [40]. On the other hand, although
uncommon, some strains may be virulent in host animals but not in the experimental model as
is the case for serovar Hardjo subtype A strains [7]. The Skoll strain was isolated from an
asymptomatic mouse. In this case it is accepted that avirulent leptospires may colonize renal
tissues of mammalian hosts [40,41]. Similarly, we have previously isolated the L. noguchii
strain Caco from an asymptomatic sheep that failed to cause disease in the hamster model
[38]. The lack of virulence in these strains precludes their use in immunoprotection
experiments.

The hamster model reproduced pathologic findings observed in acute lethal forms of human
and experimental leptospirosis, as previously described [42-46]. The presence of microscopic
pulmonary hemorrhage in the absence of gross features has also been reported in humans and
in guinea pigs [25,43]. The pattern of acute cell swelling in fulminant disease and a picture of
multifocal regeneration tubular foci and interstitial nephritis in more prolonged illness have
also been reported in humans [42]. Taken together, the reproducibility of acute lethal infection
and target organ pathology makes the hamster model suitable for standardization of virulent
strains and immunoprotection assays.

In conclusion, we characterized the virulence of five clinical isolates of Leptospira belonging
to five different serogroups. These highly virulent strains are currently been used in
experiments aiming at evaluating homologous and heterologous protection induced by killed
whole-cell and recombinant vaccine candidates against acute lethal leptospirosis in the hamster
model.
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Fig.1.
Kaplan-Meier analysis of the results from LD50 experiments with 5 virulent strains. In these
five representative curves, challenge studies with Fiocruz L1-130 and Cascata strains were
performed with eight hamsters per group, and challenge studies with Kito, Hook and Bonito
strains were performed with four hamsters per group. Groups of hamsters were inoculated with
105 (■), 104 (◆), 103 (▲), 102 (●), 101 (▼) and 100 (□) leptospires. Survivors were followed
for up to 28 days post infection.
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Fig. 2.
Typical lesions of leptospirosis in a 9 week old hamster dying eight days after the infection by
strain FIOCRUZ L1-130. (A) Marked cell swelling of epithelial cells of proximal tubules
(hematoxylin-eosin, 400x). (B) Diffuse loss of cohesion (liver-plate disarray) of liver cells
(hematoxylin-eosin, 400x). (C) Microscopic foci of pulmonary hemorrhage (hematoxylin-
eosin, 200x).
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